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In this lecture, we will continue or discussion on factor analysis. In the last lecture, we 

had the given some preliminary introduction about factor analysis. We had also looked at 

as an example, if we have a covariance matrix sigma; how to verify, whether a particular 

m order factor model holds for such a sigma matrix or not. We had also seen some 

important results concerning factor analysis. Specifically we had these remarks at the end 

of the example.  
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That remark two had the when we had said that if we take m equal to p, then sigma can 

always be return as sigma equal to L L dash plus psi. Thus an m factor model will always 

hold in such a situation. In the next remark, we had seen how the reduction in the number 

of parameters is affected, when we have in a factor model. 
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Now, let us look at the next important thing which, goes as remark four. (No audio from 

01:13 to 01:19) Suppose m factor model holds for X, and if X is rescale, that is if X is 

transformed to D X, wherein this D is a diagonal matrix. Remember this is p by 1. So, 

this is diagonal matrix D 1, D 2, D p. Then, m factor model also holds for the rescale 

variable - that is Y, so we have got this D to be the diagonal matrix which is p by p order. 

So, the m factor model will also hold for Y. 

Now, let us see Y is that. So now, this is what the remark says, now since m factor model 

holds for X, holds for X. We can write this X as X minus mu; where mu is mean vector 

this is equal to L F plus epsilon - where L is loading matrix, F is a vector of m specific 

factors. I am sorry F is a vector of m common factors, and epsilon is a vector of p 

specific factors. So, this is what is the setup for the factor analysis. 

Now, if we pre multiply this equation by this diagonal matrix D, what we get is that this 

D X minus D mu that is equal to D L F plus D epsilon. Now, this D X we had earlier 

denoted by Y. So, let the p equal to Y, and let us denote this D mu by nu that is equal 

to… Let us write this as D L F this write this as eta, wherein what we have used in this 

mu equal to D times mu, and this eta vector is D times epsilon right. 

Now, this particular form here will represent now, this is a p by one-dimensional random 

vector here. Now, this we can denote as some L star say that F plus eta. So, this looks as 

if, it is an m factor model for this random vector Y, provided the assumptions that we 



had a usually in mind for the factor analysis model holds. Now, the vector of the 

common factors remains exactly the same. So, this is m by 1 vector. Now, what is order 

this eta - eta as it is define, it is p by 1. Now, expectation of F of course, nothing as 

changed from the previous equation, this will be equal to a null vector. Then the 

covariance matrix of this F vector, that would be an identity matrix - identity matrix of 

order m, because this is the m factor model for the random vector X. 
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Now, concerning this eta, expectation of this eta vector will be expectation of D time’s 

epsilon. So, that will be equal to a null vector. And furthermore this covariance matrix of 

eta, this is equal to the covariance matrix of D times, this epsilon vector. Now, epsilon as 

it is given here, this epsilon will have a covariance structure, covariance of epsilon equal 

to psi matrix which is diagonal matrix, that is what is assumption for a name factor 

model. 

So, that we will have here as D psi matrix times D transpose. So, what would be the 

characteristic of this particular matrix. This matrix will also be diagonal matrix, as we 

have this D, and also D prime which is exactly the same. So, they are diagonal matrix, 

psi the starting matrix is a diagonal matrix. And also, we will have the covariance 

between F and eta, this would be covariance between F- F is unchanged. 

So, this is D epsilon. Now, expectation of F is equal to 0. So, this is equal to expectation 

of F epsilon transpose times, this D transpose. Because this F an epsilon are coming from 



the original m factor model, we will have in this particular model, further mode that 

covariance between F and epsilon. This would be equal to a null matrix, and hence this is 

what we will also have a null matrix. Thus we see that, if we are having and m factor 

model to hold for X, then F X is rescale that is X is transform to D X with D a diagonal 

matrix. We have been able to write this Y minus nu - nu is a expectation vector of this Y 

vector, which is equal to L star F times eta. Where in this F an eta satisfies require 

conditions for an m factor model two hold. 

So, this will imply that m factor model wholes for Y equal to D X right. Now, we will 

look at the next important remark, this would be remark number five. Which will say that 

L and F in and m factor model are not unique. That is it sticks that if we have a random 

vector X, and we are looking at expressing that random vector in terms of a m factor 

model. Then this L is what is matrix of factor loadings, and F is the vector of our m 

common factors, the choice of L N F are not unique. Now, Y do is say so, let us try to 

understand what we are trying to achieve. Suppose X this is p by 1, has m factor model 

or an m factor model wholes for X will be able to right, X minus mu to be equal to L F 

plus epsilon with the corresponding assumption on F N epsilon to hold. 

Now, on the right hand side, if we introduce and orthogonal matrix gamma - gamma 

transpose the nothing will change as such, where in this gamma is such that, it is a 

orthogonal matrix. So, that gamma - gamma transpose is equal to an identity matrix. 

Now, if we have this, we have this X minus mu return in terms of this, that is in other 

words we can remains this X minus mu equal to L star. Wherein L star is L times 

gamma, and this is say and F star vector - where F star is this gamma prime F, this plus 

epsilon. 

So, we have a new loading here. And this F star. The new vector this is an m dimensional 

vector, it needs to a satisfy the conditions in order to say, in order that we can say that 

this is an m factor factor model for this random vector X. Now, epsilon there is no 

change in epsilon. So, this expectation of epsilon is still a null vector, and the covariance 

matrix of a epsilon is psi, the diagonal matrix which is coming from the previous 

formulation. Now, this F star is such that - F star is equal to gamma prime F vector. This 

is such that, expectation of this F star will be equal to expectation of this gamma prime F 

this will be a null vector, because this F has got a expectation as null vector.  
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Then the covariance matrix of this F star will be equal to the covariance matrix of what 

we have to find is gamma prime F. So, this is gamma prime F, this will be equal to 

gamma prime this will be equal to gamma prime. Then covariance matrix of F times 

gamma. Now covariance matrix of F, because F is the vector of common factors coming 

from the m factor model. So, this is an identity matrix. So, this will be gamma prime 

gamma this will be an identity matrix right. 

So, this is what is concerning the covariance matrix of F, and furthermore the covariance 

between this epsilon, because epsilon is unchanged here. So, we need to look at the 

covariance matrix of epsilon, and F star. So, covariance matrix of epsilon and F star - this 

is equal to the covariance matrix of epsilon, and this gamma prime F. This is equal to 

expectation of epsilon F prime, this would be a F prime F prime times this gamma 

matrix. 

Now, the relationship between epsilon and F. F is the vector of common factors in the 

original m factor model, and hence we will have the covariance between epsilon and F to 

be equal to 0. And null matrix that multiplied by this gamma is also in a null matrix. So 

that, if we have return this particular model as in here, we are having F star such that 

expectation of F star is equal to 0, covariance matrix of a F star is an identity matrix of 

order m. And the covariance matrix of epsilon, and F star that is equal to a null matrix. 

Epsilon of course, is unchanged and hence that is got expectation equal to a null vector, 



and covariance matrix diagonal psi matrix - this will imply that this X minus mu equal to 

L star F star plus epsilon is an m factor model for X. 

So, what we have we what are we trying to see, we are trying to see that this is m factor 

model for X with the loading matrix as L, and the vector of common factors as F. Now, 

the same can be expressed in terms of another L star, where L star is just equal to L times 

gamma matrix, where gamma is orthogonal matrix. So, this also has this representation. 

So, we are a different loading matrix L star, then the original starting L. And we have a 

different a vector of common factors F star, which is different from the starting F. So, the 

choice of L, and F is definitely not unique. No in order to make this particular choice of 

L N F unique, some additional conditions are sometimes impost a like the following 

condition - some conditions are imposed. So, as to have the m factor model unique. For 

example, one such condition is that L prime psi inverse L to be a diagonal matrix. So, 

such additional conditions may be imposed on the model. So, as to have the choice of the 

L, and the corresponding F vector to be unique. 
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Now, in the next remark which is remark number 6, which remark number 6 talks about 

non-existence non-existence of proper solution for m factor models. Now, in some 

situation, suppose we starts from a variance, covariance matrix as in sigma. We might 

get after the solution, now let me just write it. Sigma equal to L L dash plus psi is what 

would lead us to believing that an m factor model wholes for the original set of random 



variables, p dimensional X. Now, in some situations starting from a sigma matrix, we 

might still be able to solve this particular equation, but we might be getting psi i is… So, 

if we have psi i‘s negative. Then, the solution is not a proper solution. Why ((  

)) so, what are psi i’s - psi i’s other specific variances. So, those are the variances of 

specific factors. 

 Now, they cannot be negative, and hence if in some situation by solving such an 

equation in order to verify, whether and in factor model holds for X. If we get in the 

solution that psi i is an negative. Then the solution is not a proper solution. Now, such a 

situation is refer to as the Heywood case. So, the Heywood case basically tells us that, in 

order to the get this solution if we get psi i is negative. That solution is not a proper 

solution, and the terminology that is use in order to a actually say such a case, you will 

say that it has some property like what is call the Heywood case right. Let us look at an 

example of such a Heywood case, where the proper solution will not exist. 

So, we take a sigma matrix which is 3 by 3 matrix, which is having one in the diagonal, 

so it is basically variance covariance matrix of standardize variables. And we take the 

following values 0 .9, 0 .7 and 0.4. So, this is a starting covariance matrix. We are trying 

to c, to check whether one factor model holds for the random vector X, which has this as 

the covariance matrix right. Now, in order to do that we need to frame the following 

equation, which says a sigma equal to L L dash plus psi; where this L is going to be 

equal to, because we have seen that whether a one factor model holds. So, this is an l 1 1, 

l 2 1, l 3 1, and this psi is the diagonal matrix with psi 1, psi 2, and psi 3 as the three 

diagonal entries. Now, if we plug in this particular value. We will have this sigma equal 

to our l 1 1, l 2 1, l 3 1, that into its transpose. So, its l 1 1, l 2 1, l 3 1 this plus this psi 

matrix. 
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So, we will have this sigma to be equal to if we look at this particular multiplication, and 

then at the psi matrix to that multiplied vector, what will be getting is l 1 1 square plus 

psi 1 on the 1 1 th element. l 1 1, l 2 1, l 1 1, l 3 1 this is l 2 1 square plus psi 2, and this 

is l 2 1, l 3 1 and the 3 3 th element is l 3 1 square plus psi 3. Now, we know what this 

particular sigma matrix. So, equating what we get is the following 1 equal to l 1 1 square 

plus psi 1, because the 1 1 th entry of this sigma matrix is equal to 1. The other values 

also gives us the following that 0.9 0 is equal to your l 1 1, l 2 1. Then we have the value 

as 0.7 0 that is equal to l 11, l 3 1. This entry l 2 1 square plus psi 2 - this is equal to 1, 

and l 2 1, l 3 1 that is equal to the given value which is 0.40. And we have this l 3 1 

square plus psi 3, that is also equal to 1. 

So, we need to solve this particular set here, and then come up with the values of l 1 1, l 

2 1, l 3 1 and psi 1, psi 2, and psi 3, if we use first these two equations. This l 1 1, l 3 1 

that is equal to 0.7, and l 2 1, l 3 1 that is equal to 0.4. So, this will simply, because l 3 1 

is common out here, we will have this l 2 1 equal to 0.4 by 0.7 times l 1 1 right. And 

furthermore, what we have from this equation is 0.9 equal to l 1 1 times l 2 1. So, these 

two collectively would imply or rather give us the solutions, this will lead us to l 1 1 

square that is equal to 1.575. That is l 1 1, it will be equal to plus or minus this square 

root of this particular number which turns out to be 1.255 right. 



So, we have a solution l l l equal to this. Now, we will see why this is not a feasible 

solution, now realize that this variance of X 1 is equal to sigma 1 1. What is that equal to 

from the given sigma matrix that is equal to 1. So, this is equal to 1, which is also equal 

to when we are looking at this variance of the first common factor. l 1 1 is a loading of X 

1 on F 1. Now, the two component X 1, and F 1 both of them have a variance equal to 

one. And what we have seen earlier is that, this L ij is a covariance between X i and F j.  
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So, this l 1 1 is nothing, but covariance between X 1 and F 1. Since the variance of a X 1 

and F 1 are both equal to 1. We will have this as also the correlation between X 1 and F 

1. Now, the solution what we have got is l 1 1 equal to plus or minus 1.22, which is an 

absorb value. So, this will imply that l 1 1 equal to plus or minus 1.255 is an absent. So, 

if we have this lambda m plus 1 to up to lambda p close to 0. We can neglect the 

contribution of these eigen values lambda m plus 1 to lambda p to sigma, that is in the 

spectral decomposition as in here. We have from lambda one to up to lambda p, we are 

assuming that beyond the certain point m - lambda m plus 1 to up to lambda p are 

negligible. They are close to 0. And hence, we can neglect the contribution of these 

terms - the last p minus m terms.  
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And then, we can say that let in such a situations sigma is approximately equal to our 

first m terms, that is lambda 1 e 1 e 1 prime plus lambda m e m prime. Now, we can 

write this particular expression here, up to m terms. This is a approximate, because we 

have chopped off from lambda m plus 1 to up to lambda p those contributions. So, we 

can right similar that previous set up, that this is equal to root over this - root over 

lambda m e m; this is the transpose of it - lambda 1 e 1 prime root over lambda m e m 

prime right. 

So, if sigma is approximately equal to this. We can take the variance of the specific 

factors, variance of the specific factors can be taken as diagonal entries of sigma. Now, 

we will write this as L L dash, where this L matrix is this particular matrix which is p by 

m. So, this matrix is what we have writing a p by m, this is m by p it is transpose, by 

choosing the diagonal entries of sigma minus L L dash. That is what we are having is 

this psi i equal to sigma i i minus this L I ij square for j equal to 1 to up to m. 

So, we will look at this sigma minus this L, L transpose and then from that different 

matrix; if we pick up this the diagonal elements, and then say that our psi i as going to be 

that sigma i i. This sigma i is diagonal entry of this. And this quantities L L dash is 

diagonal quantity - i th diagonal quantity. And this will imply that we will have this 

sigma, approximately equal to L L dash plus the psi matrix wherein using this psi is here. 



We will form the psi matrix, which is psi 1, psi 2, and psi p - the specific variances. All 

this quantities are zero’s right. Now, in this approximation, note that the diagonal entries 

of sigma would exactly match with the diagonal entries of L L dash plus psi, because L L 

dash is up to this particular a term e m or lambda m terms. And psi is what we are taking 

as the diagonal entries of this particular difference matrix, and hence this sigma being 

approximated by L L dash plus psi. This approximation - in this approximation, the 

diagonal entries will be exactly equal to 0, and the half diagonal entries of sigma, and L 

L dash plus psi will differ. Now, we will use this particular concept in order to estimate 

L, and the corresponding psi matrix from the data. 
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So, what we will now, look at is applying the above procedure above procedure to a 

given data set. Now, the data set is comprising of x 1. So, that is the first p dimensional 

realization, x 2 this is the second p dimensional realization, and this is say x n which is 

the n th p dimensional realization. So, these are the realizations which we have as the 

data set. So, for any practical purpose as such, where we do not have any idea about what 

is the covariance matrix of the underling random variables. We will just be having this x 

1, x 2, x n as the given data set. 

Now, given this particular data set, we will apply the previous concept when we have 

looked at that is sigma matrix, and then give this algorithm for actually estimation of the 

loading matrix. And the psi the matrix are specific factors variances. So, at the first step 



from this given data, we will compute, I will just give this step by step procedure. What 

will first compute, it is the sample mean vector - the observed sample mean vector. 

Given this is calculated - we will calculate the deviation vectors, deviation vectors are 

given by this x j minus x bar quantities. Now, using this deviation vectors or otherwise; 

using the deviation vectors compute the sample variance covariance matrix, the sample 

variance covariance matrix say is given by this capital S. 

Now, once we have this now this is going be the estimate, as such of this sigma the 

population variance covariance matrix. Now, we will compute the eigen value - eigen 

vector pairs, compute the eigen value - eigen vector pairs of S. Say those are given by 

lambda 1 hat, e 1 hat - lambda 2 hat, e 2 hat, and now this is a p dimensional 

observations p dimensional observations and of them. So, the variance covariance matrix 

is also p dimensional, and we will have these as the corresponding eigen values, and 

eigen vector pairs. These are given caps, because we had a estimated sigma by S and we 

look at lambda one hat as an estimate of lambda 1, which was the eigen value 

corresponding to the, the largest eigen value corresponding to the sigma matrix.  

Now here, we will have similar relationship between the lambda i hats. So, lambda 1 hat 

is greater than or equal to lambda 2 hat is greater than or equal to lambda p hat.  
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Now, we will use this estimated eigen values, and the S corresponding estimated eigen 

vectors in order to. So, in the fifth step here, let us say that m less than p be the number 



of common factors, that we are going to choose. Then the matrix of factor loadings are 

estimated as this L hat, which is going to be equal to root over lambda 1 hat times this e 

1 hat root over lambda 2 hat times e 2 hat and so on. This is root over lambda m hat, 

where m is the number of common factor is that we are choosing, and this is going to be 

this e m hat right.  

Now, why is this so, because if we look at this formulation here, what we had chosen 

was this matrix truncated up to the m th point. And since, we are going to have the 

estimates from the sample estimated sample variance covariance matrix, from just the 

sample variance covariance matrix. And the eigen value eigen vector decomposition, if 

we have choosen m less than p to be the number of common factors. Then the matrix of 

factor loading are estimated by this. Now, once we have this factor loading matrix as 

this, the next step would be two estimate the specific variances. 

So, what we will have is a following the estimated specific variances. The estimated 

specific variances psi i hats are given by the diagonal entries of, diagonal entries of 

which matrix. Now, it would be S minus L hat L hat transpose, why is that so, because in 

relationship with this particular relationship we had chosen, the variance of this specific 

factors as sigma minus L L dash. Now, sigma is a estimated by S, L is a estimated by L 

hat.  

And hence, we will be using this S minus L hat L hat transpose, it is diagonal entries will 

be chosen as the specific, as the estimates of this specific variances psi i. That is we will 

have this psi i, psi i hat will be equal to s i i, where s i i is the diagonal entry of this S 

matrix this minus j equal to 1 to up to m l ij hat squares. Where l ij hat is the i,j th 

element of this L hat matrix. Now, lastly now that is what is the estimation, because L 

has been estimated as L hat corresponding to the m factor model, and this after this we 

will have this psi matrix to be estimated as psi hat matrix. Which will have the entries as 

psi 1 hat, psi 2 hat, and psi p hat; rest of the elements are zeros, which is given by this.  

Last thing as result remark the communalities. The communalities are estimated as your 

are h i hat square which is just particular term, because s i i is equal to communality plus 

the specific variance, and hence this communalities for the different common factors are 

going to be given by l i hat square terms of this right. So, this is how from a given data 



vector, we will be able to estimate all all the things which are require, in order to an 

actually have an m factor model for the given data. So, this is a step wise procedure. 
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Now, under such a situation, we make note of the following facts. The first note says that 

for a principal component solution, for a principal component solution, the estimated 

factor loadings estimated factor loadings, does not change as the number of factors are 

increased. 

What it is trying to convey is the following message, that suppose we have an m factor 

model - we have estimated the factor loadings, and the specific variances for an N factor 

model. If we one to go from N factor model, two N plus 1 factor model. Now, the 

previous factor loadings - the factor loadings for the first m factors will not change. If we 

are actually estimating the factor loading and specific variances, under this particular 

principal component solution approach. Now, why is that so. For example, this look at 

simple situation. Suppose we have an m factor model, if we have an m factor model then 

this L hat matrix say L 1 hat matrix, which this one signifies that it is a 1 factor model, 

this will be equal to what? This will be equal to root over lambda 1 hat times e1 hat. 

Now, if we one to go from the first factor one factor model to a two factor model. So, 

this is a two factor model, that is m equal to 2. Now, the loading matrix for m equal to 2 

will be given by root over lambda one hat, e 1 hat, still its first column. And the second 

column is just augmented that you will have this as lambda 2 hat be 2 hat. So, what we 



observe is that, this was the factor loading matrix for a one component model. And this is 

the factor loading matrix for a two component model that is m equal to 2. So, the two 

component model has two columns – this is the first column is the factor loadings 

corresponding to a one component model, and hence it does not change when we are 

moving from a one factor model to a two factor model. In general, if we have m equal to 

k say; then this L k hat matrix will have it is entries as l 1 hat, e1 hat root over l lambda k 

hat e k hat. 

Now, if from m equal to k, we want to move and move had and have a k plus 1 factor 

model for some reason. Then what we will be having as this factor loading matrix for 

this k plus one-dimensional factor model, to will just p this factor loading matrix 

corresponding to this k factor model. This will be augmented by one more column which 

is lambda k plus 1 hat times e k plus one hat. 

So, as such as we are seen here that the factor - the previous factor loadings are not going 

to change. If we are moving from a lower order factor model say k th order factor model, 

to a k plus 1 th order factor model. Now, when we are using this principal component 

approach - principal component method for a estimation of L and psi. We are making 

some approximation, as we have seen in here, that we are going to approximate this L - 

this S. In terms of L L hat this one, just write it here. This S is being a approximated by L 

hat L hat transpose plus this psi hat matrix.  

This is similar to that approximation that we had use for sigma matrix. So, this 

approximation is off what nature? If we look at the diagonal entries of S, they are going 

to match with the diagonal entries of this L hat L hat transpose plus this i hat matrix. 

Only the non-off diagonal entries of the two matrices S and L hat L hat transpose, and 

psi are going to differ.  
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So, the following result gives us a measure of closeness of approximation. Now, what is 

this approximation? This approximation is that S, we are approximating by L hat L hat 

transpose plus psi. Now, this is an important result which gives us the measure of 

closeness, some idea about the closeness of this approximation. If we denote by delta, 

this difference matrix which is S minus L hat L hat transpose plus psi. So, this is this 

delta matrix is going to measure the degree of closeness of this approximation. So, let us 

denote this, these elements as small delta i j’s. Then this summation of the delta i j square 

some over i j, which is also going to be equal to trace of this delta square matrix, this is 

symmetric matrix. This is going to be less than or equal to summation lambda i terms, 

lambda i hat squares i equal to m plus 1 to up to p. 

So, what it is says is that, this delta matrix - the matrix of differences comprising of delta 

i j as the i j th element of this delta matrix. This some of square of all these deviation 

matrix deviation matrix elements delta i j. So, this is the sum of square of all the 

deviation is going to be bounded, by it is less than or equal to summation i equal to m 

plus 1 to up to p lambda i hat squares. Now, this summation is what? The summation is 

the contribution of lambda i hat squares for the remaining for for the last p minus n eigen 

values. So, we had at the starting point said that, this type of method is going to what 

well, if we have the last p minus m eigen values to be negligible. And hence, in such a 

situation, this approximation would be very close. In the next lecture, we will look at 

proving this particular result. 


