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In the last lecture, we had started discussing about deriving optimum classification rule 

based on certain criterion. For example, we had introduced under a general classification 

framework. What we mean by a total probability of misclassification. We had also talked 

about another criterion which talks about expected cost of misclassification. In the last 

lecture, we had derived specifically the rule which corresponds to one that would 

minimize the total probability of misclassification.  

And we had also shown that when we talk about a total probability of misclassification 

optimizing rule; that is a classification rule on the partition of the sample space which 

leads us to the rule which minimizes the total probability of misclassification; that also is 

same as that of the Bayes rule. Now, today what we are going to look at in this lecture is 

first we will look at what is the optimum rule that we are going to get when we talk about 

expected cost of misclassification. Now, expected cost of misclassification is a criterion 

that is attached with once we have got a classification rule.  

Then there is ofcourse, as we have discussed that there is a possibility of an observation 

coming from one population getting misclassified into another population. Now, along 

with that we also put some cost constraints in the sense that suppose an observation 

coming from population pi 1 is misclassified to pi 2, then there is a cost attached to that 

and vice versa. And accordingly, if we have correctly classifying an observation coming 

from population number 1 into population number 2 1 itself, then there is no cost as such 

of misclassifying. And hence, we take C i C 1 1 or C 2 2; both of them to be equal to 0 in 

both the situations. 
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Now, let us first look at today that particular thing that I said, we are looking at the 

partition or the optimum partition, which minimizes the expected cost of 

misclassification. So, we will first look at this particular thing, and then look at some 

examples; some examples corresponding to a multivariate normal distribution. So, what 

is our expected cost of misclassification? Let us recall what that was... So, we have got a 

cost C 1 given 2; that is an observation coming from population number 2 is 

misclassified into population number 1. So, this is the cost which is attached with such 

an event that we are looking at a misclassification cost of misclassifying an observation 

coming from 2 into 1.  

And then the corresponding probability of this would be given by p 2 P 1 given 2 this 

plus the cost that we incur in misclassifying an observation coming from one into the 

corresponding probability, which is given by this particular expression; where these we 

had defined earlier. Now, in terms of the partitions R 1, R 2; remember, we had said that 

we are talking about partition. So, partition of the sample space; so, it is going to divide 

the sample space into region R 1 and R 2; wherein if x belongs to R 1, then we classify it 

into pi 1 and if x belongs to R 2, then we classify it into the second population; that is the 

pi 2 population.  

So, this can be written in terms of this is getting classified into 1 and hence this region is 

R 1 and then the population in that particular object is coming from population number R 

2. So, it has got the density f 2 in our notation in our earlier notations f 2(x) dx this plus 



C 2 given 1 into p 1. These small p i’s are the prior A priory probabilities of the 

corresponding populations; this integral over the region R 2; because we are classifying 

it into the second population and then it is coming from the first population. And hence, 

what we have is this particular term here.  

Now, if we look at this particular term, we can write it in terms of the complementary 

region of the first partition R 1 segment. So, this can be written first term as it is and the 

second term, we can write as this into omega minus R 1; that is the region R 2 this over f 

1(x) dx. So, what we can see from this expression is the following that C 1 given 2 into p 

2 integral over R 1 f 2(x) dx this plus… Now the first integral, this now gets splitted into 

these particular two terms; this p 1 this integral the first integral over omega f 1 (x) dx 

this minus integral over R 1 f 1(x) dx. So, this is going to lead us to this particular 

expression; now what it is written here.  

Now, this term here; this is integral over the entire space omega and hence this integral 

would be equal to 1 just and hence, we can write this expected cost of misclassification 

in a compact form in R 1 f 2(x) dx this plus this particular term. Let me write this term 

before the second term or let us just stick to whatever orientation we are having; this into 

1 minus integral over R 1; we leave it as it is f(x) dx. Now, thus collecting this term and 

the term corresponding to this; we can write this as C 1 given 2 p 2 into integral of R 1 f 

2(x) dx this minus integral over R 1 f 1(x) dx this plus p 1 times C 2 given 1. 

I think to be noted here in this particular expression for expected cost of misclassification 

is the following that this is a term, which is independent of the partition. So, this is a term 

which is independent of partition and hence the optimum partition, when we are looking 

at we are looking at R 1 opt, R 2 opt. So, that is the optimum partition that is what we are 

looking at and this is not going to play any role, when we are trying to minimize this 

particular expected cost of misclassification with respect to the partition that is with 

respect to R 1 and its complementary region with respect to the sample space. 
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So, what we have here is that this would imply that expected cost of misclassification 

minimization is equivalent to minimization with respect to the partition the partition is 

our R 1, R 2 is equivalent to minimization of the following quantity of (Refer Slide 

Time: 02:12) this first expression here. I missed out something; this constant also comes 

in here. So, this term has got a constant multiplier out here, which is C 2 given 1 that 

times p 1. So, this term when multiplied with this term leads us to C 2 given 1 into p 1 

into this particular term. So, when we are looking at finding the partition which would 

minimize the expected cost of misclassification, we can look at just this particular term 

and look at what is that partition with this, which is leading us to the minimum of the 

expected cost of misclassification. 

So, this is minimization of the term; that is what we have integral over R 1; writing it in 

one expression, this is going to be p 2 into C 1 given 2 this multiplied by f 2(x) that is 

coming from (Refer Slide Time: 02:12) the first term here. So, C 1 given 2 p 2 into f(2) x 

that minus this term in to f 1(x); so, this minus p 1 C 2 given 1 into f 1(x) d x. So, this is 

where, we are trying to find out R 1’s is this is minimized. And thus the E C M 

minimizing rule, this would imply this would imply that E C M is minimized if on R 1, 

we have this quantity to be less than or equal to this particular quantity and hence this is 

where the region comes in. So, this is p 2 into C 1 given 2 that times f 2(x) this is less 

than or equal to p 1 times C 2 given 1 f 1(x). 



And on R 2, we will have the other way round that is if p 2 into C 1 given 2 into f 2(x); 

this is greater than p 1 times C 2 given 1 into f 1(x). So, this R 1, R 2 partition, so this is 

the set of all x’s such that this quantity is less than or equal to the right hand side. So, 

that is the region of all x’s for which x is going to be classified into pi 1 and this is the set 

of the complementary x’s, for which this expression is strictly greater than this right hand 

side here. That is, in other words on R 1, we will have in terms of these quantities which 

is our p 1 C 2 given 1 to f 1(x) this divided by p 2 C 1 given 2 f 2(x). This is going to be 

greater than or equal to 1 and on R 2, the same quantity is less than 1. 

Now, if we have this to be the optimum partition, we call that this say R 1 opt, R 2 opt. 

So, this is the optimum partition R 1 opt and R 2 opt. So, this is what is leading us to… 

Now note that in this particular situation, if one looks at this particular region this 

partition of the sample space; if we have the corresponding cost quantities to be equal; if 

the costs of misclassification C 2 given 1 and C 1 given 2 is equal to 1; say if they are 

same; there is if the ratio is equal to 1, then this expected cost of misclassification 

minimizing rule is the same rule as that which minimizes the total probability of 

misclassification. 
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So, just note that, suppose we have got this ratio C 1 given 2 by C 2 given 1 this is equal 

to 1, then this ECM minimizing rule is same that of TPM minimizing rule then ECM 

minimizing rule minimizing rule is same as that of the TPM minimizing rule. That is, if 

this holds that is on R 1, we will have p 1 times f 1(x) that by p 2 times f 2(x); that is 



greater than equal to 1 and on R 2, we will be having this term to be less than 1. So, this 

is what we have. So, we have got two types of criterion two types of objectives before us 

under the general classification problem; that we can either go for a total probability of 

misclassification minimizing rule or we can look for a rule, which would minimize the 

expected cost of misclassification. 

We have derived both these optimum rules under the two philosophies and say that if 

such a thing holds, then the two rules are basically equivalent. Now, let us derive the 

look at the following, say classification rule in case of multivariate normal populations 

till now up till this particular point, we have not assumed any particular form of the 

populations. We had just said that we have got two populations pi 1 and pi 2 with some 

prior probabilities with densities given by f 1(x), when a particular observation is 

belonging to pi 1 and it is f 2(x), if it is belonging to second population. It is interesting 

to look at, what is the form of these rules when we have now some specific population 

like that of a multivariate normal population?  

So, classification rules under these optimum strategies under multivariate normal 

populations under multivariate normal populations. Now, what it looks like? We look at 

two different cases. In the first case, we look at the two populations as follows. 

Population 1 is a multivariate normal say m dimensional with a mean vector equal to mu 

one and a covariance matrix positive definite to be equal to sigma. So, sigma is assumed 

to be positive definite and the second population; so, this in our notation is pi 1 

population. This is the second population; we had earlier denoted that by pi 2. So, this is 

the second population, what we have? Let us assume that it has got a multivariate normal 

m dimension also with a mean equal to mu 2 and a covariance matrix same as that of the 

covariance matrix of the first population.  

So, the difference between these two multivariate populations is coming in their mean 

vector. So, for population number 1, it is mu 1; for population number 2, it is equal to mu 

2. Now, under such a situation, if we are trying to look at ECM minimizing rule or TPM 

minimizing rule, then what is the form of the classification rules that we are going to get? 

Let us look at first a simple example or a simple setup that consider we consider a special 

structure of a prior and our cost structure. Suppose we consider a special structure, there 

is a point why actually we are looking at this particular special structure of prior and 

misclassification cost costs. That is, the priors are p 1 and p 2 and our cost costs of 

misclassification are C 1 given 2 and C 2 given 1. 
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So, we have this special structure, which is going to tell us the following that p 2 into C 1 

given 2 this divided by p 1 into C 2 given 1. Suppose that is equal to 0; so, it is a special 

case definitely. We assume that these two are in particular; if we have the two prior 

probabilities to be equal and the two costs misclassification to be equal, then we will 

naturally be having this particular ratio to be equal to 1. Otherwise also, if we have 

different priors, prior probability is p 1 and p 2 and different cost structures C 1 given 2 

and C 2 given 1, even then we can also have this particular special structure here.  

So, let us mark it as star. Now, under star under star the ECM minimizing rule for a 

general classification problem ECM minimizing rule is given by the simple form; that we 

have got on R 1, f 1(x) by f 2(x) greater than or equal to 1 and on R 2, the 

complementary region we will be having f 1(x) by f 2(x) this to be less than 1. From 

where does it come? It comes straight away (Refer Slide Time: 07:22) from this ECM 

minimizing rule that we have obtained out here. So, there we had just assumed a special 

structure in the priors and the costs.  

We had assumed that this part here up to the cost part; that is equal to 1. And hence, the 

ECM minimizing rule is just f 1(x) by f 2(x) greater than or equal to 1 on R 1 and this on 

R 2, we will be having f 1(x) by f 2(x) to be less than 1. Now, what it is in terms of these 

populations now? (Refer Slide Time: 11:56) We have got the two populations pi 1 and pi 

2 to be these two multivariate normal populations and hence we will be having this f 



1(x). This is the density of the multivariate normal; this under that multivariate normal n 

mu 1 sigma.  

So, this is 1 upon 2 pi to the power m by 2 determinant of sigma to the power half and 

then we have e to the power minus half x minus mu 1 transpose sigma inverse x minus 

mu 2. And similarly, we have f 2(x) the density of x or the joint density of the elements 

of that x vector under the pi 2 population to be given by 2 pi to the power m by 2 

determinant of sigma to the power half and then we have e to the power minus half x 

minus mu 2 transpose sigma inverse x minus this mu 2. Then let us look at what this 

actually leads us to. This leads us to a simple form, a known known form actually; that is 

what we are going to show. 

(Refer Slide Time: 19:54) 

 

So, this f 1(x) greater than or equal to f 2(x); remember that is the region R 2. (Refer 

Slide Time: 16:36) R 2 is f 1(x) greater than or equal to 1 is that region. So, this is 

equivalent to f 1 greater than f 2 on R 1. This condition is equivalent to writing the two; 

1 upon 2 pi to the power m by 2 determinant of sigma to the power half. Then we have e 

to the power minus half x minus mu 1 transpose sigma inverse x minus mu 1. This is 

greater than or equal to the term corresponding to f 2(x); that is 2 pi to the power m by 2 

determinant of sigma to the power half. Then we have that product e to the power minus 

half x minus mu 2 transpose sigma inverse x minus this mu 2. 

So, these two terms, this term and this term cancel out with these two terms and we 

simply have the following that it is let us open the two exponents. One can get rid of the 



exponents also; that is not a problem; because take a log on both the sides. Taking log on 

both the sides here; what we can see is that this is minus half on this side. So, this is x 

minus mu 1 transpose sigma inverse x minus mu 1. This is going to be greater than equal 

to log of this particular term here, which is minus x minus mu 2 transpose sigma inverse 

x minus mu 2. Let us write the terms out here. It is this minus half also can be observed; 

because it is common in both the sides.  

So, what are the terms that we get here? We get the terms x transpose sigma inverse x. 

And then we have another positive term, which is mu 1 prime sigma inverse mu 1 and 

then the cross product term from here; that is minus 2 either in terms of mu prime sigma 

inverse x or in terms of minus 2 x transpose sigma inverse mu 1. Let us write that as 2 

times mu 1 prime sigma inverse x quantity. So, this is what we have on the left hand 

side. This is greater than or equal to minus half of the similar terms x transpose sigma 

inverse x this plus mu 2 transpose sigma inverse mu 2 this minus twice mu 2 transpose 

sigma inverse x. 

So, the terms that cancel out from both the sides is this term along with this particular 

term. So, we can write this expression in a compact way as minus 2 say mu 1 minus mu 

2 whole transpose sigma inverse that to be less than with this sign; because this minus 

sign if we take it out, then we are changing the direction of the inequality. And hence, we 

can write it as the terms inside the bracket here; minus 2 times mu 1 prime sigma inverse 

then x this term this plus the term which comes from this side; which is plus twice mu 2 

transpose sigma inverse x and this is now less than the term goes on the right hand side. 

So, we will just be having this as mu 2 transpose sigma inverse mu 2. Then this term on 

the other side which is leading us to minus mu 1 transpose sigma inverse mu 1. Now, in 

this particular expression, let us introduce and subtract the following term. So, let me 

write it as mu 2 prime sigma inverse mu 1. So, we have this term extra; so, take it out 

here mu 2 transpose sigma inverse mu 1. The point in writing this in this particular form 

is that we are basically trying to show that this rule under a special structure in the prior 

and cost misclassification costs. This is going to lead us to a rule, which is known to us.  
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So, this can be written this expression can be written in the following way that we have 

got this term to be equal to minus 2 times; leave the left hand side as it is. So, this is mu 

1 minus mu 2 transpose sigma inverse and x. This is less than minus mu 1 minus mu 2 

prime a sigma inverse times mu 1 plus mu 2; that is the term which is coming (Refer 

Slide Time: 19:54) from this right hand side. So, what we have is this one; that is we 

have got this mu 1 minus mu 2 prime sigma inverse x. This is greater than half of this mu 

1 minus mu 2 prime sigma inverse mu 1 plus mu 2.  

So, when this ECM minimizing rule; so, remember that this is the region R 1. So, this is 

what is corresponding to R 1. So, R 1 is the region on which, we have got this particular 

term here to be greater than the term, which is on the right. And on R 2, we will be 

having this is to be less than or equal to… Now, identify that this particular term here 

that we are saying that on R 1, this is this and hence if x is such that this quantity is 

greater than this term out here. Then what will be having is x being classified into pi 1 

population and if it is other way round, then x is getting classified into the second 

population; that is pi 2 population. 

Now, this is nothing but it is the fisher linear discriminant function. So, the assignment 

rule assignment rule or allocation rule is the following. Assign x assign the random 

vector x to pi 1, if we have got this mu 1 minus mu 2 transpose sigma inverse x to be 

greater than half mu 1 minus mu 2 transpose sigma inverse mu 1 plus this mu 2 term and 



x to pi 2, if x belongs to R 2; that is, if this is less than or equal to this. Now, this is the 

same rule as what we had obtained earlier using the fisher linear discriminant function. 
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So, we make a note of that; that the above is equivalent to is equivalent to the assignment 

rule which is based on the fisher linear discriminant function is equivalent to the 

assignment rule corresponding to fisher linear discriminant function or FLDF in our 

earlier abbreviated form, FLDF. So, what we have shown for this particular example of 

the normal distribution is that as the special case of the general classification problem. If 

we are having two populations to be multivariate normal populations differing by their 

mean vector; the covariance matrix remaining the same, then the expected cost of 

misclassification minimizing rule with the special structure of prior probabilities and the 

costs of misclassification is same as that of the fisher linear discriminant function based 

classification rule. 

Now, let us look at this rule itself and try to say something about some characteristics 

that emerge out of this particular rule. (Refer Slide Time: 24:51) Now, note that if we 

have got the rule the assignment rule as this one or (Refer Slide Time: 19:54) to start 

with we had got this to be our region on R 1. That is, we are going to classify x in to pi 1, 

if this happens. Now, how does this particular rule corresponds to a most powerful test 

critical region? It is natural; because we are looking at two different populations. And we 

are basically trying to build some rule, which is going to solve this particular problem of 



whether it is coming from pi 1 population or it is coming from the second pi 2 

population. 

Now, we say that the partition that we have got the partition R 1, R 2 under the previous 

setup under the previous setup is one that also corresponds to that also corresponds to an 

MP test for testing the following null hypothesis, H naught; that x, the random vector; 

this follows a distribution, which has got f 1(x). This is to be tested against an alternate 

hypothesis say H A that x is following f 2(x). So, in terms of our classification problem, 

we are saying that x is in pi 1 population. That is, it has got this f 1(x) density and this 

has got the density, which is there corresponding to the second population.  

And hence, if we are looking at the most powerful test for testing this null hypothesis 

against this alternative hypothesis, then what are we going to do? We are going to use the 

Nyman Pearson fundamental lemma. So, by the Nyman Pearson fundamental lemma, the 

most powerful test would be given by the ratio of the density under H A divided by the 

density under the null hypothesis being greater than or equal to k. So, we will be having 

the most powerful test is given by the critical region is given by the critical region. That 

is, reject H naught, if we have f 2(x) by f 1(x); this is greater than or equal to k say and 

we accepted, if it is otherwise.  

Now, what this is going to lead us to this k is going to be such that the size condition is 

going to be satisfied. Now, what we have in our given problem is that the region R 2 is 

that f 2(x) by f 1(x) is greater than or equal to 1. So, the classification problem which 

partitions the sample space into R 1 and R 2, which is corresponding to the expected cost 

of misclassification minimizing rule is what is giving us a most powerful test at a fixed 

size. So, this would imply that ECM minimizing rule the ECM minimizing rule leads to 

most powerful test of a fixed size.  

So, we are not having say freedom to choose that particular constant k as is chosen, when 

one is actually trying to find out the most powerful test at a particular level alpha. So, the 

alpha level ofcourse, here is not not say suppose is alpha is belonging to 0 1; any value 

between 0 1. So, we will be choosing k in such a way that the size condition is satisfied. 

However, the ECM minimizing rule is f 2(x) by f 1(x) greater than or equal to 1 in the 

region R 2. So, that is the partition corresponding to the ECM rule and which thus is a 

rule, which corresponds to the MP test only. 
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Now, the second note that we put here is that; we have considered in the previous 

example a special structure of the prior and (Refer Slide Time: 16:36) this 

misclassification costs as in specified through this equation number star; that we have got 

this ratio to be equal to 1. So, it is not always true that we will be having this. So, what 

happens, if we have got a general costs structure and prior probability is such that the 

ratio is not equal to 1? So, in general in general, if we have got that this p 1 C 2 given 1 

that divided by p 2 into C 1 given 2; if this is not equal to 1, then the previous derivation 

of the rules still holds (Refer Slide Time: 16:36) with a rider that this term here is going 

to get multiplied by this particular ratio. 

So, if you look back further, that the ECM minimizing rule (Refer Slide Time: 07:22) 

under the general setup is this particular term here. So, we will be able to write this ratio 

f 1(x) by f 2(x) to be greater than or equal to p 2 into C 1 given 2 that divided by p 1 into 

C 2 given 1. But we have already computed (Refer Slide Time: 16:36) what is that 

particular ratio f 1(x) by f 2(x), which we have reduced (Refer Slide Time: 19:54) in 

terms of the fisher linear discriminant function in the form this and hence consequently 

(Refer Slide Time: 24:51) in terms of this. And hence, if we have got now a general 

situation wherein this ratio is not equal to 1, the assignment rule would be given by the 

derivation which just would differ from the previous derivation by this constant or log of 

this particular constant. 



The assignment rule is given by assign x to assign x to pi 1, if we have got this mu 1 

minus mu 2 prime; this is coming from the previous expression itself; sigma inverse 

times x this is greater than or equal to say half times mu 1 minus this mu 2 prime sigma 

inverse mu 1 plus mu 2 up to this particular term. We had in the previous example, 

where wherein this ratio was assumed to be equal to 1. Now, there is a constant term log 

of that term still remains in this particular expression. And hence in the general situation, 

just this term is added to the previous term C 1 given 2 times this p 2 C 1 given 2 times p 

2, this term comes there; that divided by this p 1 or C 2 given 1 times this p 1. 

And x to pi 2, if this quantity is less than the right hand side and thus, we have got this R 

1 and R 2 region for this that R 1. Let us write that to be R 1 star to distinguish it from 

the previous R 1. So, this region now is mu 1 minus mu 2 prime a sigma inverse times x 

this is greater than or equal to... So, it is a region of all x’s for which, this left hand side 

here is greater than or equal to the right hand side; mu 2 prime sigma inverse mu 1 plus 

mu 2 this plus log of this C 1 given 2 divided by C (( )) 1 times (( )). And R 2 star, the 

region for assignment to the second population would just be given by this less than this 

particular term. 

So, if we have got the partition that we are we are looking at the assignment rule that; x 

to pi 1, if mu 1 minus mu 2 prime; this is greater than or equal to right hand side here and 

x to pi 2, if the left hand side is less than the right hand side here. That is, the partition 

that we get for a general setup, wherein we have this ratio here to be not equal to 1. That 

is R 1 star region, which is which is different from the region R 1 that we had got earlier. 

So, this region is the set of all x’s for which this quantity mu 1 minus mu 2 prime sigma 

inverse x is greater than or equal to half times mu 1 minus mu 2 prime sigma inverse mu 

1 plus mu 2 plus log of C 1 given 2 times p 2 divided by C 2 given 1 times p 1.  

So, this becomes the region R 1 star; that is the set of all x’s for which this happens. So, 

that is the region R 1 star; that is the assignment region for the pi 1 population and this is 

R 2 star, which is the left hand side less than the right hand side here. So, we have got 

this classification rule under the general setup also. Now, note that if we are looking at 

this region here; this involves quantities, which are usually unknown in the population. 

That is, mu 1, mu 2, sigma inverse all these quantities are unknown in the population. So, 

what is done? 
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When we have got a learning sample, learning sample consists as we have discussed set 

of pre-classified examples. So, based on learning sample based on the learning sample, 

the sample of pre-classified cases say l, we get the estimate of this particular region 

which is going to be given by… Now the thing that we do here (Refer Slide Time: 33: 

40) is to find the estimator of mu 1, mu 2 and sigma inverse. So, mu 1 can be estimated 

by the sample mean corresponding to the first population. So, let us denote that by x 1 

this minus x 2 bar. This is the sample mean vector from based on the observation coming 

from the second population; so, this transpose times S inverse, where S is the pooled 

sample variance covariance matrix.  

We write that S is the pooled sample variance covariance matrix. (No audio from 40:45 

to 40:54) Now, that is going to be given by; suppose we have got n 1 observations from 

the first population, n 2 observations from the second population, then n 1 plus n 2 minus 

S is going to be equal to n 1 minus 1 times S 1; that is based on the n 1 observations plus 

n 2 minus 1 times S 2; the S 2 based on the second population samples of size n 2. So, 

this term is multiplied by x that is greater than or equal to half times the corresponding 

estimate (Refer Slide Time: 33: 40) that we get from the corresponding quantities here. 

So, this is x 1 bar minus x 2 bar; first and second populations; this transpose S inverse, 

pooled variance covariance matrix; once again this x 1 bar plus x 2 bar.  

This is the first term and then the second term would remain as it is, because for any 

practical purposes these costs of costs of misclassification and the prior probabilities will 



be assumed to be known. And in R 2 star hat, which is the estimated region here. So, this 

is what is now is in a implementable form that given a particular x observation; new 

observations that has now come and we are trying to put it into either of the two 

populations pi 1 and pi 2. So, these are all quantities, which can be computed directly 

and hence we look at, what where a where that particular x is lying; whether it is lying on 

in this region or it is lying in this particular region.  

Now, there is a special term that is usually used for the difference of this minus the first 

term on the right hand side. That is, this x 1 bar in terms of the random vectors x 2 bar 

this transpose S inverse x this minus half x 1 bar minus x 2 bar; that is the first term; that 

is there in the right hand side x 1 bar plus x 2 bar. This is called the Anderson statistic. 

So, this is called the Anderson’s classification statistic. (No audio from 43:39 to 

43:50)This is just a mean as such that this particular term here, which involves the 

random variables, is called this Anderson’s classification statistic. Now, we had in the 

first case looked at the situation, where the two multivariate normal populations had got 

the same covariance matrix only differing by the mean vector in the two populations. 
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Now, let us look at a more general setup, wherein we look at the two populations of the 

following form that we have got this pi 1 population, which is the first population. 

Population number 1, which is a multivariate normal population with a mean vector as 

mu 1 vector and a covariance matrix as sigma 1; sigma 1 is assumed to be positive 

definite. And pi 2, the second population is also a multivariate normal population with a 



mean vector as mu 2 and a covariance matrix as sigma 2, where sigma 2 is also assumed 

to be positive definite matrix. So, suppose we have this particular setup, now the way 

that this case differs from the previous case is that we have got two different positive 

definite covariance matrices of the two corresponding populations. 

Now, we are trying to see that what is our ECM minimizing rule. Say ECM minimizing 

rule under this setup ECM minimizing rule is given by the partition say R 1, R 2. Then 

we have got in the general setup without assuming anything on the cost structure. This R 

1 is the region now of set of all x’s such that we will be having p 1 times f 1(x) this into 

C 2 given 1. This is greater than or equal to the corresponding terms for the second 

population; that is, p 2 f 2(x) into C 1 given 2 and in R 2, we will have this to be less than 

this particular term. Now, since we have a continuous distribution, does not matter which 

side actually we look at this equality.  

So, we have got this as the classification rule. Now for the given problem, we can say 

that this f 1(x) now; its term similar to what we had got earlier with only the difference 

that the sigma matrix is going to be different for the two populations. And hence, the 

density is going to be different here as well which was same earlier, because we had got 

the sigma matrix to be same in both terms there. So, x minus mu 1 transpose sigma 1 

inverse x minus this mu 1 vector. And similarly, this f 2(x) is our 1 upon 2 pi to the 

power m by 2 determinant of sigma 2 to the power half e to the power minus half x 

minus mu 2 transpose sigma 2 inverse x minus mu 2. So, once again we look at what this 

region leads us to. 



(Refer Slide Time: 47:20) 

 

So, this would imply after simplification; that our R 1 region by plugging in here. (Refer 

Slide Time: 44:14) The value of f 1(x) as is given by this expression out here; f 2(x) as is 

given by this expression here. So, we will use those expressions and finally, what will be 

getting is the following term that; on R 1, we will be having the following expression 

that it is equal to minus half times x transpose sigma 1 inverse minus sigma 2 inverse. 

Now, this does not cancel out; because we have got two different sigmas at the moment 

in the previous example, when we had sigma same. So, this quadratic term was not 

present; because it was cancelling out.  

So, what we have is this term this plus after simplification this reduces to mu 1 prime 

sigma 1 inverse minus mu 2 prime sigma 2 inverse this times x. This is the linear term. 

In the previous example, we had sigma 1 to be equal to sigma 2 and hence, the term that 

we had there was mu 1 minus mu 2 prime sigma inverse times this vector x. Now, we are 

unable to do that type of simplification; because sigma 1 and sigma 2 here are different. 

So, we have got a quadratic term here; quadratic in x’s, we have got a linear term here. 

Similar to the term we had previously, this minus I say a constant, k; I will say what it is.  

This is greater than or equal to log of the term, which we also had earlier p 2 into C 1 

given 2 that divided by p 1 into C 2 given 1, where this constant k this constant k now 

would be having terms, which are involving a mu 1, mu 2 and sigma 1 inverse and sigma 

2 inverse from the two terms, which are coming from (Refer Slide Time: 44:14) these 

two density. That is, if you look at this mu 1 transpose sigma 1 inverse mu 1 and the term 



here mu 2 transpose sigma 2 inverse mu 2, those two are the terms that is going to come 

here.  

So, this k term and also (Refer Slide Time: 44:14) we will be having the determinant 

terms here; log of that term to come, because they do not cancel out for this present 

setup. So, what will be having is this constant k is given by half log of determinant of 

sigma 1 that divided by determinant of sigma 2 this term plus the term which was there 

in the exponent. So, that is half of mu 1 transpose sigma 1 inverse mu 1 this minus mu 2 

transpose sigma 2 inverse times mu 2. So, this term is these two terms are coming from 

the exponent of the density; these two terms coming from the denominator as in here.  

And if we have got this to be the R 1 region, then R 2 region would just be given by that 

the left hand side here is going to be less than this term here on the right hand side. So, 

this is what is the ECM minimizing classification rule on the partition of the sample 

space into the two regions R 1 and R 2, wherein we have got two multivariate normal 

populations, which have got different mean vectors as well as different positive definite 

covariance matrices. Now, corresponding to this particular partition, what we have this R 

1, R 2; ECM minimizing partition this ECM ECM minimizing partition. 
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We can say that the assignment rule is the following. Assignment or allocation rule, 

assign suppose we have got x naught to be a new observation, allocation rule is that 

allocate x naught a new observation to pi 1, if the corresponding quantity as what we 

have got there. That is, minus half x naught prime sigma 1 inverse minus sigma 2 inverse 



times x naught; this is the quadratic term here; this plus that mu 1 transpose sigma 1 

inverse minus mu 2 transpose sigma 2 inverse this times x naught vector this minus that 

k constant is greater than or equal to the term with the prior probabilities and the costs of 

misclassification C 1 given 2 this divided by p 1 into C 2 given 1 and to pi 2, if it is 

otherwise. 

Now, once again you see that this particular expression here; what we have got involves 

quantities like mu 1, mu 2, sigma 1, sigma 2. One would require to replace those by the 

corresponding sample (Refer Slide Time: 47:20) estimates and also just to tell or just to 

note that this term involves quadratic term, and hence such a discriminant function is 

called a quadratic discriminant function. So, this term here, since it involves a quadratic 

discriminant function here, it is called the quadratic discriminant function. So, we stop 

today’s lecture at this particular point, then the next lecture, what we are going to look at 

is some criterion on which a classification rule can be based on or to look at criterion that 

would judge how good a particular classification rule is and also we look at multiclass 

problems. Thank you. 


