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After the asymptotic tests of the two way manova technique we just take up a few exact 

tests few in the sense, that in the very few situations where we can apply the exact test. 

As in the case of one way manova we have seen that for some low dimensional cases 

where, there we had been given the number groups that is the value of k were given 

there, for which we could use the exact test technique. Here also in the similar manner, 

we will try to list down few situations, where we can use the exact test technique in the 

two way manova analysis.  

(Refer Slide Time: 00:58) 

 

So, what we have is essentially, we just denote by gamma 1 the degrees of freedom for 

the sum of squares cross product matrix, due to the interaction effect or the factor 1 

effect; so that we can write that factor A effect due to factor A or factor B effect, 



whichever the hypothesis I am testing. So, essentially this means that this first degrees of 

freedom gamma 1 it is referring to the degrees of freedom for the case. Interaction effect 

essentially means, I am testing the null H naught 3 against the alternating way of H 

naught 3 or if I have the setup of testing the equality of factor a effects, I am testing the 

null H naught 2. 

And similarly for factor B, I am testing the this is not H naught 3 therefore, first 1 is H 

naught 1; in fact, and H naught 2 for factor A and H naught 3 for factor B and the second 

subscript the second d F, all this refers to the degrees of the residuals or the error and 

then, the situations which we can pen down are these few situations, where I have 

dimension p equal to 1 which means that essentially I have an manova case and gamma 1 

is greater than greater than or equal to 1. So, this gamma 1 refers to whichever 

hypothesis, I am testing if I am interested in testing the interaction effect, then I will have 

to look at the degrees of freedom of the interaction effect. 

So, gamma 1 pertains to that in that case, and then that test statistic is given by gamma 2 

by gamma 1, 1 minus again this lambda star you can very well understand the change 

with the hypothesis, so we have this is my table, I have 1 minus lambda star. Note that 

for H naught 1 hypothesis, I have lambda A B star for H naught 2 hypothesis, I have 

lambda a star this is how we have denoted the likelihood ratio criteria and for H naught 3 

I have lambda B star. So, if I am testing the null H naught 1 in place of this lambda star, I 

am going to use this lambda A B star, and so on. 

My gamma 1 will also change accordingly gamma 2 will remain fixed, so under null, so 

this is under null H naught, whichever one is coming. Similarly for the second situation, 

I will have just one increase in the dimensionality of the data for T equal to 2 and if I 

have this gamma 1, anything greater than or equal to 2, I can use, use an exact test given 

by the statistic is given by gamma 2 minus 1 by gamma 1 1 minus root of lambda star by 

root lambda star. And this is following an F distribution with twice gamma 1, twice 

gamma 2 minus 1 under the null hypothesis. 

If the dimensionality generally will be considering data dimensionality of higher order 

say 3, 4 or even more, and in that case if this factor is reasonably small. In fact, of nu 1 

or 2 only on those situations we can go for the exact test and in this situation the third 

situation, where we have p is greater than or equal to 1 gamma 1 equal to 1, I have the 



test statistic as gamma 2 minus p plus 1 by p, and then followed by 1 minus lambda star 

by lambda star this following an F distribution with p and gamma 2 minus p plus 1 under 

the null. 

And the last case is when I have the dimensionality anything greater than equal to 1, and 

gamma 1 is equal to 2, I can use the test statistic gamma 2 minus p plus 1, factor in the 

denominator remains p and I have 1 minus root of lambda star by root lambda star 

following an F distribution again with 2 p and twice gamma 2 minus p plus 1, so then I 

stress upon the fact that when we are using the exact test we have the classifications 

according to the values of p which is always fixed that is the dimensionality of the data. 

But the next classification is according to the value of gamma 1 which, is essentially the 

first degrees of freedom of the F statistic, so this keeps changing as we change our 

hypothesis from H naught 1, to H naught 2, to H naught 3 and along with this what 

changes is the likelihood ratio criterion walks lambda star, if it is the interaction effect 

essentially, we are testing H naught 1 then we have to look in to the degrees of freedom 

of the interaction effect put that value for gamma 1, and in place of lambda star we must 

put the value of lambda A B star and then get our F statistic. 

If it is H naught 2 for gamma 1 we will have to use the degrees of freedom for factor A 

the first factor and in place of lambda star we have to use lambda a star and so on and 

when I am saying that the classification, the next classification is according to the first 

degrees of freedom of the F statistic it means, that the second subscript that is gamma 2 

that is basically the degrees of freedom of the residuals that can be anything. So, this 

completes the exact test table of the two way manova we have these many situations they 

are listed for us. 

And now let us go to a data Example, but here as in the case of one way manova we have 

discussed in details with the data here, we are not going to take up the data, I am just 

going to give a data setup, a typical data setup and try to give some interpretation and we 

are not will we would not be working with the actual data here, so here the example is of 

some chemical process which is called an evolutionary operation process, it is basically a 

process to execute plastic film and while doing. So, three valuables of interest are 

monitored and there are two factors of production that we are considered. 



Note that now we are talking about two factors of production, because it is now two way 

manova and each of the factors having some levels two or three or more levels, and let us 

see how a typical data setup is in this situation, where we can apply the two way manova 

technique.  
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So, the setup is something like A practical example for the 2-way MANOVA what we 

are looking at is in a plastic film exclusion technique called an evolutionary pro 

operation, 3 responses, physically 3 variables are interest were monitored namely tear 

resistance, gloss and opacity. 

So, these are typical characteristics of a plastic film, how tear resistant they are, how 

glossy they are, how opaque or transparent they are, so the responses on these factors 

these were measured in some way in some units and further two factors of production 

were considered those were at two levels of the factors. First one is the rate of extrusion 

and the second one is amount of an additive used in the process essentially, so two levels 

of the factors, so we can see two levels for each of the two factors, these are the rate of 

extrusion and the amount of an additive. 

The rate of extrusion having two levels it can be anything like high or low rate and the 

amount of additive used again two levels can be moderate, or excessive or it could be the 

permissible level or the non beyond the permissible level something like that, so we have 

essentially two Factors each having two levels of each having two levels, and then the 



measurements, if you recall we have something more in the theoretical setup we said that 

there are n observations for each of the A B combinations, so the measurements here also 

were repeated for five times at each combination of the factor levels. 

So, what do you know now, what can we write here, without knowing the actual data, I 

have an idea about something at least, I have data dimension p is equal to 3, because we 

have 3 responses measurements on 3 variables tear resistance, gloss and opacity. We 

have number of levels for factor one, factor one is the extrusion rate for factor one say 

the extrusion rate here, each factor has the same levels on a problem extrusion rate this is 

number of levels, so this is equal to A and this is equal to 2 here and similarly number of 

levels for factor 2 that is amount of additive, this we are using a notation b, so that is also 

equal to 2. 

Number of observations, number of independent observations at each combination is n 

which is 5 here. 
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So, we can sort of write a dummy MANOVA Table. So, MANOVA Table if we have 

known the data, or at least the group means, or this and the sample variance covariance 

matrices, we could have completed the entire MANOVA Table, so this is a sort of a 

dumb MANOVA Table, where we have the sources of variation is due to factor one, the 

degrees of freedom is a minus 1, so this is one, I have some sum of squares cross product 

matrix for this which are denoting by A. 



And then I have due to factor 2, the degrees of freedom is B minus 1, 1 again this matrix 

3 by 3 matrices, I am denoting this by A this one by B and the interaction of 2 factors, 

interaction effect due to interaction of the 2 factors that is a minus 1 times B minus 1 that 

is also 1 and this is A B, what is the total number of observations well we have how 

many 4 combinations and we have 5 observations each. So, I have twenty minus 1 that is 

19 is the total degrees of freedom. 

And hence I am going to have 16 d F for the residual, which can be otherwise checked 

also because I know the degrees of freedom for residual is A B times n minus 1 here A is 

2B is 2 and n minus 1 is we have n is 5. So, n minus 1 is 4, so that is that gives me 16 

and this matrix is denoted by E, and this is the total variability matrix and now if I am 

interested in testing the interaction effect what I am checking is gamma 1 1 is equal to up 

to I have gamma 2 2. 

So, that is gamma 1 2 and gamma 2 1 coming in between against the null hypothesis, 

against the alternative hypothesis, I will use the criterion AB lambda AB star which is 

given by determinant of the A B matrix by determinant of E plus AB matrix and this is 

going to some slight change in this with some constant, I can use the asymptotic test, but 

what is suggested here is the use exact test, which exact test can be used, used the exact 

test for the p greater than equal to 1 and gamma 1 equal to 1 case. 

Because I have the degrees of freedom for the interaction effect is equal to 1, and then 

therefore, the test statistic is nothing, but gamma 2 minus p plus 1 by p 1 minus lambda 

AB star by lambda AB star and this is following the F distribution with p gamma 2 

minus 2 p plus sorry minus p plus 1 gamma 2 minus p plus 1 under H naught, well you 

can partially calculate this, because we do not have the value of this gamma of lambda A 

B star  this is equal to gamma 2 is the residual degrees of freedom and p is the 

dimensionality of the data and 1 is, so this is giving me this is 16 minus 3, so that is 13 

plus 1 and I am getting 4, 14 and p is 3, so 1 minus lambda AB star by lambda star this is 

following F with 3 and 14 under this is H naught 1, under H naught 1. 

So, if therefore, if observed value that is this value if observed F exceeds F 3 14 at 0 1 

we reject H naught 1 at 1 percent level of significance.  



(Refer Slide Time: 18:37) 

 

Now, if H naught is accepted, if H naught is accepted which means there is actually no 

interaction effect by the of the between the 2 factors, that is the rate of extrusion and the 

amount of additive use that is whether the rate is high or low that there is no connection 

if the fact that I have to use the moderate level or high level of additive, if that is true 

there is no interaction effect, I go for the next 2 hypothesis that is I test H naught 2 which 

says which test that alpha 1 equal to alpha 2 and only 2 levels of the first factor that is 

equal to 0. 

And I also test separately H naught 3 which says that beta 1 is equal to beta 2 equal to 0, 

so for H naught 2 I use again if you have to use exact test, so use exact tests for this p 

greater than with p greater than equal to 1 and gamma 1 equal to 1 in both the cases why 

because I have the degrees of freedom for both the factors equal to 1 because both have 2 

2 different levels. So, that is 1 for both of them in both the cases and the test statistic also 

remains the same both the cases same, but the value of the lambda criterion that is 

changing, the lambda star in the first case is lambda a star while in the case of H naught 

3 its lambda B star ok. 

So, use lambda star for H naught 2, and lambda B star in H naught 3, so this is the sort of 

the data setup at a bigger setup, where we can apply the 2 way manova technique and 

bring some bring out some significant conclusion about the about this chemical process. 

So, this sort and we have not taken in to account the actual data, it is going to be little 



cumbersome though the data dimensionality is 3, but still, so this can be actually done in 

any computer software the what is important is to know the theoretical foundation and 

how to give the interpretation. 

So, this with this we close our discussion on manova and our next topic is going to be on 

multiple correlation coefficient. 
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So, that is our next topic Multiple Correlation Coefficient, it talks about the degree of 

association among all p variables, now here essentially we are start we are dealing with 

the set of p variables the data dimensionality is p, and we are talking about a degree of 

association among all these p variables, now if you if you think about the usual 

correlation coefficient it is giving you a pair wise association it is always correlation 

coefficient between X and y. 

So, that is a pair wise association talking about 2 variables only, so it is association 

between two variables, and if we do the same thing here we will be actually getting 

number of such correlation coefficients in fact, we will get about p choose two 

correlation coefficients and still that would not give us the complete picture about the 

association among all the p variables, so we have to modify our usual definition, I mean 

you have to take in to account something new now, again if we if you recall the usual 

definition of correlation coefficient, you see that the data dimensionality there is two we 

are talking about X and Y, it is Bivariate, now here how do we handle that. 



So, in multiple correlation coefficient we say that we are measuring the association 

between X and say X 1 of them say X 1 say, and the rest of them X 2 to X p that is 1 in 1 

hand and p minus 1 on the other, but how do we handle this p minus 1 dimensionality in 

the other group, well we consider a linear combination of this p minus 1 variables and, so 

reduce it to the data dimensionality from p minus 1 to 1 and then, we talk about the usual 

correlation coefficient between X 1 and this linear combination of the p minus 1 

variables say some alpha prime X this X contains X 2 to X p. 

So, now if this is the situation or 1 may say that well from p choose 2 number of 

correlation coefficients, we are now talking about an infinite number of correlation 

coefficients, because there can be an infinite such choices of linear combinations, so 

what is the multiple correlation coefficient between this X 1 and the other variables, so 

what we do is, we maximize this simple correlation coefficient maximizing over the 

choice of alpha. So, now, we have handled the problem of data dimensionality we are 

essentially talking of two dimensional case, now X 1 and a linear combination of any 

number of variables. 

So, what we have is two variables, but that linear combination factor is also taken care of 

by considering the maximum correlation coefficient of these two variables, so let us 

formally define multiple correlation coefficient we say that; before that let us just give 

the introduction to the setup. So, suppose X is a random variable now with dispersion 

matrix the mean vector does not have much role to play here, so we have dispersion 

matrix sigma now partition X the dimensionality is p and sigma as I am saying that X has 

suppose it has X 1 and X 2. 

Now, this is a scalar while this is a p minus 1 dimensional vector, now in this X 1 I can 

have anything, I can have X 1 or X 2 anyone of the p variables right. So, instead of 

writing just X 1 I prefer to write 1 with within a bracket meaning that this X 1 may 

contain anyone of the p variables, and consequently the other part the other sub vector p 

minus 1 dimensional sub vector will contain the remaining. So, if this is X 1 the first 

variable X 2 will contain X 2 to X p if this is X 2 then this will contain X 1 X 3 to X p 

and, so on. 

Now, then as we have partitioned X similarly we must partition the dispersion matrix, 

now this is a p p dimensional square matrix and this is going to have the variance say 



sigma 1 1 strictly speaking, I should write in this way, but for simplicity sake let me 

write just sigma 1 1 for this. So, it essentially is the variance of the variable which is 

coming here, if this is X 1 it is sigma 1 1, if this is X 2 it is actually sigma 2 2 and so on. 

But instead of writing that, I am just writing sigma 1 1 for this and then, I have sigma 1 2 

this is a row vector sigma 1 2, a column vector and a p minus 1 dimensional square 

matrix sigma 2 2. So, this is setup is for or let us write notation of thus of this setup is for 

X 1 is equal to X 1 see if I have the first variable as the first member here then, I will 

write this sigma matrix a sigma 1 1 variance of X 1 sigma 1, 2 this is actually the 

covariance vector the covariance of X 1 with X 2, X 1 with X 3, X 1 with X p and so on 

and this is sigma 2 2 is the dispersion matrix for all the remaining p minus 1 variables 

from X 2 to X p right. 

So, that let us write here variance of X 1 is sigma 1 1 covariance of X 1 and X 2 that is 

sigma 1 2 and the dispersion matrix of X 2 is sigma 2 2 and after that, I write the 

between again same in a general way, I write between X 1 and X 2 this is a scalar while 

this is a vector is denoted by or if we do not want to create confusion, let us write X 1 

sorry this is a scalar and X 2 well X 2 is again let us just write that this is let us put it in a 

bracket X 1 say it could be any X I and X 2, so if this is X 1 this is nothing, but X 2 to X 

p between X 1 and X 2 is denoted by rho 1 dot 2 3 to p. 

So, this is actually a dot coming after this break up 1 dot and 2 3 up to p, so this are 

coming a little bit below this point, this is the maximum correlation coefficient between 

X 1 and any linear combination of a prime X 2 say of X 2 to X p, just what I have said 

that we consider the correlation coefficient between any one of them and the linear 

combination of the remaining p minus 1 variables, we consider the maximum over this 

choice of the scalars, which we are using for the linear combination alpha prime X 2 

basically for particular choice of alpha the maximum over the alpha and that gives me 

the multiple correlation coefficients. 

So, our notation is that, is we are using this by rho 1 and 2 3 to p is given by covariance, 

then what comes is the usual definition of correlation coefficients, so we have covariance 

between X 1 and the next scalar valued variable that is alpha prime X 2 not a problem, 

and then what we have is standard deviation root of variance of X 1 times root variance 



of alpha prime X 2, this also comes in a bracket, so we have a typical Bivariate 

correlation here we have reduced the dimensionality. 

And then, what we have to consider we are not left any space for this, so this is rho 1 dot 

2 3 to p this equals maximum of this simple correlation coefficient the maximum being 

taken over alpha, alpha is having the same dimensionality as X 2 bracket that is p minus 

1 vector can take the maximum over any choice of such vector for this gives the multiple 

correlation coefficient. What is the covariance between X 1 and alpha prime X 2 

according to our notation? So, basically we are going to consider maximum over alpha 

the covariance between X 1 and alpha prime X 2. 

So, we have to look at the sigma matrix, so what is this according to this notation again 

we come back to this notation and this is nothing, but we have alpha prime, and then 

covariance between X 1 and X 2 which is sigma 1 2 variance of X 1 is root of sigma 1 1 

and variance of alpha prime X 2 is nothing, but alpha prime sigma 2 2 alpha. So, we have 

to essentially maximize this correlation coefficient this measure of correlation coefficient 

with respect to this alpha which is coming here as well as its coming here. 
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So, for this purpose we are going to use a very common inequality, used several times 

since statistical analysis mainly the Cauchy Schwarz inequality, use Cauchy Schwarz 

inequality given by in the vector form. You have, if you have two vectors u and v, I have 

the scalar product is less than or equal to product of the norms, and we have u transpose 



u raise to the power half similarly, v transpose v raise to the power half. So, this is the 

one we are going to use and what we do is take for typical particular choice of u and v. 

So, it is almost apparent from the expression of the correlation coefficient what we have 

written. 

So, we take u as sigma 2 2 half and then we have alpha both it is not a problem of 

conformability, because we have a p minus 1 dimensional matrix here and a p minus 1 

dimensional vector here, so no problem and v as sigma 2 2 minus half with sigma 1 2. 

So, again no problem this is p minus 1 dimensional square matrix, this is also p minus 1 

dimensional vector. Note that these square root and the inverse square root matrices are 

defined, since sigma 2 2 is a dispersion matrix and we can use the spectral 

decomposition of sigma 2 2 to obtain what is sigma 2 2 the square root matrix of sigma 2 

2 and the inverse of square root of sigma 2 2. 

Because, we have non zero in fact, we have positive Eigen values for sigma 2 2, now 

with this choice of u and v we directly apply the Cauchy Schwarz inequality to get we 

have them from the expression I have what was it? So, it is rho 1 dot 2 3 up to p and this 

was max of over alpha, alpha transpose sigma 1 2 and then we have root of sigma 1 1, 

alpha transpose sigma 2 2 alpha, so just recall this, so by definition we have got this the 

multiple correlation coefficient, so what we consider here is alpha prime sigma 1 2 and 

try to give an upper bound to that using the Cauchy Schwarz inequality. 

So, we have root sigma 1 this is less than or equal to because, what we have here 

essentially with this choice of, this choices of u and v what we have here is essentially, u 

transpose v and then this is less than equal to u transpose u, which gives me alpha 

transpose sigma 2 2 square root and then root of that and we also have v transpose v and 

root of that, so we have here sigma 2 2 square root inverse of that and sigma 1 2, so this 

is u transpose u, we have 2 write this again with its better to write the full form right with 

the half notation. 

So, that we have alpha transpose sigma 2 2 half u transpose u sigma 2 2 half and alpha 

this with the half, and then we have v transpose v, so that is sigma 1 2 half sigma 2 2 

minus half these are symmetric matrices, so I am just repeating the matrices without the 

transpose sigma 1 2 this also have a root and this is as it is alpha transpose sigma 2 2 

alpha, so we are going to reduce this to the form to get the upper bound of the multiple 



correlation coefficient. Now, note that this is due to the fact, because we have since alpha 

prime sigma 1 2 is nothing, but what we are doing is bringing in this sigma 2 2 half and 

sigma 2 2 minus half matrices in to the picture to use the Cauchy Schwarz inequality in 

this form. 

So, this has been replaced by this first, and then this the inequality has been used now 

what we have at this stage after simplification is nothing, but note that this alpha this 

variance term actually cancels out with this and what remains here is sigma 1 2 transpose 

with sigma 2 2 inverse defines, so not a problem and sigma 1 2 and I have a sigma 1 1 

this goes away cancels away with this whole thing raise to the power half, so equality 

when, there is equality in the Cauchy Schwarz inequality situation. 

So, when this when u is equal to v, so v have then sigma 2 2 half and alpha is equal to 

sigma 2 2 minus half and sigma 1 2 right that is, I have a choice of alpha this alpha is 

nothing, but sigma 2 2 inverse sigma 1 2. So, this particular choice of alpha gives me the 

maximum correlation coefficient, and the value of the maximum correlation coefficient 

is given finally, by this expression which you see is free of alpha, so not a the problem 

this is the value of the correlation giving me. 

So, implying rho 1 2 3 to p this equal to because that is the maximum value of this, so 

that is sigma 1 2 sigma 2 2 inverse sigma 1 2 sigma 1 1 right, now we know that the 

usual correlation coefficient between X and y it always lies between minus and plus 1 let 

us see what happens to the multiple correlation coefficient does it have the same bounds 

or is it something different. 
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So, for that we Note some things, so we are few important motes after the definition the 

1st one, note that if you consider the values of the variables scalar variable, now what we 

have what we are started with was a linear combination of the remaining variables. 

So, we have started with some alpha prime X 2 and the choice of alpha that we get that 

we got for maximizing the correlation coefficient was sigma 2 2 inverse X 2 right. So, if 

I consider variance of alpha prime X 2 for this choice of alpha what do I get? So, 

essentially I am considering variance of sigma 2 2 inverse sigma sorry that is not X 2, 

but sigma 1 2 right, so that is sigma 1 2 transpose, so this is the particular choice of alpha 

transpose X 2, now this variance is nothing but I have to consider the dispersion of this. 

So, this is basically variance of sigma 1 2 transpose sigma 2 2 inverse transpose that is 

transpose inverse of basically, we are getting inverse only and X 2, so that is giving me 

sigma 1 2 transpose sigma 2 2 inverse dispersion matrix for X 2 that is sigma 2 2 and 

then again transpose of this whole thing, so that is sigma 2 2 inverse and sigma 1 2 which 

is sigma 1 2 prime sigma 2 2 sigma 1 2. So, what I see is the correlation coefficient, the 

multiple correlation coefficient 1 dot 2 3 to p is nothing, but values of which is again 

recall which is this 1 1 sigma 1 1 root half is actually the root over of the ratio of 2 

variances the first variances in the numerator, it is the variance of sigma 2 2 inverse 

sigma 1 2 transpose X 2 and the denominator is variance of the separated out variable X 

1 raise to the power half. 



So, this implies that although the usual correlation coefficient lies between minus 1 and 

plus 1, now although we have used more or less the same techniques, the same thought 

processes to obtain the multiple correlation coefficients still the multiple correlation 

coefficient lies between 0 and 1 it cannot be negative, and it is lying between the other 

part is we are getting another sharper bound for this, so giving me the value of rho 1, 2, 3 

to p. This part the other part of the inequality is quite obvious again it is it comes from 

the Cauchy Schwarz inequality whichever, applies for the simple correlation coefficient 

the same logic will apply here to get this part of the bound. 

But for this part we are using this the reasoning which we have just stated, because it is 

the ratio of 2 standard deviations essentially after the bound, let us talk about some 

interpretation of the some other interpretation of the multiple correlation coefficient 

suppose you have let us consider the correlation coefficient between 2 scalar random 

variables, so that is X 1 and now we are basically considering the linear combination that 

this that is my second variable which I have used, so that is first 1 is X 1 the scalar value 

random variable and the next 1 is alpha prime X 2, but with the typical choice of alpha of 

this particular choice of alpha, so that is sigma 2 2 inverse sigma 1 2 transpose X 2. 

So, I am considering correlation coefficient between these 2 variables and this is giving 

me essentially then, what is this I will have covariance between X 1, and covariance 

between X 1 and sigma 1 2 transpose sigma 2 2 inverse X 2 and here I have variance of 

X 1 with variance of sigma 1 2 transpose sigma 2 2 inverse X 2, I have already obtained 

this expressions, so this was sigma 1 1 and I saw that this variance is nothing, but the 

root of root of this variance it is sigma 1 2 transpose sigma 2 2 inverse sigma 1 2 and this 

is nothing, but sigma 1 2 transpose sigma 2 2 inverse and covariance between X 1 and X 

2 that sigma 1 2. 

And I am getting the multiple correlation coefficient between X 1, and the other 

remaining p minus 1 variables, so that sigma 1 2 and sigma 1 2 here and sigma 1 1 here 

root of this. So, basically the multiple correlation coefficient that I have obtained is 

nothing, but the simple correlation coefficient between X 1, and this linear combination 

of the other p minus 1 variables namely it is the simple correlation coefficient between X 

1 and sigma 1 2 transpose sigma 2 2 inverse X 2 where this matrices this parameters 

have the usual interpretation, this will vary accordingly as I vary my basket of X 2 

variables, so that I get a different X I consider a different X I each time the other basket 



will change and similarly consequently the composition of the dispersion matrix the 

original dispersion matrix sigma will change, so I will have sigma I either first element 

and in this way, but this can be handled very easily. 
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The third point that we consider is suppose, I have X is following the p variate normal 

distribution mean mu and dispersion matrix sigma, I have mu also partitioned now as mu 

my partition of the X vector the data random vector remains the same as before I 

consider a single 1 here X 1 and X 2, so accordingly nu is nu 1 and the rest of it and 

sigma is sigma 1 1, sigma 1 2 and sigma 2 2. 

So obviously, if X 1 is nothing but the first random variable X 1, then mu 1 is also equal 

to mu 1 and this holds for any I and accordingly this also is changing. So, if this is the 

situation what is the additional here is this distributional assumption of multivariate 

normality and we have already seen that the conditional expectation of X 1 given X 2. 

Now, let us specifically consider this the first random variable as X 1, so I am writing it 

without the bracket, so this X 2 contains the usual X 2 2 X p, so this conditional 

expectation is nothing, but mu 1 plus sigma 1 2 transpose sigma 2 2 inverse than X 2 

minus mu 2. 

If you recall our earlier discussions on multivariate normal distribution, this will come 

immediately and variance the conditional variance of X 1 given X 2 is nothing, but 

sigma 1 1 minus sigma 1 2 sigma 2 2 inverse sigma 1 2, and let us use a special notation 



for this conditional variance. Let us write this as sigma 1 1 dot 2 3 up to p, and then if I 

consider the correlation coefficient between X 1 and the second random variable then I 

consider here is a particular choice of X 2, but that is not the usual choice of X 2 that we 

have been considering all along till now, but I the second variable is in fact, here that I 

consider is the conditional expectation of X 1 given X 2. 

Note that this conditional expectation is nothing, but a linear combination of X 2, so let 

me consider the correlation coefficient between X 1 and this second variable which is 

expectation of X 1 given X 2 that is another linear combination of X 2, now what is this, 

this is giving me put a question mark here, I am trying to find what is this equal to, so for 

this first I have to look in to the covariance of between these 2 variables, so that is X 1 

expectation X 1 given X 2, let me write what is this conditional expectation specifically. 

So, that is mu 1 plus sigma 1 2 transpose sigma 2 2 inverse X 2 minus mu 2 right and 

this gives me for the first term X 1 and mu 1 that 0, because this mu 1 being a constant, 

so what will I have is for the second term that is X 1 with this term sigma 1 2 transpose 

sigma 2 2 inverse and, so on. So, that gives me sigma 1 2 transpose sigma 2 2 inverse 

note that I am considering the covariance of X 1 with this expression again if, I whether I 

consider it with a whole thing or just this thing its immaterial because even if I separate 

out this mu 2 factor again, I am going to get a zero covariance because this part will 

consist of only constant terms. 

So, I have the dispersion matrix of X 2 only and that is sigma 2 2 and I have sigma 2 2 

inverse and sigma 1 2 here sorry this is not in this way, but what I am is sigma 1 2, I am 

considering the covariance between X 1 and sigma 1 2 transpose with sigma 2 2 inverse 

X 2, so I have sigma 1 2 inverse with sigma 2 sigma 1 2 transpose sigma 2 2 inverse and 

this covariance. So, that sigma 1 2 basically the same thing is coming, but more easily. 

And what I have next is implying that correlation coefficient in that case is equal to 

correlation coefficient between X 1 and the conditional expectation of X 1 given X 2 and 

that is equal to the covariance is sigma 1 2 transpose sigma 2 2 inverse sigma 1 2 and the 

variance is sigma 1 1 and the dispersion of this matrix which is nothing, but we are 

considering the dispersion of this the test variable for mu 1, I have no contribution at all 

and then this part is giving me sigma 1 2 transpose sigma 2 2 inverse sigma 2 2 and 

sigma 2 2 inverse with sigma 1 2. 



So, that is being equal to nothing, but the it is the usual correlation coefficient between 1 

and 2 2 p variables my usual correlation coefficient, so you are going to continue we 

have seen for the multivariate normal case the multiple correlation coefficient has an 

extra interpretation that it is the correlation coefficient between X 1 and the conditional 

expectation of X 1 given X 2 with this, we are also we are arriving at the same multiple 

correlation coefficient between X 1 and X 2 to X p, so we should continue from this.  


