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We will be starting with some basics concepts on multivariate analysis. So, let us define 

what we called by a multivariate random vector. 
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Let us denote by X; a set of p random variables x 1, x 2, x p. So, this is a random vector 

of random variables, where these X i’s, actually X i’s are random variables defined on a 

probability space omega, script f, p. Now, some basic concepts of multivariate analysis 

will be actually defining some simple concepts. We will make distinction between 

discrete multivariate random vector, and continuous multivariate random vectors. So, we 

define first, the distribution function. Distribution function of this multivariate random 

vector X is defined to be F X 1, X 2, X p at the points x 1, x 2, x p. This is defined as the 

following that, it is probability that minus infinity less than X 1 less than equal to x 1 and 



the last random variable minus infinity less X p less than equal to small x p. So, this is 

how, a distribution function of a multivariate random variable is defined. 

Let us now make distinction between discrete multivariate random variable, and 

continuous multivariate random variable. Suppose we have discrete multivariate 

distribution; then this distribution function F X 1, X 2, X p at small x 1, x 2, x p points. 

This is defined to be summation (( )) p for rather. So, over all these points, where we 

have probability that X 1 equal to say i 1; X p equal to i p; where these now i 1 is less 

than equal to small x 1 and i p is less than equal to this x p point. So, this particular 

quantity for a discrete multivariate random variable is defined in this following way. 

Now, given the joint distribution function of this set of p random variables constituting 

this multivariate random vector, we can define marginal probability mass functions, joint 

mass functions. 
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So, the probability mass function or rather the joint probability mass function of this 

multivariate random vector X is defined in the following way: that it is probability that X 

1 equal to small x 1; X p equal to small x p. So, we call this particular quantity, which is 

the joint probability mass function. Now given this, the joint probability mass function of 

this random vector X, as we had defined. We can find out, what is called the marginal 

distributions. The marginal probability mass function of say any random variable in this 

particular set of p random variables x 1, x 2, x p say x i. This is defined to be probability 

that, X i equal to small x i. 



So, this is given by p minus 1 fold summation, which is except this X i random variable. 

So, this is probability over the sum over the joint probability mass function. Like here we 

have, probability X 1 equal to x 1 extending up to… I am sorry this probability that, this 

we have the joint probability mass function right. Now, this is the marginal probability 

mass function of one random variable X i in the set of the multidimensional random 

vector, which is comprising of x 1, x 2, x p.  

Now, in a similar way one can actually define the joint probability mass function of any 

set of variables, taken from this multidimensional random vector x 1, x 2, x p; say the 

joint probability mass function of two random variables x X i and X j taken from this set 

of this multidimensional random vector X i say X. The joint probability mass function of 

X i, X j is defined to be in a similar way to what we had defined for the marginal 

probability mass function of one random variable. So, this can be defined as probability 

X i equal to x i, X j equal to x j; this is sum. 

Now, the sum is p minus one fold; it is over all X i’s except X i and X j and then we have 

this joint probability mass function of all the random variables. When we have the joint 

probability mass function of any set of variables taken from the multidimensional 

random vector X comprising of those p components; one can define distributions, which 

are referred to as conditional distributions. say Suppose, we are interested in knowing 

what is the conditional distribution of any set of variables taken from this p dimensional 

random vector given another set of random variables. 
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Say let us be simple and try to look at the following which we say that, say the 

conditional distribution of X, say any k given X i and X j. So, in order to find what is the 

conditional distribution of X k given X i and X j; we look at the following that 

probability that X k equal to x k; given that X i equal to small x i and X j, the random 

variable equal to small x j. So, this would be given by the following that this is the joint 

probability mass function of these three random variables X i, X j and X k; this divided 

by the marginal probability mass function of the two random variables X i and X j.  

So, here what we have basically, in order to find out the conditional distribution of one 

random variable given two random variables X i; any two random variables X i and X j. 

Of course, X i and X j are not included in this X k here. It can also be. But when we look 

at this, it is basically the this numerator in this conditional distribution of X k given X i 

and X j is the joint probability mass function of X i, X j and X k and the denominator is 

X i and X k is joint probability mass function. right. Let us now move on to the case of 

conditional rather the marginal distributions, the conditional distributions in case of 

continuous multivariate random variables. 
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How it looks like? continuous multivariate distribution. So, we had first of all defined, 

what is the joint distribution function of any set of multivariate random components? So, 

in case of a continuous multivariate distribution comprising of these p elements, this for 

a continuous distribution would be defined through the integral. We assume that, the set 

of random variables form a set of absolutely continuous variables. So, we will have that 



been defined through the following functions, small f function which we are going to 

define shortly.  

So, this this defined to be the following and then, this is product of x i’s; i equal to 1 to p. 

Now, the function that we had introduced here is what is called the joint probability 

density function of these random variables. So, this quantity is what we referred to as the 

joint probability density function or in short, pdf of this random vector X. Now, this is 

given by; so, this quantity is given by the following. So, it is the p th partial differential, 

this with respect to the variables that we have; if the differentiation exists at the point x 

1, x 2, x p if the derivative exists at x 1 x 2 x p and is equal to zero, if it is otherwise. 

Right.  

So, for a continuous random vector X, this quantity is of interest and what we referred to 

that as, the joint probability density function. Now, given this joint probability density 

function in a way similar to what we had done for discrete random vector, we can define 

marginal probability density function of a set of random variables taken from that 

multivariate random vector. We can define conditional distributions exactly in the same 

way as, what we had done for a discrete distribution. 
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Say for example, we can look at the marginal say, joint pdf of X i and X j. So, there are 

two variables taken from this set of p random variables. So, this would be defined in the 

way that, this is f X i, X j at the point say x i and x j and we will have p minus one p 

minus two fold integral here over the entire range of those variables. These integrals are 



except the two variables X i and X j; leaving out these two variables, will have p minus 

two variables integrating over there range and then looking at this as the joint probability 

density function of x 1, x 2, x p. What will be getting here? This coefficient i equal to 1 

to p then, i is not equal to… it is better to have a different notation here. 

Say l equal to 1 to p with l not equal to i; this is l equal to one to p then l not equal to i it 

is not equal to j, dx i. So, we will have this particular quantity to give us the joint 

probability density function of X i and X j, two random variables taken from this set. 

Similarly, what we can look at is this. So, this would be a probability density function 

not the joint the probability density function of a particular random variable, X i taken 

from this particular set. So, we can also have a conditional distribution, conditional 

density function of say X i given X j and X k say; X i and X k, that would be given by 

the following that this is X i given X j and X k. So, this would be given by the joint 

probability density function of X i, X j, X k; this divided by the joint probability density 

function of the conditioning variables, that is X j and X k. right 
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This random vector x, that we had defined comprising of these p elements X 1, X 2, X p 

is said to be a set of independent random variables; is the set of independent random 

variables independents defined by statistical independents. is the set of independent 

random variables. If we have the joint probability mass function or the joint probability 

density function given as the product of the respective marginal probability mass 

function or the probability joint probability mass density functions. 



Say for example, in the case of discrete distributions, what we will be having for 

independent random variables is the following that, the joint probability mass function of 

X 1, X 2, X p would be given by the product of the respective probability mass functions 

given as the following. So, this is for the discrete distribution. for discrete distribution 

and If we have continuous distribution, then the joint probability density function of X 1, 

X 2, X p would be given by the product of the marginal probability density functions. 

This would be for the continuous random variable. Now, let us now move on to some 

concepts, which are going to be important for this particular course. 
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 So, we define the expectation vector of this random vector X to be the following that let 

us denote that by the vector mu, which is also a p dimensional vector, which is 

expectation of this random vector. So, that is defined as the following. So, X component 

Y is expectation of the corresponding random variables X 1, X 2 and X p. Now, these 

expectations expectation x i in appearing in this particular vector; they basically are 

computed from the probability density function of the respective random variable X i, 

that is coming in this particular direction here. Now, given the information that X, the 

random vector which is a p dimensional random vector with an expectation vector as mu; 

if you make a transformation say suppose we make a transformation which is say p 

dimensional random vector to a random vector Y, which is given by say A X plus b.  

Now, here this A matrix which may be is q by 1 which is matrix of constant. So, this is 

matrix of constants and b; so, this now becomes q by p and this is p by 1. So, this 



particular component out here is q by 1. So, b is say q by 1 vector. So, this is a vector of 

constants. So, we take here this A matrix and this b vector out here to be non-stochastic 

elements actually. And then, if we are now interested to find out, what is the expectation 

vector of this newly defined random vector, which is Y; say let us denote that by mu Y. 

So, this would be given by A matrix, which is a matrix of constants and that would then 

be given by expectation of X plus this b vector right. So, this would be given by A mu a 

mu plus this b. right Having defined this expectation vector, we move on to defining 

what we mean by covariance matrix of this random vector X? 
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Let us define the covariance matrix of this random vector X. Now, let us denote that by 

sigma, which is covariance matrix of X; which is given by expectation of X minus 

expectation of X, which which we have already denoted by this mu vector that into X 

minus mu transpose. So, this mu is basically expectation vector of the random vector, 

which is X right. Now, the i j th element in this covariance matrix of X i j th element of 

this X is given by say sigma i j, which is simply the covariance between these two 

random variables X i and X j. So, let us denote by mu i to be expectation of the i th 

component of the mu vector. Then, this is X j minus mu j, where we have mu i is 

expectation of X i and similarly, mu j is expectation of the X j component right.  

Now, this is the i j th element of this sigma matrix. So, the diagonal elements basically 

are giving us the variances of the respective components, which are p in number. So, this 

is just the variance of the i th component, which is expectation of X i minus mu i whole 



square right. Now, having defined this covariance matrix of this random vector X, we 

can define what is referred as the correlation matrix? Correlation matrix of X similarly 

can be defined. Say, this is a row matrix, which is holding the correlation components 

between the elements of this random vector. So, it is a correlation matrix of this. 
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Let us define that to be a matrix V half inverse times the sigma matrix into V half minus 

half. Let me also define, what we mean by this V matrix? So, this V matrix is a diagonal 

matrix holding the elements sigma 1 1, sigma 2 2 and the sigma p p. So, the V matrix is 

basically the matrix, which is having the diagonal entries only and comprising of the 

variances of the respective components. Now, we had seen what happens to when we 

have a random vector X? And then, we make a transformation from the random vector X 

to the random vector Y; which was from p dimension to a q dimension lower or higher 

dimension. 

What we are, now what we can also look at is given the information that, X is a p 

dimensional random vector with expectation of X as a mu vector and the covariance 

matrix of X to be given by the sigma matrix. If we now make a similar transformation as 

to what we had done earlier; to a random vector Y, which is A X plus b. A and b are 

defined similarly as to what we had defined previously in this slide. So, this basically is 

defined exactly in the same way that, I am sorry. So, this is that A matrix. This A matrix 

is a matrix of constants; b is vector of constants. 



So, given that information, we are now trying to look at, what is the covariance matrix of 

the new random vector that we have introduced, which is Y. Now, by definition that, the 

covariance matrix of Y would be given by… Let us denote that by sigma Y, for example. 

So, this sigma Y is expectation of Y minus expectation of Y into the transpose of this 

particular quantity. So, we have already computed, what is expectation of Y from this 

random vector A. So, this we just replace this by the component in terms of X. So, this 

would be expectation of A X plus b; this minus, now expectation Y as we had seen 

earlier is A times the mu vector; this plus this b vector.  

So, we have this quantity here given by this b and then, the transpose of this particular 

quantity comes out here. So, what we will be having is, this b component cancelling out. 

So, we will have expectation of A X minus mu that multiplied by the transpose of this 

quantity. So, it is A X minus b. So, this would now be given by expectation of A into X 

minus mu X minus mu transpose and then we will have this A transpose. So, what we 

can see here is that this basically is the stochastic component here. This A matrix and the 

A transpose matrix basically are the two matrixes of constants. 

And hence, we can take the expectation operator inside and what we will be having here 

is, A X minus mu to X minus mu transpose A transpose. And then this expectation of X 

minus mu into X minus mu transpose is nothing but the covariance matrix of X which is 

given earlier by sigma matrix. So, this is what we will be having as the covariance matrix 

of the newly defined random vector, which is Y. Now, suppose we have two random 

vectors X and Y; two different dimensions. We can also define; what is the covariance 

matrix between the two components here. 
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So, suppose we have this p dimensional random vector. So, suppose we have this as p 

dimensional random vector and we have Y, another q dimensional random vector. We 

can define, what is the covariance matrix between the elements of X and the elements of 

Y; similar to what we had defined by covariance of the components in that particular 

vector. This would be given now by expectation of X minus expectation of X vector; this 

multiplied by Y into expectation of this Y vector whole transpose. So, this is how, one 

defines the covariance matrix between two different sets of random vector.  

It is important actually to look at the following, which we look at the partitions of the 

covariance matrix. What the partitions and what the elements actually can; what sort of 

interpretation actually can; the elements of those partitioned elements can be having 

actually? partition of covariance matrix. So, suppose we have this random vector X with 

the covariance matrix of X as sigma matrix. Let us make the following partition. 

Suppose, this X vector which was p dimensional vector; now is partitioned into two 

following sub vectors say X 1 and X 2. 

Say suppose this is r by 1 and this is p minus r by 1; similar to this X vectors partition, 

we can look at the corresponding partition in the mu vector, which is the expectation 

vector. So, we can write the similar partition as mu 1 vector, which is r by 1 vector out 

here and then, we will have the second sub vector as p minus r dimensional. So, this 

quantity here is expectation of the corresponding sub vector, what we had as X 1 written 



out there. So, this would be expectation of X 1 and similarly, this would just be 

expectation of this particular component X 2 from here. 
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Now, if we look at the covariance, the partition that we have corresponding to the 

partitioning of the X vector that is what we had written. So, this by definition of the 

covariance matrix is given by the following that it is this particular quantity. Then we 

look at what happens to this particular element, when we look at this as the sub vectors. 

So, this would be X 1 minus mu 1. So, this vector would be the second component X 2 

minus mu 2 and then, the transpose of this comes out here. Now, if one multiply the two 

and then take the expectation inside or (( )) to that one can just look at, what would be 

this particular matrix?  

This would be given by this X 1 minus mu 1 X 1 minus mu 1 transpose and then this 

block here. So, this would comprise of four blocks. This would be the second component 

X 2 minus mu 2; then this is X 2 minus mu 2 transpose. And then this element would be 

X 1 minus mu 1 into X 2 minus mu 2 transpose and this would just be the transpose of 

this particular element there. So, this element once we take the expectation operator 

inside would be this would be a p by p matrix, which we denote by sigma 1 1 say; this 

would be a p by q matrix, which we denote by sigma 1 2. And then the expectation of the 

quantity which is here would be a q by p, which is denoted by say sigma 2 1.  

This element, the last block here will have this partitioning actually carried forward. So, 

when we take the expectation of this block here, that is denoted by sigma 1 1. When we 



take expectation of this particular block here, that is going to be denoted by sigma 2 2 

block, which is a q by q dimensional matrix there. When we take the expectation of this 

block here, it is basically denoted by sigma 1 2. Now, this sigma 1 1 element; if you look 

at carefully, this sigma 1 1 block here is expectation of this particular matrix here and 

what is that? That that is, basically is the covariance matrix of the sub vector, what we 

had denoted by X 1. 

Similarly, if we are looking at sigma 2 2; sigma 2 2 is nothing but the covariance matrix 

of the second block actually that, this particular X 2 block of elements and this sigma 1 2 

matrix, which is the off diagonal blocks in this sigma matrix. So, this is the covariance 

matrix of the two sub vectors X 1 and X 2 that is what we had defined. So, this is the 

covariance matrix of the two blocks X 1 and X 2 right. This is just the transpose of this 

particular matrix and that one can say that, it is the covariance matrix of X 2 and X 1. So, 

it just differing by that particular transpose. 

(Refer Slide Time: 31:00) 

 

Now, we make a small note here; that, we had this sigma matrix in the partition form 

written as sigma 1 2 sigma 1 1 sigma 1 2 sigma 2 1 sigma 2 2. Now, if we have X 1 and 

X 2, independent set of random variables then, what will be having is this sigma 1 2 will 

be given by a null matrix. Now, if the elements of X 1 are independent independently 

distributed of the elements of the X 2 sub vector; then we will be having this off diagonal 

block here sigma 1 2 to be given by a null matrix. However, the converse of this 

particular result is not true.  



What I mean by saying that is that, if we have sigma 1 2 to be given by null matrix then, 

it does not imply that, the elements of X 1 and X 2 are independent. It does not imply. It 

would only be implied, if we have some other condition like, what we had for bivariate 

distribution that; if we have the joint distribution of X 1 and X 2 to be given by a 

multivariate normal. Then only, we will have sigma 1 2 to be given by a null matrix; that 

would imply in such a situation that, the element of X 1 and X 2 are independent right. 

Now, let us move on to one characterization of covariance matrix, what we are defining. 

So, let us now look at one characterization. 
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How we can characterize a covariance matrix? So, characterization of a covariance 

matrix, we have the following result. Let me first state the result that if we have any 

matrix which is positive semi definite, it can be associated with covariance matrix of 

some random variable. So, if we have a p by p symmetric matrix sigma, will be a 

covariance matrix if and only if, it is positive semi definite or non-negative definite. So, 

let me write the result first that, any p by p symmetric matrix sigma is a covariance 

matrix if and only if, it is non-negative definite. That is, alpha prime sigma alpha is 

greater than or equal to 0 for every alpha belonging to R p right.  

So, that gives us a characterization of a covariance matrix. So, let us look at the proof of 

this particular simple fundamental result. So, what it says is that, if we have sigma to be 

the covariance matrix of a of some random vector X, then it is going to be positive semi 

definite, non-negative definite. Other way round, if we have any matrix which is 



symmetric and it is non-negative definite, then we can associate some random vector to 

that particular matrix. For which, the random vector is going to have that matrix as its 

covariance matrix. So, let us look at the proof of this result. Let us first proof a look at 

the proof of the if part.  

Now, suppose sigma is is covariance matrix covariance matrix of some random variable 

x covariance matrix of a random vector X; then we take a alpha belonging to R to the 

power p. Then, what we can say is that the following that variance of alpha prime X. 

Now, note that this alpha prime X is a scalar random variable. So, it is a linear 

combination of the elements of that p dimensional random vector. By definition, this 

actually would be given by expectation of this random variable alpha prime X minus 

expectation of this alpha prime X whole square right.  

Now, we actually had proved a result that variance of or rather the covariance matrix we 

had proved the result; so that, we can even use that particular result. We had proved the 

result that, covariance matrix of A X plus b; this matrix is given by A covariance matrix 

of X, which is denoted by sigma; A sigma A prime. So, we can use this particular result, 

in order to find what is the variance of X? Otherwise from definition, one can also find 

out what is the what is the expectation of this particular quantity? Let us look at that.  
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So, this is variance of alpha prime X; this is given by expectation of this alpha prime X 

minus alpha prime mu. mu is the expectation vector of that covariance that particular 

element, which is alpha prime X this whole square. This would be given by expectation; 



we take alpha prime out. So, this is X minus mu whole square. So, this would be given 

by expectation of alpha prime X minus mu. Then this is the transpose of that; that 

multiplied this alpha vector. So, this would just be given by alpha prime; then the 

covariance matrix of X, which is the sigma alpha. This is the variance of X. 

Now, variance of alpha prime X is going to be given by this alpha is belonging to R to 

the power p. So, since this is the variance of this random variable alpha prime X, which 

is going to be greater than or equal to 0. So, we have proved that, if sigma is actually the 

covariance matrix of any random vector X, then for every alpha belonging to R to the 

power p alpha prime sigma alpha is going to be greater than or equal to 0. So, that it is 

non-negative. It is going to be non-negative definite for every alpha belonging to R to the 

power p. So, this basically implies that, sigma matrix is non-negative definite. So, let me 

just write that as, n n d. So, that is non-negative definite. 

So, the other way round, the only if part we look at, suppose sigma is non-negative 

definite we will prove that, sigma is a covariance matrix associated with some random 

vector x. Now, since we have assumed that sigma is non-negative definite, say suppose it 

is a non-negative definite of rank r which is less than or equal to the dimension of this 

random of this matrix sigma. Since sigma is non-negative definite of rank r, we can write 

this sigma matrix in the following form that, it is c c prime; where c is p by r of full 

column rank right. Now, since we have factorized sigma into this c c prime form, let us 

now define a random vector Y. 

(Refer Slide Time: 39:59) 

 



Let Y be a random vector of independent random variables of independent random 

variables with say expectation of Y given by a null vector. Now, since we assume that, 

the components Y 1, Y 2, Y r; what we have for the random vector Y? They are 

independent. Then, the covariance matrix actually would be given by a diagonal matrix. 

Using the result that we had stated earlier that, if we have the components of X 1, that 

sub vector to be independent of the components of the X 2 sub vector. Then, the block 

which is holding the covariance’s of the components of X 1 and X 2 are going to be 0. 

So, this would imply that, the covariance matrixes diagonal without loss of generality, 

we take that to be an identity matrix.  

So, the covariance matrix of Y is given by say this identity matrix of dimension r right. 

Now, Y is that set of independent random variables with the expectation of Y vector to 

be a null vector and the covariance matrix of this Y vector to be an identity matrix of 

dimension r. Now, let us make a transformation from Y to X, where X is given by c 

times this Y. Now, the matrix c what we had defined earlier, which is a p by r matrix; 

which is a matrix of constants of full column rank. So, that is of rank r. So, with that c 

matrix, if we now look at what is this X matrix characteristic?  

As far as its expectation vector and its covariance matrix are concerned, we will have; 

this implies that, expectation of this X vector would be given by a null vector; because 

this is equal to C times expectation of this y vector and expectation of a Y vector being a 

null vector. This would imply that, it is just a null vector. And then, the covariance 

matrix of this X vector is covariance matrix of this C times Y vector. That would be 

given by C times covariance matrix of Y into this C transpose matrix. Covariance matrix 

of Y, what we have assumed is an identity matrix. It is a the covariance matrix associated 

with i i d random variables actually with variance is equal to 1. 

So, this would be given by C times this I r matrix C transpose. So, this is equal to C C 

prime and which is nothing but that sigma matrix. This would imply that, this sigma 

matrix what we had just taken as a non-negative definite matrix. It is now the covariance 

matrix of this random vector X right. So, this would actually prove that, sigma is a 

covariance matrix. So, we have proved the result that any p by p symmetric matrix which 

is non-negative definite is if a p by p symmetric matrix is non-negative definite is a 

covariance matrix if and only if, it is non-negative definite. 
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We just put it as a note the following result that, if covariance matrix of X is not positive 

definite, then with probability 1, the elements of X are linearly related with probability 1 

the elements of x are linearly related. What do we mean by this is the following that, 

suppose sigma, the covariance matrix of this X random vector is not positive definite, 

then there exists an alpha belonging to R to the power p such that, we will have alpha 

prime. Now, these alpha vectors are belonging to R to the power p ofcourse, alpha is not 

equal to 0. So, this goes without saying that, this alpha is not equal to 0. Then, this alpha 

prime sigma alpha that is equal to 0. So, there exists some alpha such that, this alpha 

prime sigma alpha is equal to 0. Now, what does this mean?  

This means basically that, what we had seen earlier is that, this alpha prime sigma alpha 

is nothing but variance of this alpha prime X. So, we have this variance of alpha prime X 

given by alpha prime sigma alpha; this is equal to 0 for some alpha which is not equal to 

a null vector. What it means is the following that, probability that alpha prime X is equal 

to its expectation alpha prime mu; this is equal to 1 for some alpha which is not equal to 

0 right. That is what we have is alpha prime X minus mu; this is equal to 0; this 

probability is 1 for some alpha, which is not equal to 0 right. So, this basically would 

imply from the statement that we have made here that, probability that this particular 

linear combination is equal to 0; this is equal to 1 for alpha not equal to 0. 
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So, this would imply that, probability that summation alpha i; the i th component X i 

minus mu i; this is equal to 0 is equal to 1 for some alpha, which is not equal to a null 

vector. So, this would imply that, the elements of X minus mu; that is, these X i minus 

mu i’s are linearly related with probability 1 right. So, we will have the elements of the X 

i components; because these mu i components, they are basically constant components. 

So, we will have the elements X i is actually being linearly related, if we have the matrix 

sigma, the covariance matrix to be a matrix such that, it is not positive definite right. 

Before we move on to random sampling of from a multivariate distribution, we look at to 

concept, which is moment generating function. From where, we can get actually joint 

moments of the components, which are there in that multidimensional random vector. 
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So, let us look at that moment generating function. So, the concept of this moment 

generating function of the random vector X is, basically trying to generalize what we 

actually have for univariate random variable. So, we have say this X, a p dimensional 

random vector with expectation of X given by this mu vector. Covariance matrix of X is 

being given by the sigma matrix. Then the moment generating function mgf of this 

random vector X is defined to be the following that, it is expectation of E to the power t 

prime X right.  

So, this is how, one defines the moment generating function of the random vector, the p 

dimensional random vector X. Now, given the information; now, this provided the 

expectation exists, now the moment generating function of this random vector X actually 

would also lead us to the marginal moment generating function of the components of X 

in the following way. Now, if you look at, how to get the marginal moment generating 

functions marginal moment generating functions. Say, we are looking at this the moment 

generating function X 1, X 2, X n at these points x 1, x 2, x n; that is what is our M x(t), 

the moment generating function.  

So from here, if we want to find the marginal mgf of X i, that would be derived from 

this; which is the joint moment generating function of the components of X in the 

following way. That, the marginal moment generating function of X i at the point t i; that 

would be given from the joint moment generating function of X 1, X 2, X n with 0 at all 

other points, except the i th position which is say t i. So, this is the i th point. So, this is 



what is going to give us. The marginal moment generating function of the component, 

which is X i.  

To see how that is true, it is trivial to look at the expression of this particular joint 

moment generating function of the random vector X. So, here if we take all the t i’s 

except one t i component here as 0, then this particular term here; which is this term is 

the summation t i X i. So, here if all the t i’s except one particular t i is 0. Then this sum 

is nothing but just t i X i. So, expectation of e to the power t i X i is just the moment 

generating function of this particular component which is X i. Now, given given this 

particular moment generating function, one can actually look at the joints moments. 
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Joint moments, actually of any order provided the moment the corresponding moments 

exists can be obtained from the following. Say, suppose we are looking at this particular 

joint moment, we can obtain the this joint moment for this set of random variables X 1, 

X 2, X p or any set of random variables derived from it. Using the moment generating 

function in the following way that, it is the partial derivative of the joint moment 

generating function; this, the derivative with respect to all these t i’s. This evaluated at t 

1 equal to t 2 equal to t p; this equal to 0. So, this is how, from the joint moment 

generating function M x(t), one can get to the joint moments of any order provided that 

order moment exists; one can get to the joint moments derived from that right. 
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Now, a result which is particularly useful in some applications; as we move, when this 

particular multivariate, the normal course; we will see that, we are very frequently 

concerned with the a quadratic form of the following nature that, suppose we have this 

X; this multivariate vector with expectation of X to be this mu vector and the covariance 

matrix of X to be this sigma matrix. Then, if we define the quadratic form as, X prime A 

X; this is a quadratic form in X. So, where this A has ofcourse, the interpretation; that it 

is a matrix of constants. So, it is a non-stochastic matrix. 

So, this is say A p by p matrix of constants, then expectation of X prime A X is the 

expectation of this particular quadratic form. So, this actually can be obtained in the 

following way that, now note that this is scalar quantity. This, we can write as 

expectation of the trace of this X transpose A X. We can take, we can use the result that 

trace of A b equal to trace of b A. So, what we can write is the following that, this is 

trace of A X X transpose. We can now take the expectation operator inside the trace. So, 

this would be the trace of A expectation of X X transpose. Now, let me give this equation 

number 1. 

Now, in order to find out what is the expectation of X X transpose? We see that, this 

sigma is expectation of X minus mu into X minus mu transpose. If you look at, what the 

expectation of this quantity is. So, it would turn out that, this is expectation of X X 

transpose minus mu mu transpose; just open it up, then take expectation inside. So, this 

would tell us that, expectation of this X X transpose is nothing but sigma plus mu mu 



transpose. So, if you use this equation number 2 in equation 1. So, using this equation 

number 2 in 1, what we get is the following that what we had there was trace of this 

particular quantity. 
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So, we have expectation of X transpose A X, that was given by trace of A expectation of 

X X transpose. Now, we have obtained that in the form of this two here; that expectation 

of X X transpose is sigma plus mu mu transpose. So, this would be now be given by 

sigma plus mu mu transpose. So, this expression now would just be given by trace of A 

sigma; this plus trace of A mu mu transpose. And then, that can be written actually as the 

following which is mu transpose A mu; using once again the result that trace of A b 

equal to trace of b A. So, what we have is the following result that if we have that multi-

dimensional random vector X with a mean vector equal to mu and a covariance matrix 

equal to sigma, then expectation of this quadratic form is just given by this trace of A 

sigma plus mu transpose A mu; similar result for the variance of this quadratic form can 

also be derived.  


