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In the last lecture, what we were discussing was confidence interval, setting up of 

confidence intervals for certain type of linear combinations of the elements of the mean 

vector mu, coming from the multivariate normal population. So, we had an underline 

multivariate normal population; multivariate normal m dimensional with the mean 

vector mu, and covariance matrix sigma which is which was actually assume to be 

positive definite. And we had the following discussion that we were looking at these 

linear combinations a i prime mu quantities for i equal to 1 to p, where p is less than or 

equal to m. And we were trying to find out simultaneous join confidence interval for all 

of these linear combinations, such that the coverage is atleast 100 into 1 minus alpha 

percent. 
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What we had seen in the last lecture was, we had taken a specific example of these 

linear combinations a i prime mu terms. And we had taken those linear combinations as 

p components. mu 1 mu 2 mu p without loss of generality, we take the first p of them 

mu 1, mu 2, mu p and we were looking at two different possibilities; two different 

cases, under which such simultaneous joint confidence intervals may be derived. 

Now, the first case what we had seen in the last lecture was that, we had assumed that 

sigma is a diagonal matrix. So that, the components of x multivariate random vector 

becomes independent. And under such a circumstances, we had derived the confidence 

simultaneous confidence interval of covering mu 1 mu 2 mu p and we had also that 

discussions about that. 
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Let us now look at, the more general case, which is the case where, case 2 where we 

have these… Suppose this sigma is not a diagonal matrix that the most more general 

case rather is not diagonal matrix.  
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So, we do not have independence of the components of x is x 1, x 2, x p and hence we 

cannot also infer about the independence of the components in x bar; that is x 1 bar, x 2 

bar, x p bar or x n bar to complete it. They are not necessarily independent; they are not 

independent actually. 



So, sigma is not a diagonal matrix. Under such circumstances, what is used is what is 

referred to as the Bon Ferroni’s method for construction of this simultaneous 

confidence interval for these linear parametric functions or the linear transformations a 

i prime mu terms for i equal to 1 2 up to p. 

Now, we may recall that for events E 1, E 2, E p; p events; probability of intersection of 

E i terms; i equal to 1 to up to p; this is greater than or equal to 1 minus summation i 

equal to 1 2 up to p probability of E i complements. Now, this is equal to 1 minus 

summation i equal to 1 2 up to p 1 minus probability of these E i terms. So then, this is 

equal to 1 minus p plus summation probability E i terms 

Now, suppose we take, if we take this probability of E i to be equal to 1 minus alpha by 

p, then what happens in the above inequalities are following? Then probability of 

intersection of these E i terms; i equal to 1 2 up to p; this is greater than or equal to.. 

Now, here we have summation i equal to 1 2 up to p. So, what will be having is 1 minus 

p plus summation I equal to 1 to up to p 1 minus alpha by p. So that, this term is equal 

to 1 minus p plus p minus alpha. So, this p term cancels out, and what we will have this 

is equal to 1 minus alpha. So, this basically this basically is derived from bon Ferroni’s 

inequality and hence the name of construction of the simultaneous confidence intervals, 

what is given as the bon ferroni’s method.  

Now, when we have seen that, for such p events E 1 E 2 e p intersection of this is 

greater than or equal to 1 minus alpha. If we can choose probability of E i to be equal to 

1 minus alpha by p, this leads us to the thought of construction of the simultaneous 

confidence intervals, such that the coverage would be greater than or equal to 1 minus 

alpha. 

So, if we can choose these E i events as the events that mu i is belonging to a certain 

random interval, such that the probability of each one of those E i is… If we can make 

that equal to 1 minus alpha by p, then we will be able to achieve the simultaneous 

coverage of such linear functions. Here, we have just mu 1, mu 2, mu p in terms of 

simultaneous confidence intervals with the coverage of at least equal to 1 minus alpha 

right. 

Now, if we take that particular clue, consider confidence interval intervals for each of 

these mu is as, say x i bar minus plus t n minus 1 alpha by 2 p; this multiplied by s i i by 



n; this is for i equal to 1 to up to p. So, if we take confidence interval of this particular 

form x i bar, so the lower confidence limit is x i bar minus t n minus 1 alpha by 2 p into 

root over s i i by n. And the upper confidence limit is x i bar plus t n minus 1 alpha by 2 

p root s i i by n.  
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So, if we take that, then, if we define this E i event to be the event that, mu i is 

belonging to the random interval, that this is x i bar this is x i bar minus t n minus 1 

alpha by 2 p; this into under root of s i i by n to x i bar plus t n minus 1 alpha by 2 p 

into under root of s i i by n. 

So, this is an event that mu i is belonging to this random interval. So, this would imply 

that, probability of this E i is going to be equal to what? That mu i is belonging to this 

particular interval; this in terms of the t distribution is what is going to lead us to 1 

minus alpha by p. Now here, of course, where we have this t n minus 1 alpha by 2 p is 

such that probability that t distribution on n minus 1 exceeds this point t n minus 1 

alpha by 2 p point. 

So, the probability that t distribution exceeds this given point; this is going to be equal 

to alpha by 2 p. So, we will have alpha by 2 p to the right of this; alpha by 2 p to the left 

of, negative of this particular term. So, the area on the right and the left of the positive t 

alpha by 2 p and to the negative of alpha by 2 p would just sum up to alpha by p, and 

hence the area between them. This is, what I am trying to convey. 



So, if this is the t distribution pdf, we have a point here which is our t n minus 1 alpha 

by 2 p. So, the area to the right of this is alpha by 2 p; it is a symmetric distribution; and 

hence the area to the left of negative of t n minus 1 alpha by 2 p, this area to the left of 

this point is also alpha by 2 p. So, the two add up to alpha by p and then the area 

between these two points is 1 minus alpha by p, and that is what we have area because 

that is what is going to be given from this expression out here 

So, this would imply that, if we have such random events E i which are basically 

coming from the respective confidence intervals for the mu i parameters; this would 

imply that, probability of the these intersection of E i s i equal to 1 2 up to p. So, these 

are basically the events associated; E i is the event associated with the mu i component. 

And then, this intersection probability is going to be greater than or equal to 1 minus 

alpha. As what we had derived out here that, if we can choose probability of E i to be 

equal to 1 minus alpha by p, then we will have probability of intersection of E i to be 

greater than or equal to 1 minus alpha. And we have chosen, actually those random 

intervals in such a way for each of these parameters mu i. We have chosen random 

interval in this particular manner, and so that we will be having probability of each of 

these E i events to be equal to 1 minus alpha by p, and then from that, we will be 

having probability of intersection of E i to be greater than or equal to 1 minus alpha. 

So, this basically is going to give give this is giving us, the simultaneous confidence 

interval. So, this E 1, E 2, E p gives the simultaneous confidence interval intervals for 

this parameters mu 1, mu 2, mu p with confidence level of at least 1 minus alpha. So, 

we have ensured that, with such random intervals, we are able to have a coverage of at 

least 1 minus alpha. So, this is what it tends out to be. Now, one can actually have more 

general approach to constructing such confidence interval. 

So, more generally, we can actually look at… Now, note that, when we are looking at 

these E i terms; E i events here, for the parameter mu i, what we are doing here is that, 

we are choosing this E i sets in such a way that probability of each of the E is… So, this 

probability of E i equal to 1 minus alpha by p; this is true for every i equal to 1 2 up to 

p. So, we have the probability of coverage of each of these mu is to be exactly equal to 

1 minus alpha by p for all the is. 



Now, we can actually play around with this probability, because not all mu is may be 

equally important to us; some of the mu is may be more important to us; some of the 

mu is may be some of the mu is may be less important to us. And hence we can take 

care of that event using this particular approach. So, what we can do is that, more 

generally let E i be… Now, the set that mu i belongs to interval similar to what we have 

considered, but we will actually not be having alpha by 2 p at all for all the mu is. We 

can make this as alpha i by 2. So that, it depends on mu i; this level of error depends on 

the particular mu i, that is chosen here; this into s i i by n; this is same as what we had 

previously. 

This is x i bar plus t n minus 1 alpha i by 2; now, this t n minus 1 alpha i by 2 has 

similar interpretation as to what we had noted out here that, t n minus 1 alpha by 2 p is 

the upper alpha by 2 p cut off point of a t distribution on n minus 1 degrees of freedom. 

So, similarly here, this t n minus 1 alpha by 2 point is the upper alpha i by 2 percent 

point of a t distribution on n minus 1 degrees of freedom. 

So, that this, now turns out to be that this is s i i; this divided by n. So, this is what is 

the random interval. Now we are considering now what would happen here? What is 

the probability of such E i terms? Now, alpha 1, alpha 2, alpha p actually varies with 

respect to mu 1, mu 2, mu p. So, the probability E i, by the similar logic would be 1 

minus alpha i right. So, this is probability of E i, because we have the cut off point here 

alpha i by 2 percent point. So, alpha i by 2 percent point is on the right alpha; i by 2 is 

on the left of minus t n minus 1 alpha i by 2. And hence the total area to the right of t n 

minus 1 alpha i by 2, and area to the left of minus t and minus 1 alpha by 2 would be 

alpha i, and hence the area in between the two cut off points would be 1 minus alpha i. 

And this is what is thus giving us this particular quantity; this is for i equal to 1 to up to 

p. 

Now, alpha 1, alpha 2, alpha p are different different with the restriction. Now, with 

this with this set up, with this general set up, 
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so to say, probability of this intersection of E i events that what is given from the bon 

ferroni’s inequality is what we had derived earlier. That was 1 minus p plus probability 

of E i. So, what does this now lead us to 1 minus p plus summation probability of E i 

terms i equal to 1 2 up to p. 

So, with probability E i given by 1 minus alpha, we will have this to be equal to 1 

minus p plus summation i equal to 1 2 up to p 1 minus alpha i is what we are getting. 

So, it is 1 minus p plus p minus summation alpha i; i equal to 1 to up to p. So, this is 

nothing, but 1 minus summation of these alpha i quantities. So, if we take summation 

alpha i, i equal to 1 to p equal to alpha, the desired level of error. So, if we take this 

summation alpha i, then we will have probability of this simultaneous coverage; that is, 

intersection of these E i events; this is going to be greater than or equal to 1 minus 

alpha. So, this is the required thing or the desired thing, what we are trying to ensure 

that, the joint coverage of all these parameters mu 1, mu 2, mu p which are given 

through these E i events random events. We will have this joint coverage to be greater 

than or equal to 1 minus alpha, if we restrict our self to summing this these alpha i 

quantities to be equal to alpha. 

So, this actually allows us to control the error rate of the respective mu i components in 

the way that, when we are looking at a particular mu i, probability that mu i lies in that 

particular confidence interval is 1 minus alpha i. So, load the value of these alpha i 



here; higher is the coverage for that particular mu i; higher is the value of alpha i; lower 

will be this E i. 

Now, this alpha i is of course, i have to line between 0 and 1. So, with that restrictionl 

we are now playing around with alpha 1, alpha 2, alpha p. These are corresponding to 

the mu 1, mu 2, mu p terms, and hence what we are now looking at is to control the 

error rate with respect to various mu is. And then, we will have alpha i values lower for 

the mu is, which appear to us as more important. And hence we can do that quite easily, 

when we have this particular general set up. 

So, this will imply that, this allows us to control the error rates; the error rates alpha 1, 

alpha 2, alpha p with this summation alpha i equal to 1 to p equal to alpha, which is the 

desired level of significance; this is regardless of the correlation structure; the underline 

correlation structure which is given by the sigma matrix. Further more, we have 

flexibility, actually; we have a flexibility of controlling the error rates which are alpha 

is error rates of a group of important parameters. right Because we can make alpha i 

corresponding to a particular mu I, which is of… Say more importance to us, and then 

we can have that being compensated by some other mu i which is not that important. 

And hence, we can thus look at having higher coverage for the parameters of more 

importance, and comparatively lower coverage in the simultaneous confidence interval 

set up, to have been attached to other type of contrasts. 
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Now, this particular example, when we had considered to start with that, we are looking 

at a particular type of linear combination a i primes, where a i is vector was having one 

at the i th position, and 0 at all other locations.  
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So, that had lead us to constructing the simultaneous confidence interval for mu 1, mu 

2, mu p. We had consider two different cases; case one and case two; where case one, 

where sigma was a diagonal matrix. And case two where sigma was not necessarily a 

diagonal matrix, and have and have obtained actually all those simultaneous confidence 

intervals. 

Now, this approach can be extended for any linear combining vector a i, any type of 

linear combining vector, and hence this method can easily be extended for such 

situations. Only thing is that, here the distributions are going to change in place of x i 

bar; we will be having a i prime x bar terms, and the corresponding variance term will 

also get replaced in place of s i i. We will have whatever will be the variance of that a i 

prime x bar terms right. 
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So, the next thing that we are going to look at is T square confidence interval; it is 

another important thing about the hotelling T squared statistic. This these are T square 

confidence intervals. What are these? Now, note that, we have proved a result in the 

way, that supremum over a of n times a prime x bar minus mu whole square; this 

divided by a prime S a. 

We had in the last lecture obtained, what is the supremum of this particular quantity? 

And this was shown to be equal to T square right. So, this is what a given result is. So, 

this would imply that, T square less than or equal to some C square; this would imply. 

So, if we have T square less than or equal to C square, this would imply that this n 

times a prime x bar; let us split it; a prime x bar minus a prime mu whole square; this 

divided by a prime S a. This term is also going to be less than or equal to C square; this 

is going to be true for every vector a belonging to r to the power m, if x is m 

dimensional. 

So, from this result from this result here, what we can infer is this particular line. So, in 

other words, because T square is the supremum of this particular quantity, and T square 

being less than or equal to C square would imply that, these quantities will be less than 

or equal to C square for every possible value of a belonging to here, r to the power m. 

That is, we can write this in the following way that, we will take this a prime x bar 

outside. This is minus C times under root of a prime S a; this divided by n; this is going 



to be less than or equal to… We are actually looking at type of confidence interval type 

scenario, and hence we are expressing this. Because once we have this less than or 

equal to C square, we will have the absolute value of this being less than or equal to C, 

and hence we will have that to lie between minus C, and plus C. And then, we will be 

having the expression that I am writing now 

So, this is going to be given by this a prime S a this divided by n. So, the under root of 

course, is both in the numerator, and in the denominator; this is going to be true for 

every vector a belonging to r to the power m. Now, we further know that, we know that 

this T square by n minus 1 into n minus m by m. We have seen this time in again; this 

follows an F distribution m n minus m degrees of freedom. 

So, this would imply that, probability that this T square by n minus 1 into n minus m by 

m; this less than or equal to f n n minus m alpha. So that, this is the upper alpha percent 

cut off point of this f distribution. So, this is going to be equal to 1 minus alpha. So, if 

that is the case will be able to write this T square less than or equal to m times m minus 

1; this divided by n minus m; this times F m n minus m times alpha. This is equal to 1 

minus alpha. 

Now, why have we written this particular fact and reduced it in this form? What we are 

trying to see is that, what is the probability of such a such an event that T square is less 

than or equal to C square, that we desire that to b equal to 1 minus alpha. And hence if 

we choose C square to be equal to this particular point which is m times n minus 1 by n 

minus m into F m n minus m alpha. If this is chosen as C square, then probability that T 

square is less than or equal to C square is equal to 1 minus alpha. And hence that would 

ensure that, the joint coverage of such events for every value of a, that is going to have 

a coverage equal to 1 minus alpha. Because t square less than or equal to C square 

implies that, a prime mu for every mu belonging to r to the power m, actually has a 

coverage equal to the coverage of this particular event which is 1 minus alpha. 
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So, we will take this c square to be equal to that constant what we had; m into n minus 

1 into n minus m; this into F m n minus m times alpha right. So, this gives interval that 

would contain that would contain this a prime mu term for every value of a with 

probability equal to 1 minus alpha with probability 1 minus alpha. This gives intervals, 

that would contain this which is of the form that is given from this previous discussion, 

that we are going to have this 

Now, with C which is given by the under root of this particular quantity, we will have 

the coverage equal to 1 minus alpha. So, this interval now is given by this a prime x 

bar; this minus under root of this entire quantity which is m n minus 1. This divided by 

n times n minus m into F m n minus m alpha; this into a prime S a; this is the lower 

confidence limit for that particular a prime a prime mu. And the upper limit is a prime x 

bar; this plus the same quantity out here which is m into n minus 1, that divided by m 

into n minus m F m n minus m a prime S a 

So, this basically is going to give us that, simultaneous confidence interval. So, this 

interval this interval will contain a prime mu for every a simultaneously. So, this leads 

us to another type of confidence, simultaneous confidence intervals which are termed as 

t term confidence intervals the reason why they are called T square confidence intervals 

is that this cut off actually F m n minus m alpha this term here along with the constant 

m n minus 1 and n minus m this is what is a the cut off basically this particular term 



here that is given from the T square hotelling T square distribution. So, that brings us to 

the end of this particular section. 

What we are now going to see is an important application of hotelling T square statistic 

which is called the profile analysis now profile analysis is an important applied 

multivariate tool wherein we look at the following things and let me first introduce 

what we are now going to see this profile plot and profile analysis. 
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Now, what is the setup of this particular type of analysis we have proved two groups 

group 1 this is a p dimensional population p or m whatever p dimensional population 

and we have a group 2 second group which also is a p dimensional population now 

suppose we have n 1 observations from this group 1 and similarly we have n 2 

observations taken from group 2. 

Now, what we are trying to see is that suppose we assume that suppose we assume that 

the group 1 is characterized group 1 in the population is characterized by is 

characterized by a mean vector say eta which is equal to eta 1 there are p characteristics 

in that population is the p dimensional population and hence this is eta of 1 eta 2 eta p 

and similarly group 2 is characterized by group 2 is characterized by a mean vector 

which is given by say mu this is equal to mu 1 mu 2 mu p say. So, these are the two 

mean vectors characterizing these two populations say 



Then we define the profile plot of these two groups as the following. So, this is a small 

definition out here the profile plot of the group is defined to be the graph it is very 

simple actually let me first write the definition obtained by joining the points i eta i and 

i plus 1 eta i plus 1 or we can similarly say that it is i nu i and i plus 1 nu i plus 1. So, 

this is what is called the profile plot what it is actually the definition can be given in 

this way. 
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The plot actually is nothing, but the following that what we have here these are the p 

dimensions say 1 2 3 and so, on. So, these are the p dimensions in the two populations 

now here we just plot what are the means corresponding to these group. So, this point is 

one say for group one this point is 1 eta 1. So, we join 1 eta 1 with 2 eta 2 suppose that 

particular mean point is here. So, we go on joining that like this 

So, this is just the point obtained. So, this point would be what this point would be 

suppose this is for group one this is suppose the profile plot for group one then this 

point here is nothing, but p eta p this point the starting point here is 1 eta 1 and. So, on 

this point is 2 eta 2 and. So, on. So, we are joining consecutive points i eta i and i plus 1 

eta i plus 1 and this basically is the simple graph which is called the profile of the group 

one 

Similarly, we can one can draw profile of the second group say suppose that profile is 

given by this it can be of any shape right. So, this is similarly the profile for group two. 



So, this is group one profile this is the group two profile now another profile plot can be 

of the following nature that it is like this another profile plot. So, this is also a profile 

plot 

Now, thus in profile analysis we look at what type of analysis what type of questions 

are interest when we have two or more such profile plots now this is for two groups that 

I have two profiles if we have k groups then we will have k such profiles drawn on one 

paper one graph here and hence we will have that figure to give us an idea about the 

profile of k groups under consideration this is just a simple thing to have two such 

groups 

Now, this profile analysis has got immense applications in the field market research 

chemical trials applications in the areas of chemical trials by a statistics market research 

and various other areas now the point to be noted here is that although we are saying 

that this is the profile plot of group one this is the profile plot of group two similarly 

this will also be characterized by some characterizing feature group one group two 

group three and. So, on 

Now, such profile plots are actually unknown to us because for all practical purpose 

this is these are means in the respective populations. So, this eta 1 eta 2 eta p is 

characterized by the mean vector in the population similarly mu 1 mu 2 mu p is the 

mean vector which is characterizing that second group of population and hence these 

are unknown quantities and hence the actual shape of these profile plots are unknown to 

us since we have the exact structure of this profile plots unknown to us because the 

respective group means in the population are not known to us that is eta 1 eta 2 eta p or 

nu 1 nu 2 nu p all of them are unknown quantity and hence this exact shape of the 

profiles plots are known to us 

What is done is to look at the sample profile plot because we have n 1 observations 

taken from the first sample n 2 observations taken from the second population the n 1 

observations from the first population n 2 observations from the second population and 

hence using those n 1 and n 2 populations one can obtain the sample means sample 

means random vectors for the two groups and then the sample profile plot is obtained 

The sample profile plot is obtained by replacing the population mean components by 

the respective computed sample mean components now this is what we can actually see 



because from n 1 observations will be able to get to x 1 bar I say this is the mean vector 

corresponding to the first population. So, this will have the elements as x bar first 

population first component and similarly this would be x p bar first population p th 

component 

Similarly, from n 2 observations from the second population or the second group we 

will be having x 2 bar vector this is computed from the n 2 observations coming from 

the second group and this will have the components as the following that this is x p 2 

now using these values now and thus replacing these eta is by the corresponding x 1 I 

terms and mu is by this x bar 2 I terms will be having the corresponding sample profile 

plots 

Now, given that we have got in the unknown population profiles of this nature profiles 

of this nature or some other nature there are certain points of interest in profile analysis 

in which one is interested in they are the following. 
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In profile analysis we try to address the following points in profile analysis we answer 

the following questions number one is that are the profiles similar are the profiles of the 

groups actually are the profiles similar similar in terms of they being parallel this is the 

first type of point of interest in profile analysis like here these two group profiles does 

not appear to be similar in the sense that they are not parallel on the other hand if we 

look at group one and group two profile on this profile plot they appear to be parallel 



although there is a divergence here, but we need to see whether this divergence from 

parallelity is statistically significant or not. So, that type of things are what we are going 

to answer. 

Now, the second type of question that is of interest assuming that the answer to one is 

in the affirmative assuming that the answer to one is in the affirmative that is we 

answer this particular question that they are similar or parallel we say that well they are 

if they are then we are further interested to see that whether these two parallel profiles 

are coincident or equal profiles. So, once they are in the affirmative that is profiles are 

parallel are they equal that is are the two profiles coincident right 

So, once we assume that they are parallel we look forward whether they are actually 

equal or there is a significant difference between these two similar parallel profiles now 

the third point of interest once we have excepted this first type of hypothesis that we 

say that well the profiles are similar that is they are parallel and next also we say that 

well they appear to be equal coincident and the divergence from the two being equal is 

not statistically significant. 

Then the third type of question that we usually try to answer is that whether the 

common profile is a level profile level profile in the sense that we have got all the 

components common in the now the first is eta for the group one the second is new for 

the second group in the first one we are looking at the two profiles and then seeing 

whether the two profiles are parallel or not 

Once we except the fact that they are parallel then we move on to see whether the two 

parallel profiles are actually coincident profiles that there is not significant difference 

between the two profiles of the two groups if we actually except that particular question 

or rather that particular hypothesis also that the common the two profiles actually are 

equal that is there is a common profile. 

Then we try to look at the third point of interest whether the common profile of the two 

groups is level profile level in the sense that all the components are same right. So, that 

the third point of interest let me write it first then I will explain that assuming that the 

answers the answers two one and two both are in the affirmative r affirmative is the 

common profile because that is what we have excepted in two is the common profile 

level that is are all the means equal to some constant. So, that is the third type of 



question that is usually addressed to in the profile analysis I hope this is this is clear 

what is a sequence of the testing or rather sequence of answering these questions 

First we look at this particular question to be answered now if at this particular stage we 

say that well the profiles by the statistical testing procedure that we are going to frame 

the two profiles does not appear to be similar or parallel then we will not proceed 

further we will not proceed to check whether they are equal or coincident because if the 

two profiles of the two groups are not even parallel then there is no question of looking 

at them being equal or coincident. 

So, if the first question is answered as yes that profiles appear to be similar that is they 

are parallel and the divergence from parallelity is not statistically significant then what 

we do is we proceed to this second question if the answer to the first question is in the 

affirmative that is they are parallel we check whether they are equal or coincidence 

profiles now if at this particular point after acceptance of the parallelity of the profiles 

we come here and say that well the profiles may appear to be parallel, but they are not 

equal if we answer in that way that they are they do not appear to be equal then we do 

not proceed to test or to answer this particular last question whether they are having a 

level profile because if they are not at all equal then there is no question of having a 

common profile of the two groups and hence we do not move on to the third question 

here 

Now, if the answer to this second question that whether the profiles are equal or 

coincident once again is answered in the formative that we accept first that the profiles 

are similar we done except that the profiles are equal is a level profile now this is all in 

literature terms we need to translate this three type of questions in statistical terms what 

are these questions in statistical terms 

In statistical terms we are actually looking at the following the first question that the 

profiles are similar or parallel is going to be answered through testing of this particular 

hypothesis we will frame an hypothesis which will say that this eta k minus mu k is 

equal to eta k minus one minus mu k minus one this is for k equal to 2 to up to t 

whether this hypothesis is this hypothesis acceptable. 

Now, how is this going to related with the parallelity of the profiles because if you look 

at the profile plot these basically the different. So, we will have this as the profile of 



group one this as the profile of group two. So, we take this point as eta 1 this point as 

mu 1. So, this is the difference eta 1 minus nu 1. So, this is the difference and this is the 

difference eta 2 minus nu 2. 

Now, if all these differences are same then we will have the two profiles naturally to be 

parallel and hence when we are trying to answer the question that the profiles of the 

groups are parallel we are feeling or rather translating that particular question in terms 

of statistical hypothesis testing in terms of this H 01 hypothesis that eat k minus nu k is 

equal to eta k minus 1 minus nu k minus 1 this is for every k from starting from 2 to up 

to p 

So, all the differences what we have as this eta 2 minus nu 2 is equal to eta 1 minus nu 

1 that is equal to eat 3 minus nu 3 and So, on. So, all those goes different in the profile 

they are all same against that they are on that all of them are not same. 

Now, this hypothesis also one sometimes write it writes it as eta k minus eta k minus 1 

this difference is equal to nu k minus nu k minus 1 this is in the equivalent form. So, 

this is the first hypothesis that is going to test the parallelity or similarity of the two 

profiles. 

Now, the second hypothesis is what we are going to frame which is going to look at 

equality or coincidence of the two profiles given that the first hypothesis is excepted. 

So, the second type of hypothesis that we are going to frame for testing equality or 

coincidence nature coincident nature of the profiles is that is H 02 that we will have 

equality which is eta k equal to nu k this is for k equal to 1 to up to p is this hypothesis 

acceptable or not. 

Now, note that this is equivalent to H 02 prime which is going to be summation eta k 

this is equal to summation of this nu k terms and an important thing to be noted is that 

here is that we will only test H 02 if H 01 is accepted H 02 to be tested only if H 01 is 

accepted then only this equality of the profiles make any sense otherwise not. So, if at 

the first stage H 01 is rejected that we say that the two profiles are not similar or 

parallel then we would not proceed further to for testing H 02.  

Now, under the situation that h naught one is accepted and all these differences that we 

were talking about which actually leads us to parallelity acceptance of the profiles those 



differences being equal this hypothesis that eta k equal to nu k would be equivalent to 

this summation of eta k to be equal to summation of nu k 

So, this is basically going to take care of this particular hypothesis this type of 

questions this statistical hypothesis H 01 is going to take care of this question number 1 

what about question number 3 question number 3 is what is looking at that answer to 

one and two are in affirmative is the common profile level. 

So, in terms of this statistical hypothesis how we are going to frame we are going to 

frame it in the following way that if H 01 and H 02 sequentially in that particular 

manner are accepted then we move on to test H 03 hypothesis which is going to be the 

hypothesis which is going to actually answer the last question that is about that level 

profile thing.  
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So, we are at the last question here we will have the last question being answered in 

terms of the following hypothesis H 03 which is going to be that hypothesis which is 

going to test that eta 1 equal to eta 2 equal to eta p this is equal to nu 1 is equal to nu 2 

is equal to nu p right 

So, this is whether this hypothesis is acceptable or not. So, these are sequentially the 

three type of hypothesis whether this is acceptable that is first we answer next we 



answer whether this H 02 is acceptable and this is to be H 02 is to be tested only if H 01 

is accepted. 

Now, similarly when we talk about H 03 it is looking at whether all the components eta 

1 equal to eta p these are equal now this H 03 to be tested H 03 is to be tested only 

under the situation under the situation that both H 01 and H 02 are accepted. 

So, only under such a situation we are going to test this H 03 and that H 03 under the 

situation under the condition that both H 01 and H 02 remember H 01 is the hypothesis 

for testing similarity of the profiles H 02 is the hypothesis for testing equality or 

confident nature of the profiles and H 03 is the last hypothesis which is going to test 

whether the profile is a level profile that all the components are basically same and the 

sequencing of the testing is that first H 01 has to be tested if H 01 is rejected we stop at 

that particular point if H 01 is accepted then from after testing H 01 we move on to 

testing H 02.  

If H 02 is accepted we move further to test H 03 if H 02 is rejected we stop at that 

particular point and we say that well the profiles were parallel, but they are not equal if 

all the three hypothesis H 01 H 02 H 03 in that order are excepted we will say that the 

profiles first are parallel the profiles next are equal and the profiles the common profile 

of the two group is level profile 

In the next next lecture we are going to see how these H 01 H 02 2 and H 03 are tested 

using a hotelling T squared statistic we are also going to see some numerical examples 

of looking at how this profile analysis is going to be carried out 

Thank you  

 


