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In the last lecture, we had looked at some applications of hotelling’s T square statistic, 

and also we had looked at how to use hotelling’s T square statistic when we have two 

sample normal problem, and related inference regarding that. Now, what we will do 

today is we will look at some important properties of the hotelling’s T square statistic.  
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Some important properties of the hotelling’s T square. Now, the first property that we are 

going to discuss is the invariance of the hotelling’s T square statistic with respect to a 

non-singular transformation. So, invariance of hotelling’s T square statistic with respect 

to a non-singular transformation. Now, what we mean by saying is that is the following 

that suppose we have this data x 1, x 2, x n the random observations from a multivariate 

normal distribution with appropriate dimensions, and mean vector and then non-singular 

positive definite covariance matrix. Let c be a non-singular matrix of constants, and d be 



a vector of constants. Now using this c non-singular matrix and d the vector of constants, 

we can actually make a transformation from this x to c x plus d.  

Suppose all these x s are m dimensional; we will take this c to be an m by m non-singular 

matrix and this to be an m by 1 vector. So, this is a new vector that is derived from this x 

random vector. Suppose we have this x 1, x 2, x n, the original data through the 

transformation will be getting a new set of observations that is y 1, y 2, y n which are 

nothing but  c x 1 plus d, c x 2 plus d and so on, and the last one is cxn plus d. Now, the 

T square statistic computed form this x 1, x 2, x n is going to be the same, that is going to 

be computed from c x 1 plus d, c x 2 plus d and c x n plus d. In that sense actually, T 

square will be invariant or rather I will just write that T square computed from x 1, x 2, x 

n and that computed from c x 1 plus d, c x 2 plus d, c x n plus d will be same. 
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How do we claim this? We claim this particular invariance in the following way that 

since we are made this non-singular transformation, the x random vector the underlying 

random vector will get changed to c x plus d. the corresponding x to follow a 

multivariate normal m with a mean vector mu and a covariance matrix as sigma. Then 

with this transformation, this mu will be changed to c mu plus d and then this sigma 

matrix the associated variance covariance matrix to be positive definite. So, this sigma is 

going to be changed to c sigma c prime. Now, T square statistics comes into existence 

actually for testing null hypothesis of the form that mu is equal to mu naught to be tested 

against an alternate hypothesis HA that mu is not equal to mu naught.  



So, where does this mu naught go to? mu naught is a known vector. So, this known 

vector mu naught will be shifted to c mu naught plus d. Now, when we have such 

transformations and place what happens to this x bar quantity? Now, x bar is the sample 

mean vector that is obtained from x 1, x 2, x n. So, this x bar is computed from x 1, x 2, x 

n, the data. So, this will be changed to c x bar plus d and n minus 1 s say with a divisor n 

minus 1; that is given by x j minus x bar x j vector minus x bar vector transpose j equal 

to 1 to up to n. Now, where does this gets changed to when we are looking at the 

transformed observations, this x to be replaced by c x j plus d.  

Now, what happens to x bar? x bar is c x bar minus d in to the transpose of that. So, it is 

c x j plus d minus c x bar minus d transpose. So, this d vector cancels out from both the 

quantities and what happens is, the following we will have here c is a non-singular 

matrix. So, this c can be taken out from the left, c transpose can be taken out from the 

right and what will be having is the following that, the quantity that I had written is 

going to be, c times summation j equal to 1 to n x j minus x bar then x j minus x bar 

transpose c transpose and this term is equal to n minus 1 times s with the divisor n minus 

1. 
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So, what we have seen is the following that this quantity out here that n minus 1 s. Now, 

with this non-singular transformation is going to c times n minus 1 s c prime. This would 

imply that this s the sample variance covariance matrix is going to c s c transpose. Now, 

once we have these things in place the T square computed form x 1, x 2, x n the original 

set of observations is given by T square is equal to n times x bar minus mu naught 



transpose s inverse x bar minus mu naught. So, we had seen this and again this is 

basically that hotelling’s T square when we are looking at x 1, x 2, x n; n observations 

from a multivariate normal distribution for testing the null hypothesis mu equal to mu 

naught against mu not equal to mu naught.  

Now, where does this go to? We will have this under the non-singular transformation 

that we are discussing; this x bar is now c x bar plus d. Where is mu naught? mu naught 

is c times mu naught minus d transpose. Now s is going to c s c transpose. So, here what 

we have is this is just c s c transpose whole inverse and then that is multiplied by the 

transpose of this particular quantity what would remain? This d is cancelling out and we 

will have c x bar minus c mu naught on this side. Now, this is equal to n times; now this 

c can come out side with a transpose; this goes here and what will be having here is this 

x bar minus mu naught. 

So, this c with a transpose comes here and then we will have this term here. So, which is 

c transpose inverse s inverse c inverse and then we will take c from this side as well; this 

is c x bar minus mu naught. So, this c into c inverse will give us an identity matrix; this c 

transpose into c transpose inverse will also give us an identity matrix. So, what will be 

having is n times x bar minus this into s inverse times x bar minus mu naught. Now, 

what is this quantity? This is the T square statistics which is computed from the y 

observations; because this is nothing but y bar; this is nothing but the mean 

corresponding to the y random variables.  

This is the sample variance covariance matrix that is computed from the y observations 

that is what we had seen out here; that we have these under the transformation here; that 

we are making that x 1, x 2, x n is transformed to y 1, y 2, y n. Then what happens to the 

corresponding means? This is the mean vector corresponding to the y observations. This 

is the variance covariance matrix corresponding to the y observations and what we have 

proved is that the T square computed from the x 1, x 2, x n which is equal to what is this 

quantity. This is the T square computed from the y observations computed from y 1, y 2, 

y n. So, what we have proved is that the T square statistics remains invariant with respect 

to this non-singular transformation. 
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So, that was the first important property that, we can say about this hotelling’s T square. 

Now, the second thing is that the T square statistic can be obtained using Roy’s union 

intersection principle. Now, what is that? We have this null hypothesis H naught that mu 

equal to mu naught. Suppose we take this alternate type of hypothesis H naught prime, 

which is a prime mu equal to a prime mu naught. This is for every a belonging to the 

appropriate dimension R to the power m; because we have got a multivariate normal 

which is m dimensional. So, what is the correspondence between the two hypothesis H 

naught and H naught prime? Now, the acceptance region note that this is a single 

hypothesis here and there are a number of hypothesis for possible choices of the a vector 

belonging to R to the power m on the right hand side.  

Now, the acceptance region the relationship that is what we are talking about; the 

acceptance region of H naught is the intersection of the acceptance regions of H naught 

prime for every a belonging to R to the power m. Now, what does that mean? That 

means, this H naught null hypothesis is going to be accepted. If we have this H naught 

prime hypotheses to be accepted for every value of this a vector; that is, we will accept H 

naught. If H naught prime is accepted for every a belonging to R to the power m and that 

is quite obvious; because if for some a this null hypothesis H naught prime hypothesis is 

rejected, we cannot take this hypothesis to be accepted.  

Now, this is about the acceptance region. So, the acceptance region of this would be the 

intersection of the acceptance region of H naught prime. What about the rejection 

region? The rejection region has the following relationship between the H naught and H 



naught prime hypothesis. The rejection region of H naught is the union of the rejection 

regions of these H naught prime set of hypothesis; that is H naught will be rejected if any 

of H naught prime hypothesis is rejected. So, rejection of any one of these H naught 

prime hypothesis would leading to the rejection of the main hypothesis; that is H naught.  

Accordingly, the rejection region of H naught would be the union of the rejection region 

of H naught prime hypothesis for a varying in R to the power m. So, this basically is 

what we talk about the union intersection. It is called the union intersection principle; 

because the rejection region of this H naught hypothesis is the union of the rejection 

region of these set of hypothesis. The acceptance region of this H naught is going to be 

the intersection of the acceptance region of this H naught prime set of hypothesis. Now, 

what we will do is that we will basically look at when is this H naught prime hypotheses 

going to be rejected? On what sort of theory, we are going to actually base our rejection 

region. So, H naught prime is a prime mu equal to a prime mu naught. 
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Suppose, I have take this one hypothesis here; H naught prime is a prime mu equal to a 

prime mu naught for particular a vector. Now, in order to test this particular hypothesis, 

what we are going to make use of is the following. Now, we have x to follow a 

multivariate normal m dimension with a mean vector mu and a covariance matrix sigma 

positive definite. So, we will have sigma to be positive definite out here. So, x has got 

this particular normal distribution. So, what happens to the distribution of a prime x? a 

prime x will have a multivariate normal distribution which is a prime mu and a prime 

sigma a as its variance.  



Now, from here what we can also say is that this x bar has got a multivariate normal 

distribution with a mean vector mu and a covariance matrix as sigma by n. So, this 

would imply that for this a prime vector, this a prime x bar is going to have this N is 

going to be one. This is N1; because this is that particular 1 by n dimensional vector. 

Now, this also is a univariate normal random variable with mean as a prime mu and a 

covariance matrix 1 upon n a prime sigma a. Now, the variance covariance matrix n 

minus 1 times s the sample variance covariance matrix; this has got a wishart m n minus 

1 times sigma. 

From the previous results, what we can say is that this a prime n minus 1 s times a. This 

is going to follow a central chi square that is what we had seen earlier that this has got 

central chi square on what degrees of freedom n minus 1 minus m plus 1 degrees of 

freedom and it is going to be a central chi square. So, this is a central chi square on the 

degrees of freedom which is going to given by n minus 1 minus m plus 1. So, using these 

facts actually we are in a position to test this particular null hypothesis. How we are 

going to frame that? H naught prime is will be rejected, if the following quantity is large; 

if root n absolute value of a prime x bar minus a prime mu naught divided by under root 

of a prime s a is large.  

Why is that so? It is simple to see that; because we have a prime x bar to have a normal 

distribution. This a prime x bar minus a prime mu naught that divided by this variance 

out here; that is going to have a normal 0 1 distribution; but this sigma matrix is 

unknown to us. And hence, we also need to use this distribution chi square here. 

Eventually, what we are going to have? This distribution is going to be a tedious 

distribution; because that would be ratio of standard normal distribution to that of a 

central chi square random variable. So, we are going to reject H naught prime, if this 

quantity is large; that is if this square of it is large. So, there is a reason why we are 

looking at this square of that particular quantity; this a prime a mu naught whole square 

that divided by a prime s a is large.  

Now, this is as far as rejection of this one single hypothesis, H naught prime for a given a 

prime belonging to R to the power m. So, the large quantity of this particular observed 

thing based on x 1, x 2, x n is what is going to lean us to the rejection of H naught. Now, 

what is the relationship between this rejection of this hypothesis for a particular a 

belonging to R to the power m and the rejection of H naught hypothesis; that is, mu 

equal to mu naught and what we will be having is the following. This H naught the null 



hypothesis mu equal to mu naught will be rejected, if we have the supremum over a of 

these quantities, which is n times a prime x bar minus a prime mu naught whole square 

that divided by a prime s a. 
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So, this is basically the supremum over every a belonging to R to the power m; that is, 

for all possible hypothesis H naught prime, when a varies in R to the power m. If we 

have supremum of these quantities for varying a is large, now we need to look at what is 

this; that is we are going to reject H naught, if now n is constant; n just sits outside. So, it 

is the supremum over a belonging to R to the power m of this particular quantity. Now, 

how do we write this particular quantity out here? I will take a prime outside here. This 

is a prime x bar minus mu naught the whole square of that divided by a prime s a is large. 

Now, in order to find out the supremum of this particular quantity, supremum over this 

term out here; we recall that we have something called a cauchy-schwarz inequality.  

So, we may recall the following result; recall that supremum over u not equal to zero. 

Ofcourse, we also will take a not equal to zero; because a equal to zero does not mean 

anything; because we are going to test null hypothesis that 0 equal to 0; that does not 

make any sense. So, it is over all vectors which are non-null of this u prime v whole 

square divided by u prime Au, where A is non-singular. This is going to be given by v 

prime a inverse v. Now, this follows from the cauchy-schwarz inequality straight 

forward. So, we have this general result that for a non-singular matrix a, we will have the 

supremum of this particular quantity to be given by this. Now, here we will use this 

result, in order to find out what is the supremum of this.  



So, we can take here, this a vector to be equal to this u vector; the v vector to be equal to 

this x bar minus mu naught vectors; this A to be equal to this s matrix. Now, if sigma is 

positive definite then with probability 1, this sample variance covariance matrix s is non-

singular and hence, this s that we are talking about ofcourse, is going to be non-singular 

with probability 1; because, we have chosen sigma to be positive definite matrix and 

thus, this would imply that this H naught will be rejected, if we have this quantity n 

times; now I will plug in the supremum value of that is going to be given by, this x bar 

which is v transpose; then a inverse is s inverse x bar minus mu naught is large.  
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So, this follows from this equation that this is going to be rejected. This is coming 

through the H naught prime set of hypothesis and then that is going to be rejected, if this 

is large. Or in other words, if this is large; that is this term is equal to the T square 

statistics only; that is if T square is large. Or in other words, we can plug in the constant; 

that is if T square by n minus 1 into n minus 1 minus m plus 1 divided by m is large; that 

is, if this T square by n minus 1; now this one cancels out and you will have this here as 

n minus m by m is large. Now, we know what the null distribution of this particular 

quantity is.  

The null distribution under the null hypothesis H naught mu equal to mu naught. This is 

going to have an F distribution; a central F distribution on what degrees of freedom; n 

minus m degrees of freedom and hence, statistic is equivalent to what we have already 

seen. So, that is why one says that we have actually shown that the T square statistics for 

testing H naught mu equal to mu naught can alternatively be obtained through this union 



intersection principle; wherein you consider this set of null hypothesis H naught prime, 

which is a prime mu equal to a prime mu naught. And then, the rejection region of that 

actually leads us to seeing that this basically based on the T square statistic itself. Now, 

next what we are going to talk about is something about confidence intervals.  
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So, we will have these terms here that let me first talk about confidence region for the 

mean vector mu. Now this is what we have that we have x 1, x 2, x n random sample 

from a multivariate normal m mu sigma where sigma is a positive definite matrix. So, we 

are interested actually in giving confidence regions for the unknown mean vector; that is 

mu. Now, how are we going to do that? We know that this T square by degrees of 

freedom n minus 1 n minus m by m; this follows an F distribution. I will just write the 

full form of it. So, that it becomes easy to frame the confidence region. Note that, we will 

have this n times x bar minus mu transpose; then we have s inverse x bar minus mu this 

term here.  

This is the T square statistic divided by degrees of freedom which is n minus 1, that 

multiplied by n minus 1 minus n plus 1. So, that is n minus m divided by m, this will 

follow an F distribution; now this F distribution has degrees of freedom m n minus m. 

Now, if we have this particular term to hold true; this would imply that the probability of 

this x bar minus mu transpose s inverse x bar minus mu; this multiplied by all these 

constants out here; n times n minus m divided by m times n minus 1; this less than or 

equal to Fm n minus m alpha.  



What is this probability going to be equal to 1 minus alpha, wherein this particular term 

is upper alpha percent point of a central F distribution on m n minus m degrees of 

freedom? So, the area to the right of this particular point is alpha and hence, the area to 

the left of it is 1 minus alpha. So, I will just write it that probability of an F statistic on m 

n minus m degrees of freedom greater than this Fm n minus m alpha; this is a given 

point. So, this right tail probability is equal to alpha and hence, since this has got an F 

distribution on m n minus m degrees of freedom. The probability that this less than or 

equal to 1 minus alpha.  

So, this would imply that a 100 into 1 minus alpha percent confidence region for this 

unknown vector mu is going to be given by the set of all mu values such that we will 

have this x bar minus mu transpose s inverse x bar minus mu. This is less than or equal 

to m times n minus 1 divided by n times n minus m times F m n minus m times alpha. 

So, what we have is ellipsoid; ellipsoidal region actually is giving us a 100 into 1 minus 

alpha percent confidence region for every mu; that is satisfying this particular condition 

that it is within this particular boundary region here. We will have that ellipsoid to lead 

us to 100 into 1 minus alpha percent confidence region for this mean vector mu. 
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Now, let us move on to simultaneous confidence intervals for certain linear combinations 

of interest. Now, the underlying population still is a multivariate normal. So, the 

population is a multivariate normal n dimensional with a mean vector mu and a 

covariance matrix sigma, which is assumed to be positive definite. So, we have this 

sigma matrix to be positive definite. Suppose we are interested in setting up of 



simultaneous confidence intervals for quantities of the form that it is a i prime mu; this i 

is for 1 to up to p; where this p is less than or equal to m. So, we have p such linear 

combinations a i prime mu and these are linear combinations of the parameter. Say for 

example, we are interested in setting up of simultaneous confidence interval for mu 1 

minus mu 2 and mu p minus mu p minus 2 something. 

So, we are interested in such p linear combinations of the unknown mean vector mu and 

we are trying to setup confidence intervals in such a way that we want to have 

simultaneous confidence intervals for these a i prime mu; such that the joint confidence 

or the joint coverage actually is at least 100 into 1 minus alpha percent. So, that is what 

is our objective; we have p such linear combinations. We are trying to put up 

simultaneous confidence intervals for this; such that the joint confidence is at least 100 

into 1 minus alpha percent. Now, what we are going to do is that let I i be the confidence 

interval for this a i prime mu component. So, if we have this I i to be the confidence 

interval for a i prime mu what we are trying to achieve is the following. 
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We want to achieve the following probability statement. This is intersection of each of 

these i equal to 1 to p that a i prime mu; this belonging to I i. So, this is an event that a i 

prime mu belongs to I i. So, that I i is what we are defined to be the confidence interval 

for particular term out there and then the intersection of all such events this probability 

we required that to be equal to 1 minus alpha. So, we will show I we can achieve under 

different setups such a probability statement that the joint probability of all these a i 

prime mu quantities belonging to the respective intervals that we are going to create. The 



joint probability intersection of all such events is going to be greater than or equal to 1 

minus alpha.  

So, this is the statement that we are going to make that this basically is the joint 

probability statements. So, this alternatively can be written in the following form that it 

is probability that this a i prime mu is belonging to this I i interval; this is for i equal to 1 

to up to p for all these linear parametric functions a i prime mu; that is greater than or 

equal to 1 minus alpha. Basically, this is going to give us the confidence region for each 

of these p linear combination of these mean vector mu and we will ensure that, this 

probabilities at least 1 minus alpha. Let us take an example and then, try to illustrate how 

this type of problems, simultaneous confidence intervals is achieved? Now, suppose we 

want confidence interval for some p out of m of mu i components without loss of 

generality, we take that we are interested in the first p of those components.  

So, we will have this as i equal to 1 to up to p. So, these are mu i components; we had 

this mean vector mu was mu 1, mu 2, mu m. So, we are looking at the first p 

components; suppose these p are important once and we are looking at setting up 

simultaneous confident interval for mu 1, mu 2, mu p; such that the joint probability of 

mu i being contained in that particular random interval; that joint probability is greater 

than or equal to 1 minus alpha. So, this is just an illustration; this can be anything other 

than these mu components also. Now we can encounter two different cases. The first 

case is a very simple case. Case one is suppose sigma is equal to diagonal sigma 1 1, 

sigma 2 2, sigma m m. Now, this sigma matrix is diagonal matrix.  

Now, sigma matrix being diagonal matrix implies that since we have got x to be 

multivariate normal with mean vector mu and a covariance matrix sigma; in other words, 

this x bar has got a multivariate normal m with a mean vector mu and a covariance 

matrix sigma by n. This would imply that x 1 bar, x 2 bar, x m bar which are the 

constituent elements of this x vector, which is the sample mean random vector. So, this x 

1, x 2, x m are independent N 1 random variables; because we have sigma to be diagonal 

matrix. Since sigma is diagonal matrix, the half diagonal entries which are going to give 

us a covariance terms for the components of this x vector. They are going to be zero and 

since the joint distribution is multivariate normal, we will have these components to be 

independently distributed. 
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Since we have this x 1 bar, x 2 bar, x m bar to be independent N 1 random variables; in 

particular, what we can write is that this x i bar would follow a univariate normal 

distribution with mean as mu i , which is the corresponding component in the mean 

vector and this variance has sigma I i divided by n. This is true for every i equal to 1 to 

up to m and in particular, this would be the case if we are looking at any p of the 

components which are there in mu and the corresponding components in x bar random 

vector. Now, from this statement what we can write is the following; a 100 into 1 minus 

beta percent confidence interval for this mu i is given by x i bar.  

This is the interval; x i bar minus root over s i i by n, where s i i is the corresponding 

diagonal element of the sample variance covariance matrix. So, this s i i by n multiplied 

by t n minus 1 and then we will require this to be beta by 2. I will say what is this equal 

to this is x i bar plus root over s i i by n t n minus 1 this beta by 2 where probability that 

T distribution on n minus 1 degrees of freedom greater than t n minus 1 beta by 2; this 

would be equal to beta by 2. So, if we have the probability of a T random variable 

exceeding this t n minus 1. This is basically the right tail cut off point. So, we will have t 

distribution is symmetric. 

Suppose this is a point here; this point is my t n minus 1 beta by 2. So, the area to the 

right of that particular point is beta by 2; this is symmetric distribution. So, we will have 

minus t n minus 1 beta by 2 point. Similarly, the area to the left of that would also be 

equal to beta by 2 and hence the area in between these two points, which is this area is 

going to be 1 minus this plus this that is 1 minus beta. So, we will have this particular as 



confidence interval; this as probability that this mu i belonging to the random interval. 

Now, in terms of the random interval, this is x i bar minus square root of s i i by n t n 

minus 1 beta by 2; this x i bar random interval plus root over s i i divided by n times t n 

minus 1 beta by 2.  

So, this is that interval. This is the lower confidence point. This is the upper confidence 

limit. This probability is equal to 1 minus beta. So, this is as far as the mu i component is 

concerned. Now, note that these x i bar quantities are independent due to the structure of 

sigma matrix that we have assumed. So, let us denote this particular interval what we 

have here to be this I i interval that is probability that this mu i belonging to this I i. This 

is exactly equal to 1 minus beta. Now, similar to one mu i component here, one can take 

this for every I i equal to 1 to up to p.  
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Now, because we have the sigma matrix to be diagonal, the independence would imply 

that probability that mu i belongs to I i ; this simultaneously for i equal to 1 to up to p. 

This is going to be given by probability. This is actually intersection of i equal to 1 to p; 

these events are mu i belonging to this I i. Now, these events are going to be 

independent; because we have chosen the sigma matrix to be a diagonal matrix. Hence, 

this is going to be the product i equal to 1 to up to p of the respective probabilities; 

because, the underlying p events with which we are looking at the intersection.  

They are independent events and hence we will be having this as mu i belonging to this I 

i. Now, we have obtained these probabilities. I i is given by this particular random 



interval and what we will be having is the coverage that the probability that mu i 

belonging to a particular I i ; that probability is 1 minus beta. So, we will have this as 1 

minus beta whole raise to the power p. Now, what do we require? We require in order to 

setup a simultaneous confidence interval; see here, what we had stated out here that in 

order to give us the simultaneous confidence interval.  

We would require this statement of this type that probability that a i mu belonging to I i, 

for i equal to 1 to p; this is greater than or equal to minus alpha. So, for a given problem 

if we set this 1 minus beta to the power p to be equal to alpha, then we will able to 

achieve. So, we set this to be equal to 1 minus alpha and then we can solve for beta. And 

then that solution beta would lead us to the simultaneous confidence interval; that is, we 

set here 1 minus beta to the power p to be equal to 1 minus alpha; that is 1 minus beta to 

be equal to 1 minus alpha to the power 1 upon p; that is what we have is this beta to be 

equal to 1 minus 1 minus alpha to the power 1 upon p.  

So, from this statement out here, what we will be able to do is given alpha lies between 0 

and 1; that is associated with 100 into 1 minus alpha percent confidence region. So, 

given alpha obtain beta using this particular equation; because you know what is p. We 

know how many of these components we are actually trying to include in the joint 

confidence interval. So, we can obtain beta from here and then using that particular beta 

what we will do? We will go back to this particular equation here, where we can easily 

obtain what is an 100 into 1 minus beta percent confidence interval for mu i.  

So, we can use that beta in this statement out here and we will be able to find out the 

confidence interval corresponding to that particular mu i components. Once we have the 

confidence interval corresponding to one mu i component, we can use that in the 

statement out here and get a 100 into 1 minus alpha percent simultaneous confidence 

interval for p of these quantities here. Now, this p can also be all the m quantities, all the 

m components. Now, make a note of the following observations. 
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Now, since we have 1 minus beta to the power p is equal to 1 minus alpha, this would 

imply that 1 minus beta is going to be greater than 1 minus alpha; because both alpha and 

beta lie between 0 and 1.So, we have 1 minus beta a quantity raise to the power p that is 

equal to 1 minus alpha and hence, we would require 1 minus beta to be greater than 1 

minus alpha; that is straight forward. Number two is an important thing is to look at the 

comparison between this simultaneous confidence interval that we are setting up for each 

of this p component here.  

And then, we would like to compare this confidence interval that we are obtaining 

through this simultaneous approach to that of the confidence interval 100 into 1 minus 

alpha percent confidence interval for a particular mu component only. So, the difference 

here is that in one confidence interval we are setting up a 100 into 1 minus alpha percent 

confidence interval for mu i only and in the second, we are obtaining a 100 into 1 minus 

alpha percent simultaneous confidence interval for p mu i components in which, mu i is 

1 of them. So, what does the intuition? Basically, the intuition will say that the 

confidence interval, where we are concentrating only on one mu i component.  

And then, setting up 100 into 1 minus alpha percent confidence interval for that is going 

to be shorter than the simultaneous confidence intervals for p such components and we 

are going to have 100 into 1 minus alpha percent simultaneous coverage for all those p 

components. So, the intuition would suggest that the expected length of the confidence 

interval, when we are looking at the simultaneous 100 into 1 minus alpha percent 



confidence interval; that is going to be larger than the one, when we are concentrating on 

one such mu i component. Let us see how we prove that intuition of ours.  

So, in order to prove that we start with this particular equation here; that 1 minus beta is 

greater than 1 minus alpha; this would imply that this beta is less than alpha. Now, if beta 

is less than alpha this would imply that beta by 2 is less than alpha by 2. Now, this would 

further imply that t n minus 1. Now let us try to find out the logic behind this particular 

relationship between these two cut off points. How does this relationship between these 

two cut off points come across? Suppose, this is the t distribution p d f which is 

symmetric around 0.0 we have. 

Here a point, now what do we have beta by 2 is less than alpha by 2. So, we have two 

points here; beta by 2 is less than alpha by 2 and these are going to be two cut off points. 

So, suppose I take this particular region here, beta by 2 is less than alpha by 2. So, I take 

this region here to have an area which is beta by 2 and then the area which is actually 

coming from the right of this particular point. So, this entire point here is alpha by 2. So, 

we will have beta by 2 which is to the right of this particular point here; having an area to 

the right beta by 2 and the area to the right of this point here, first point which is alpha by 

2.  

So, since beta by 2 is less than alpha by 2, we will have this point as t n minus 1 beta by 

2 and this point is t n minus 1 alpha by 2. So, we will have this t n minus 1 beta by two 

cut off point to be greater than t n minus 1 alpha by 2. So, we will have this particular 

relationship. Since we have this particular relationship, it is now easy to see what is the 

expected length of the two types of confidence intervals that I was talking about. So, this 

is going to be the following that length of I i that we have already constructed is given by 

2 times n minus 1 beta by 2. This is s i i by n and length of confidence interval 100 into 1 

minus alpha percent for mu i only is going to be given by similarly 2 t n minus 1. 
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Since we are looking at mu i only, this is going to be given by t n minus 1 alpha by 2 and 

multiplier is exactly the same as this. Since, we have t n minus 1 beta by 2 as we have 

seen t n minus 1 beta by 2 to be greater than t n minus 1 alpha by 2 expected length of 

the confidence interval. Expected length of this I i is going to be greater than the 

expected length of the confidence interval for mu i only. So, this basically justifies our 

intuition that we said that our intuition suggest that; if we are trying make a 100 into 1 

minus alpha percent confidence interval for mu i only, then that is basically taking care 

of one mu i component.  

If we are going to have a simultaneous confidence interval for p such mu i’s and trying to 

ensure that all those p components, the coverage that mu i belongs to respective I i 

interval that the simultaneous coverage probability is 100 into 1 minus alpha percent. 

Now, that is going to look at p such components and this is going to look at only one mu 

i component and hence, we would require in the simultaneous confidence interval set, a 

larger interval; larger in the sense of having the expected length of that I i to be higher.  

So, this basically tells us that if we are looking at such simultaneous confidence 

intervals, the expected length of that confidence interval is expected to be higher. So, we 

will stop here today. We will look at in the next lecture what happen if sigma is not 

necessarily a diagonal matrix. So, we will consider a general positive definite matrix and 

then look at how to construct such simultaneous confidence interval for mu i components 

or in general for linear combinations p such linear combinations. Thank you.  


