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Hello and welcome to this course on applied multivariate analysis. I am Amit Mitra from 

the department of mathematics and statistics IIT Kanpur. I along with my colleague 

doctor Sharmishtha Mitra will take you through this particular course on applied 

multivariate analysis. Now this particular course is divided into two parts. Mainly, in the 

first part of the course, we will look at basic multivariate distribution theory and look at 

generalization of various univariate distributions. Say for example, univariate normal 

distribution, chi square distribution and t distribution through the multivariate 

counterparts. 

Specifically we will look at multivariate normal distribution, its characterization its 

definition through the Cramer weld’s theorem and all. And also look at various important 

properties of multivariate normal distribution. We will also look at concepts of random 

sampling from multivariate normal distribution. And, look at various influential issues 

associated with that. For example, what would be the corresponding sufficient statistic of 

the unknown set of parameters concerning a multivariate normal distribution? We will 

talk about estimation of mean vector and covariance matrix of a multivariate normal 

distribution. 

Then, we will look at various derived distributions from multivariate normal 

distributions. Say for example, we will look at wish art distribution which is multivariate 

extension of the chi square distribution. We will also look at Hotelling’s T square, we 

will look at all its theoretical justifications various important properties and so on. So, 

this will comprise roughly the first part of the course wherein the theoretical multivariate 

distributions, their properties and all will be studied. And in the second part of the course 

we will look at various important multivariate, applied multivariate statistical techniques. 



Their mathematical formulation concepts associated with that and also look at various 

types of data analysis concerning that. 
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So, let us start this particular small presentation here, which will actually take us through 

to what we are going to cover in this particular course. So, this lecture would essentially 

act as a prologue to this particular course on applied multivariate analysis. Now, to 

introduce what type of thing we are up to, it may be noted that the challenges in learning 

from data, have led to large volume of data essentially have led to development and 

evolution in the field of statistical science. In a nutshell when one tries to see what type 

of a job is statistician is trying to do? 

A statistician’s job is to extract useful information, useful and meaningful information 

through extraction of important patterns rules. And, trends in the multidimensional data, 

Extraction of relationship among various features or classification of multidimensional 

patterns. Now, the type of data that is usually encountered is multidimensional in nature. 

And, thus a proper theoretical foundation of multivariate statistical techniques is not 

going to recomplete without looking at the multivariate distribution theory as such. And 

in this course, we will discuss some fundamental and important multivariate statistical 

techniques. 



(Refer Slide Time: 03:36) 

 

Now, the process of extracting previously unknown valid and actionable information 

from large multidimensional databases and then, using the information to make crucial 

business decisions that can actually be performed on two different platforms. One may 

be on a supervised mode of learning, supervised mode of statistical learning or it can be 

in an on an unsupervised mode of analysis. In this course specifically, when we talk 

about applied statistical techniques we will talk both about these supervised techniques, 

multivariate supervised techniques. And, also a number of unsupervised multivariate 

data analysis techniques. 
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Now this is, as I told you in the very beginning that this is a brief outline of the course. In 

the first part of the course we will look at this multivariate distribution theory and related 

inference and associated with such multivariate distributions. And in the second part of 

the course well, it will comprise of applied multivariate statistical technique and also 

look at various types of data actual data analysis. 

(Refer Slide Time: 04:44) 

 

Now, what type of multivariate distribution theory are we going to look at? We will first 

consider a very general framework of looking at multivariate random vector quantities 

which actually are going to characterize such multivariate vectors. And then introduce 

multivariate normal distribution. Now while looking at multivariate normal distribution 

we will first start with a Cramer weld’s theorem, which actually tries to look at a 

multivariate distribution. And, it says that a multivariate distribution is going to be 

completely known if and only if the distributions of all its linear combinations are known 

to us. 

And that is the basis with which one actually defines a multivariate normal distribution. 

One defines a multivariate normal distribution through the Cramer weld’s theorem as x 

follows a multivariate normal distribution if and only if every linear combination of x. 

That is alpha prime x, where alpha belonging to the dimension space associated with that 

of the multivariate random vector, if we have each and every linear combination 

following a univariate normal distribution. So, that gives us a characterization of a 



multivariate normal distribution the definition we see basically of a multivariate normal 

distribution. So, we will look at such Cramer Wald’s theorem, its statement, its proof 

will look at characterization of multivariate normal distribution accordingly. 

And, then we will look at various important properties of multivariate normal 

distribution starting from say, deriving the density function, the joint probability density 

function of a multivariate normal distribution through. Of course, the density of 

univariate normal distributions is what we are going to look at. We will mainly talk 

about nonsingular multivariate normal distribution. So, we will look at the covariance 

matrix to be positive definite. And, hence not look at much although in some of some 

results that we are going to discuss, will be having certain situations. Wherein sigma may 

be a singular matrix and in such a situation we might be having a singular multivariate 

normal distribution. 

So, we will derive for a nonsingular sigma covariance matrix, the joint probability 

density function of multivariate normal distribution. And, keeping in mind that such a 

density function does not exist, if we have got a singularity in the sigma matrix. We will 

look at important properties starting from basic properties of multivariate normal 

distribution, like that of transformation associated with multivariate normal distributions. 

And also, we will look at a particular type of a section which is important say for 

example; we will look at quadratic forms derived from multivariate normal distribution. 

And then, talk about in detail the distributions that one would be getting, when we look 

at quadratic forms derived from a multivariate normal distribution. 

Now, when we talk about quadratic forms derived from multivariate normal distribution 

it has got huge importance in various fields of applied statistics. For example, if one 

looks at a linear regression, multiple linear regression model. And then, talks about 

estimation and hence inference from it say, fundamental theorem of least squares and all. 

When one tries to actually look at the distribution of residual sum of square, when one is 

trying to look at distribution of restricted sum of squares, unrestricted sum of squares 

deriving f statistic. The basis for all such test procedures are based on, distribution of 

quadratic forms arriving from multivariate normal, normality assumption on the 

multivariate noise random vector, associated with the multiple linear regression models. 



So, it is of fair amount importance actually to look at such distribution of quadratic 

forms, which will take up in various forms. Now distribution of quadratic form of course, 

is which comes prior actually to that of quadratic form. So, one looks at a random vector 

x following a multivariate normal distribution with a mean vector say mu and a 

covariance matrix sigma which is assumed to be positive definite. And then, talks about 

distribution of alpha prime x which of course, is one such linear combination which has 

already given characterization to a multivariate normal distribution. And, what would be 

the distribution of such quadratic forms? And what would be the distribution of such 

linear forms and also various types of quadratic forms? 

Now next we will look at, so, it is up to this particular point that I talked about. And then 

we will look at the concept of random sampling from a multivariate normal distribution. 

Now, when we talk about univariate normal distribution, say many population, say are 

characterized by assuming that the underline population is univariate normal. And then, 

we know that in the mean and the variance of a normal distribution characterizes normal 

distribution completely, in case of a univariate normal distribution. When we talk about a 

multivariate normal distribution, the quantities which completely characterize a 

multivariate normal distribution are its mean vector. 

The p dimensional mean vector, corresponding to a p variate multivariate normal random 

vector and it is p by p covariance matrix, which is assumed to be positive definite. So, 

since these are the two quantities of primary importance, if one assumes a multivariate 

normality on a certain population. And then, tries to find out the parameters or the 

parameter vector and the parameter matrix and such associated with such a multivariate 

normal distribution, one talks about random sampling form such a multivariate normal 

population. So, typically if a multivariate normal distribution, a multivariate population 

is characterized by a multivariate normal distribution. 

Then, we will draw random samples random vectors in this particular situation as x 1 

vector, x 2 vector, x n vector drawn from such a multivariate normal population. And 

then, based on these x 1 vector, x 2 vector, x n vector we will address the problem of an 

inference of the mean vector mu and the covariance matrix sigma. So, we will start from 

say sufficient statistics and we will say that, what is the set of sufficient statistics jointly 

sufficient in case of mu and sigmas both are known? And sufficient statistic if one of 



them mu or sigma is known to us and talk about the derivation using Nyman Fischer 

factorization criterion of sufficient statistic. 

We will then talk about of course, maximum likelihood method of estimation, associated 

with a multivariate normal distribution. And also, the distribution theory of the sample 

mean vector after this particular point. Because the distribution of the sample mean 

vector, what is going to be the maximum likelihood estimator of the population. Mean 

vector can be derived using the distribution of linear forms, derived from a multivariate 

normal distribution. Now, once we are through with that particular multivariate normal 

distribution theory, random sampling associated with multivariate normal distribution. 

We will look at wish art distribution, which is an important multivariate distribution 

which is a derived distribution, derived from the multivariate distribution, normal 

distribution as such. Now it is an extension of the univariate chi square distribution in 

some sense. Because when one looks at random sampling from an univariate normal 

distribution. And if the quantity s square is one, what one actually tries to look at as an 

estimator for the unknown sigma square, associated with that univariate normal 

population. we know that, n minus one s square by sigma square follows a chi square 

distribution or n minus one degrees of freedom with mu unknown in the univariate 

normal population. 

Now, when we have a multivariate distribution characterized by a multivariate normal 

distribution with an unknown covariance matrix sigma, we talk about estimation of 

sigma. And, there we look at as an estimator the sample variance covariance matrix. And 

the distribution of sample variance covariance with certain constant multipliers, we will 

derive that such a distribution is that of a wish art distribution. 
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So, we look at basic definition, how to give the definition of a wish art distribution? In 

what sense actually the wish art distribution is a distribution, which actually is a 

generalization of a chi square distribution? So, for p equal to 1 so, to say in such 

multivariate normal setup we will see that a wish art distribution is what is going to 

correspond to such a chi square distribution, a central chi square distribution in case of 

univariate distribution theory. We will talk about important properties and uses of wish 

art distribution keeping in mind that this wish art distribution is going to play a central 

role. When we talk about multivariate distribution theory associated with random 

sampling from a multivariate normal distribution. 

So, we will look at distribution of sample covariance matrix in case of sampling from a 

multivariate normal population. And have the corresponding distribution of the sample 

variance covariance matrix from such wish art distribution concept. Next in the theory 

part of this lecture, we will look at what is the Hotelling’s T square distribution? We look 

at the definition and important properties of Hotelling’s T square distribution its 

relationship with univariate t distribution. 

So, this is one distribution which is going to be based on multivariate normal and wish 

art distribution. So, a particular type of combination or a function of multivariate normal 

and a wish art distribution both of them are recurrent to be independent in that particular 

setup of framing a Hotelling’s T square distribution will be considered. And well one if 



one is looking at a Hotelling’s T square distribution the obvious uses of wish art, a 

Hotelling’s T square distribution will be discussed. 

We will take up the problem of hypothesis testing, concerning mean vector of a 

multivariate normal distribution. Remember when we talked about, when we have 

univariate normal distribution as such and talk about hypothesis testing concerning the 

mean unknown quantity of that particular of a univariate normal population. We bring in 

the concept of students t distribution the testing in case mu is unknown sigma square is 

unknown is going to be based on that of a univariate students t distribution. Confidence 

intervals and associated stuff in case of univariate distributions once again are based on 

students t distribution. 

So, when we talk about a multivariate population which is assumed to be having a form 

of a multivariate normal distribution with an unknown mean vector as mu, we would 

frequently be interested to actually look at hypothesis testing concerning the mean vector 

mu. So, we will have say for example, null hypothesis of the form that mu equal to mu 

naught against mu is not equal to mu naught, say as a particular case we can take mu 

naught to be equal to a null vector. And, then talk about the framework under which such 

a hypothesis testing is going to be framed. And, such framing of a testing problem in 

case of multivariate normal mean vector testing, would be based on a Hotelling’s T 

square statistic. 

And, we will see that in detail when we talk about Hotelling’s T square distributions. We 

will also talk about using such concept of Hotelling’s T square when we are trying to 

construct confidence regions. Because we have got mean vector which is p dimensional 

associated with the dimensionality of the multivariate normal random vector which is 

assumed to be p dimension. Then, we talk about confidence region concerning that mu 

vector and setup confidence regions with a confidence coefficient of one minus alpha. 

And that would once again make a reuse of Hotelling’s T square distribution. 
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Now this class would comprise mainly of the theoretical aspects that are going to be 

covered in this particular post multivariate normal distribution in detail, wish art 

distribution Hotelling’s T square hypothesis testing and other things. Now, the second 

part of this particular course is going to be having an applied level. So, it would actually 

try to look at applied multivariate techniques standard applied multivariate statistical 

techniques, which are of importance. Which would actually give us tools actually a mean 

order to look at various types of multivariate analysis that may be of interest. 

So, in this general we will look at the following applied multivariate techniques. We will 

look at the techniques of profile analysis; will look at multivariate analysis of variance or 

the Manova technique. Will briefly look at multiple correlation coefficient as an 

extension to the bivariate correlation concept, will look at in detail principal component 

analysis, will look at cluster analysis both hierarchical and non hierarchical modes of 

cluster analysis. Will look at discriminate analysis and classification, will look at factor 

analysis and conclude the lecture series with that of canonical correlation analysis. 

Now, at the beginning of this lecture I say that we are going to talk about various modes 

of statistic multivariate statistical analysis. So, various modes would then correspond to 

different type of approaches say either on a supervised mode or on an unsupervised 

mode of learning from the data. So, the techniques that I have listed here or we have, we 



are going to take up in this particular lectures series are going to cover various aspects of 

such supervised and unsupervised mode of modes of learning. 

Say for example, if we look at techniques like principal component analysis a cluster 

analysis here. They typically would be, comprising of the type of analysis that one 

usually encounters when one talks about unsupervised mode of learning or trying to 

extract meaningful information or meaningful pattern from the data. So, it is going to be 

exploratory in nature, when we talk about such analysis like principal component and 

that of cluster analysis. On the other hand, if one is trying to look at analysis of the form 

of discriminate and classification or a canonical correlation analysis or profile analysis or 

manova technique, then we will have a something in mind. 

Then we would actually be looking at building certain type of model or building a 

framework for hypothesis testing type of problem. And hence we would essentially look 

at in supervised mode of analysis of multivariate data. Now, specifically when we would 

consider profile analysis we will look at two or more groups of multivariate populations. 

And then, look at those two multivariate or two or more multivariate populations being 

characterized by corresponding unknown mean vectors. And the profile plots that are 

going to re obtain from such mean vectors. We will look at the sample counterpart of 

such profile plots and then answer various questions associated with profile analysis. 

For example, we would answer questions in sequential order in profile analysis as to the 

first one whether we have got parallel profiles of the various groups that we are 

considering. Now if we are having groups, group profiles to be parallel, then we will 

actually try to look further ahead. And try to see that whether the two parallel profiles if 

we are able to accept such null hypothesis, against the non null I am sorry with respect to 

the alternate hypothesis of that of non parallelity of such profile vectors in the 

population. 
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And then, try to look at once null hypotheses of parallelity of profiles are, is accepted. 

Then we will look further and then try to answer the question whether such parallel 

profiles are coincident or not. So that we can say that, well in practice in from the data 

we might see that the profiles are different; however, if the difference in profiles are 

statistically significant or not. If we are to accept that particular null hypothesis that we 

have got the two profiles or two or more profiles, when we have more groups we will 

have more profiles actually. 

If we have such peak profiles if we actually go for the null hypothesis that they are 

coincident profiles. Then the next type of analysis that we would be trying to answer is 

putting up a null hypothesis of the form, that we will say that the common profile is a 

level profile. So, there are sequences of such hypothesis testing scenarios that one will 

be, that will be building up and then looking at with an assumption of multivariate 

normality in the underlying populations. We will build the framework based on 

Hotelling’s T square statistic once again, in order to do this particular type of analysis 

which is termed as profile analysis. 

Next we will look at this multivariate analysis of variance of the Manova technique. It is 

a classical technique and it is just an extension of univariate analysis of variance 

technique while in univariate analysis of variance technique. We talked about, one way 

analysis of variance two way analysis of variance with various types of assumptions. We 



look at corresponding counterparts in the multivariate distribution. And, we look at one 

way or two way Manova techniques and answer various types of hypothesis testing 

scenarios associated with such a Manova model. 

We will talk about multiple correlation coefficients as I say it is just an extension of 

bivariate correlation coefficient. So, it is more applicable when we have a group of 

variables. And then we are trying to actually involve all the variables into one correlation 

coefficient that is going to be represented as a multiple correlation coefficient. We will 

talk about principal component analysis which is one important technique when we talk 

about unsupervised mode of multivariate data analysis. So, this principal component 

analysis is going to serve doing purpose of projection and visualization of multivariate 

data. 

So, we will look at octagonal transformation of the original data, what it tries to do is to 

look at covariance matrix. And then summarize the information that is present in the 

covariance matrix in terms of a single quantity, which we usually call as a total variation 

in the triangle vector x. And we will see that we will try to find out from the original set 

of random vector x will look at a transform set of random variables represented in a 

vector which would actually be an orthogonal transformation of original set of vector. 

And, which would be of a special structure which would actually be uncorrelated 

preserving the total variation that was present in the x vector. And we will also have in 

such principal component the variances of linear combinations in order of magnitude. 

So, that we will be able to say that the first principal component has got the interpretation 

that it is actually the linear combination of the elements of x. Such that it captures the 

maximum possible variability that can at all be captured by such linear combinations. 

Next, we will construct the second principal component which is going to be one, that is 

going to be uncorrelated with the first principal component. And more so, we will have 

the second principal component to explain to be one that linear combination which 

would explain the second maximum variability that can be explained by such linear 

combinations L prime x. 

x being the original random vector such that it is uncorrelated with the first. And like 

that, a set of principal components p principal components would be constructed starting 

from the original random vector x. Now, when we have got the principal components, 



after transformation from the original set of random vector x through an orthogonal 

transformation, I said we will have a set of principal components that would be useful in 

various purposes. We will be able to since we have been able to preserve the total 

variation in the original set of random variables x 1 x 2 x p and we transform the 

principal components y 1 y 2 y p. 

We will be able to look at say projection based on the principal components and that 

projection itself can actually serve the purpose of visualization of multivariate data on a 

low dimensional visualizable plain say up to the dimension of the of the first three 

principal components. Now, once such a projection and visualization of multivariate data 

is obtained through principal components, one can answer various types of questions like 

detection of outliers from in the multivariate data cloud. One can talk about formation of 

rough clusters in the data. So, all these type of questions that are going to be answered 

using principal components are exploratory in nature. 

Because there is no supervision as to what is required out of such analysis. It is the data 

that is going to tell us about what type of say, what type of answers are going to be 

coming up from such an analysis it is going to be on an unsupervised mode. Now, next 

we will also consider as I said clustering analysis, classical statistical cluster analysis 

techniques. In such a genre of course, when one talks about cluster analysis one is trying 

to look at a group of heterogeneous possibly data. And then from that heterogeneous data 

one is trying to look at formation of homogenous groups in the object. Now such a 

cluster analysis can, in its own right can serve as a type of analysis that has to be done 

prime to any other supervised mode of statistical analysis. 

Because if one says is interested about modeling, say modeling of a particular response 

variable based on a set of independent variables. Then if the group is heterogeneous one 

would first like to actually divide the heterogeneous group in to that of homogenous sub 

clusters in the data. And then form a predictive models of responses based on feature 

vectors on various homogenous groups. So, this may serve as a first step for further 

analysis or as such can be used in order to find out various important clusters in the data. 

Now, such statistical cluster analysis mainly of two types. 

One is that of hierarchical clustering and the other one is non hierarchical clustering. As 

the name suggests it is when we talk about hierarchical statistical cluster analysis, we 



will have certain hierarchy in which the clusters are going to be formed and are going to 

be interpreted. When we talk about non hierarchical mode of clustering, in such a 

situation we will not be having any hierarchy in the formation of the clusters. And, hence 

the name, non hierarchical clustering. So, we will look at methods for constructing and 

visualizing such hierarchical and non hierarchical statistical cluster analysis technique. 

This is also going to be in terms of a non supervised mode of multivariate statistical 

analysis. We will talk in detail about this discriminate analysis and classification. So, this 

is one of the classical multivariate statistical analysis types of technique, it talks about a 

classification of a particular categorical response. And discriminate analysis is going to 

be based on framing a discriminate function that is going to discriminate between various 

multivariate populations, in an optimal way that would be defined according to the 

problem later on. 

So, the first task in such an analysis would be to first frame a discriminate analysis. And 

then once the discriminate analysis which distinguishes distinct populations in an optimal 

way, will try to use that discriminate function. In order to build up classification models, 

classification models for looking at various populations. So, suppose we are having c 

populations as such in the type say c populations, we will try to look at how to use that 

discriminate function in order to say that his particular feature vector is belonging to a 

particular class member class. 

And hence, prediction of class membership would be of primary importance in such 

discriminate analysis and classification. We will also look at this factor analysis and 

canonical correlation analysis which are quite important multivariate statistical 

technique. So, in the next part of this lecture I will talk about some applied some 

applications as such of multivariate statistical techniques. As I said is that, this last part 

of this lecture is going to be comprising of application of some applied multivariate 

statistical techniques that I have discussed. 

And some of these are going to be covered in the lecture series that we are going to start. 

And some comparisons to some of the methods which are not going to be covered which 

is beyond the course, beyond the scope of this particular course, will also be talked about 

in this particular section. 
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Now as we said that, when we have got a multivariate data in place the basic thing about 

basic objective n 1 is looking at such a multivariate data is that we cannot actually 

visualize such a multivariate data. Unless we do some processing or some analysis of 

that particular data in order to reduce it to the dimensions up to which we can actually 

visualize the data. So, this visualization here of multivariate data is an important thing 

and it is going to be looking at. Suppose we are having a complicated data base and we 

just want to have a simple understanding of, what is going on in that particular database? 

Will look at a simple visualization in order to suggest, what may actually be explanation 

for further analysis? And at the very least we would say that a good visualization may 

suggest where to start looking for explanation of such phenomena. Now, the technique 

that I will just highlight is that multivariate visualization and projection based 

techniques. 
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So, what sort of visualization as an illustration of multivariate data visualization 

technique? Look at a standard technique of Chernoff face representation of multivariate 

data. I will also highlight that of principal component projection which is basically a 

projection based data and then visualization of the data. Multidimensional scaling based 

projection also can be a method to look at visualization and projection and hence 

visualization of the data multi multidimensional data. 
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Now, let us first look at just briefly, what are chernoff faces actually? So, the root of this 

chernoff face it is a method for multidimensional data visualization of course. The root 

of such chernoff face multivariate visualization is in a paper in journal of American 

statistical association in way back in 1973 by chernoff. And what it tries to do is, that it 

gives us visual representation of multidimensional data. Now they are especially 

effective at between this multivariate data visualization. Because they relate the data to 

facial features, something which we are actually used to differentiating between. 

So, if we can obtain facial representation of two multivariate data vectors, then we can 

actually look at what type of whether we can distinguish the two multivariate vectors, 

through the facial representation of the data. Look at some illustrations shortly chernoff 

face enables trend in the multidimensional data also to be easily identified. Because they 

look at facial representations this is how a chernoff face actually looks like. 
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So, if one looks at such a chernoff face representation as in this particular case. There are 

various characteristics as such in a facial representations say curvature of the mouth, 

separation of the eyes. Then we will have this ear positions, then eccentricity of the 

lower face, eccentricity of the higher upper face. And, so many other features are 

associated with a particular facial representation of the data. 
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Now, what it is done in the chernoff faces that the dimensions of the data are associated 

to facial features. Like face width ear level, face half-length, eccentricity of the upper 

ellipse of the face, eccentricity of the lower ellipse of the face, length of the nose and so 

on curvature of the mouth. So, in the original formulation of the chernoff face and as 

extends now, we will have 20 facial features that can be captured in such a facial 

representation. So, what is done? When we are looking at multivariate data visualization 

is that from a random vector, x what we have is say a p dimensional random vector x 1 x 

2 x p. And, then associate each of these variables to important features in the chernoff 

face representation as in this particular table here. 
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And then a multivariate data can be easily visualized through such facial features. Let us 

look at an actual real life data and see how it actually looks like. This is chernoff face 

faces of Indian commercial banks for a particular financial year. Now the variables in the 

data which comprise of the feature vector are these. That it is cross non performing asset, 

return on assets, net interest income to total assets and so on. So, these are all the features 

which are characterizing that multidimensional vector and we are trying to have facial 

representation or a visual representation of such multivariate data. 

So, in the present case there are 4 5 6 7 8 9 10 and 11 dimensional feature vector. So, for 

that eleven dimensional feature vector we associate eleven important features from this 

particular table to that of this multivariate data. And, the features which are associated 

are highlighted here; say face width here is associated with the gross non performing 

asset and so on. And, so all these are mentioned here say for example, this mouth 

curvature is associated with a variable which is actually going to tell us about the health 

of that particular commercial bank, which is the operating profit to total assets ratio. 

And this is what we get as the representation or the visualization of the multivariate data. 

Say for example, if you look at understanding this multivariate visualized, multivariate 

data visualization technique. You will be able to say that just by looking at, say facial 

representation of this data here. If one looks at comparing this multivariate data which is 

represented by this particular face and this. The differences between the two are going to 



be quite obvious, whether we are looking at the multivariate data it or its facial 

representation or the visualization of that multivariate data. 

One can easily say that, this does not look that happy a face. And, hence the financial 

status of this commercial bank at that particular financial year was not in a very happy 

state as the facial representation says here. On the other hand if one is looking at this 

particular facial representation of another commercial bank, one would say that this 

looks pretty happy as such an the financial status of these institutions, like the ones here 

are quite healthy. Actually they are, they have a smiling face as to that of other type of 

distorted faces, like that of this institution or this institution or some other institutions. 
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So, it is quite appealing actually to look at such exotic multidimensional data 

visualization techniques. Next we look at a classical approach of looking at principal 

component projection based method. Now I have discussed already about this principal 

component method in actual. We are going to look at the theory part of it and its various 

important properties in this in the course of this lecture. But what it is? What I have said 

is uses on orthogonal transformation of the original features. And, then we will be 

looking at transformed variables which are actually uncorrelated and captures as much of 

variability as possible through linear combinations. 

And we are going to try to look at the total variation of a smaller number of principal 

components. Smaller than that of the original dimension of the random variables, 



original dimension of the random vector. It is approximately if that is approximately 

equal to the total variation of the original variables then use of such principal 

components is going to be most effective. So, when we look at such a scenario, that the 

total variation of a smaller number of principal components approximately equals to that 

of the total variation in the original variable. Then the data dimension reduction would be 

possible through principal components. 
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And if that is the case, then we will be able to have effective projection of the 

multidimensional data to that of the projection, which is in terms of the principal 

components plain. Let us look at the same type of data that we are used for the chernoff 

face representation. This is what we get if we look at principal component projection of 

the financial data that we were looking at its corresponding to the feature vector, which 

is giving us the financial health of various public sector banks in a particular financial 

year. And, this is what it looks like on a projected principal component plain. Now, this 

is a two dimensional projection of such a data of that multidimensional data. 
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Now, corresponding to the same data we can extend it to the three dimensions. And, if on 

a two dimensional projection, we were looking at the first two principal components. 

Because we know that the principal components capture variation in the order in which 

they actually are constructed. So, the first principal component is going to capture the 

maximum variability that can be captured by a single linear combination. The first two 

principal components taken together is going to capture the maximum possible 

variability. That can be captured by two principal components, two such linear 

combinations one would say. 

And, hence the two dimension projection would naturally be based on the first two 

dimensions of the principal component plain. And, one can look at the three dimensional 

projection which is going to be the projection on the first three principal component 

plain. So, the accesses here are the first second and the third principal components, 

corresponding to each of these multidimensional data. And, each of these 

multidimensional points are projected in terms of a point, in this three dimensional 

principal component plain. Now, once we have a, such a projection obtained, I said that 

it is a way of looking at an exploratory type of data analysis or an unsupervised mode of 

learning from the data. 

 Now once we have such a projection many things would come out. Say for example, 

one would be able to detect multidimensional outliers from such a projection like the 



ones that have been, that have come out actually from this particular projection analysis. 

One would be able to detect rough clusters in the data. Say for example, one has a rough 

cluster. Now these are subjective clusters these are not clusters that are actually formed. 

These are subjective clusters, which one actually tries to see when one is looking at such 

the data in a projective plain. So, one can talk about such cluster formations and outliers 

been detected from such a projected data. 
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Now this is another projection that I have included here. This is for a standard data set 

which is fisher iris data, which is a classical example of or other classical data set. As far 

as classification models are concerned and also that for an exploratory type of model. So, 

this it consists of 50 samples, a far from each of the three species of iris flower and the 

three species are these three here. We use a principal component analysis based 

projection to project the data along with their class levels, this v g s corresponding to this 

virginica. 

v s is corresponding to this versicolor and this s t, is corresponding to this say setosa 

species of iris flower. So, the multidimensional data along with their identifications are 

projected on this three dimensional principal component plain. And, as one can see that 

after the projection is obtained, these are the set of one species that is clearly getting 

separated from that particular projection that is obtained on this principal component 

plain. 
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So, it gives a meaningful projection of such a data. Now you talk about clustering. So, I 

have already given some introduction about the type of clustering techniques that we are 

going to discuss in this particular lecture. Now in clustering as we, as I said that we 

would segment a heterogeneous population into that of homogenous subgroups or 

clusters. Now in clustering, since it is a type of unsupervised mode of learning, there are 

no predefined classes or and no predefined, pre classified examples as such. And, one 

tries to look at the objects and then try to group them, on the basis of self similarity. 
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And, the two type of clustering methods one hierarchical and the non hierarchical 

methods are what is going to be discussed. I will list here that statistical cluster analysis 

techniques are the ones that are, that we are going to discuss. Later on these are the type 

of methods which are single linkage, complete linkage, average linkage, hierarchical 

clustering all these are comprising of hierarchical clustering based methods. Now the 

way that these hierarchical clustering methods are going to define, differ rather the 

single, complete, average are the ways in which, one is actually going to define the 

distance between groups of objects. 

So, when we talk about such cluster formations in the data we will have to introduce a 

concept of distance between two groups of objects. And then, when we look at various 

paradigms say look at a single linkage. It talks about quantifying the distance between 

two groups of objects in a way that, it actually looks at the minimum distance between 

two groups of objects. So, we look at all possible distances between objects taken from 

two different groups. And then, try to find out what is the minimum or the shortest 

distance between objects taken from two different groups that would lead us to single 

linkage clustering. 

On the other hand, if one looks at complete linkage hierarchical clustering one is once 

again going to look at quantifying the distance between two groups of objects. But in 

such a situation, one is going to define the distance between two groups of objects as that 

which is going to be based on the maximum distance. That is possible when one takes 

one object from one group and another object from the other group. Average linkage is 

going to look at the average distance of all possible distances between these two groups 

of objects. 

We will also talk about as in, as a method of non hierarchical clustering. The classical k 

means clustering method and illustrates these cluster formations using real life data. Now 

it may be a, its worth mentioning at this point that although we are going to talk mainly 

about statistical cluster analysis techniques in this course. There are other types of 

methods that are equally or at times better equipped to handle various, other various 

types of data. Which is, one such method is that of artificial intelligence unsupervised 

techniques like that of a self organizing map technique. 
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Let us look at in this lecture, the type of clustering that we are going to get, these are just 

to motivate. These are some real life clustering problems say; segmentation of customer 

base customer segmentation is one of the very basic and important cluster analysis 

illustrating examples. We can look at such all other examples identification of factors, 

influencing economic growth of different type of economies. Then one tries to look at 

other type of problems practical problems. 
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This is what an illustration of a hierarchical clustering technique is. The data is what is 

corresponding to world economies and each of the world economies that is the countries 

actually are characterized by multidimensional feature vector. Now those 

multidimensional feature vectors are actually going to capture, various aspects of 

economic growth and stability of a particular economy. And, from such a 

multidimensional feature vector, we obtain this hierarchical clustering of the world 

economies. And, this is how this icicle plot of hierarchical clustering is going to look 

like. 

So, the interpretation would be that if it depends on the level of resolution at which one 

is actually trying to look at the cluster formations. So, if one looks at say for example, 

this particular level of resolution. One will say that all the clusters that are formed below 

this particular line or the icicles that fall below this particular line are going to be part of 

different clusters. Like for example, there is only one line which is actually, this line here 

rather has got all these members below this particular line. 

So, they will actually form a cluster of their own. Then we will have another cluster 

comprising of all the entries which are going to fall within this particular basket here. All 

the ones that is a singleton actually is going to fall in one single cluster. And then, if the 

level of resolution cuts at this particular point, we will have all the cases below this 

particular line falling in one cluster. And, we will have two singleton clusters coming out 

from this. So, it is going to throw up 1 2 3 4 5 6 clusters in this particular data. 

Now, there is a hierarchy in which the clusters are formed actually. Because if we look at 

this particular level of resolution, we are going to say that this cluster that was there, at 

this level of resolution is going to be split further into two sub clusters, which are going 

to be once that are going to hold these elements here. And, there is a hierarchy in which 

these clusters are going to be joined and finally, going to be placed in one single cluster. 
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So, that is how hierarchical clustering is going to be done. This is another illustration of 

such hierarchical clustering. And, this is for once again for that financial data set that we 

talked about in chernoff face representation and the principal component visualization. 

These are once again for those multidimensional feature vectors; these are this is rather 

the hierarchical cluster formation tree diagram, that we get for such a data. 

(Refer Slide Time: 49:14) 

 

Now, in comparison to that of statistical cluster analysis based techniques, I said that at 

times artificial intelligence methods give us better visual representation of the data. Now 



this is just to illustrate that particular fact that, this is a self organizing map based 

clustering of the same data as what we considered just now that financial data. This is 

what is hierarchical clustering of that data and this is what is the self organizing map 

representation of this data. And from here clusters in the data cloud, multidimensional 

data cloud can also be detected. 

It is to be interpreted in the way that, when we have a such a two dimensional self 

organizing map representation of the data, we will have the clusters formed in light 

shaded patches in this particular two dimensional hexagonal grid map here. And hence, 

the clusters that are rough clusters actually, that are formed are the cases which fall in 

this particular category. There is a light shade patch present here, there is a light shade 

patch which is present here, a light shade patch which is present here. These would be 

the positions of the cluster formations. And, the inter cluster distances between such 

formed clusters will also be apparent. 

If one looks at the shades of separating or rather the shades of hexagons which actually 

separate these two clusters, it is interesting to look at a three dimensional representation 

of such a self organizing map. And this is what, is the hill valley surface representation, 

of this self organizing map representation of this multidimensional data. 
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As one actually sees that this is, one location here where there is a formation of a valley, 

and which has got hills all around. Then that is where actually the clusters are identified 



to have formed, there is a second cluster in this depth here of the valley that is formed 

separated by hills on four sides almost. And, this is two mild the clusters to similar 

clusters actually, 3 and 4 that are formed on these two locations on this surface here. 

Now, these 1 2 3 4 numbers clusters are one, that are corresponding to what the numbers 

that we have chosen here. There is no number here; this is actually the one the first 

cluster here which is corresponding to this region in this hill valley plot. If we look at 

this as the second one here, the corresponding location in this map here is this particular 

point. So, these are the cluster regions the valleys in this hill valley plot here. 
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Now, classification is the other type of task that we are going to consider in this 

particular course. It is going to be associated with discriminate analysis and classification 

task is characterized by a well defined definition of classes. It is going to be different to 

that of what we have just now discussed, for principal components and that of clustering 

based methods. Because those two are the type of methods which are non supervised 

mode of learning exploratory mode of learning. So, this is one method that is on a 

supervised mode of learning. So, this has got well defined definition of classes and class 

memberships. 

And, we will have a learning sample with pre classified examples. The task would be to 

build an appropriate model that can be applied to unclassified data in order to classify 

that particular feature. Now thus, given a multidimensional feature vector the problem is 



to identify its class membership, through appropriate statistical technique. Now, since it 

is a supervised mode of learning we will have to introduce a concept of a good model. A 

good model would be one that would have probability of misclassification of the patterns 

as low as possible. 
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Now, let us look at some of the techniques. Fisher linear discriminate function, quadratic 

discriminate function based classification models, classification rules which are going to 

look at a general approach of looking at something which I am going to be define as total 

probability of misclassification, expected cost of misclassification. Try to look at what 

type of statistical models would be there in place, when we are trying to look at such 

paradigms. Now, these are classical methods of discriminate analysis and classification. 

Other than that also there are various other types of classification models, like that of 

decision trees or the classification and decision trees cart, the k nearest neighbor 

classifier, logistic regression based classifier. Then, we will have support vector machine 

based classifiers, artificial neural network based methods for classification. Now, in this 

course we are not going to look at because these are typically covered in courses like that 

of data mining. So, in this course we are going to look at the classical methods of this 

classification analysis that of fisher linear discriminate functions. And also that of, this 

total probability misclassification expected cost of misclassification minimizing 

classification rules. 
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Some practical problems classifying loan applications to a particular financial institution 

as that of three possible classes, so, this is a three class problem. Then, classifying 

candidates applying for a job in a company as good prospects or otherwise. So, this is 

going to be a two class problem. So, based on appropriate features one is going to build a 

classification model of each of these classification problems, this is another very 

important and very standard application spotting fraudulent insurance claims. 

So, it is going to be a two class problem pi naught and pi 1 pi naught say corresponding 

to a genuine claim, pi 1 to a fraudulent claim. Identification of correct disease, once 

again it is going to be classification problem. Detection of credit card fraud, once again 

this is going to be a two class problem, either a genuine transaction or a fraudulent 

transaction. 
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Now, this is how actually this linear discriminate analysis based regions are going to 

look like. This is for the iris fisher iris data, that we talked about shortly. When we were 

talking about projection of multidimensional data, this is illustration of linear 

discriminate analysis and decision boundaries that come, when we have such a three 

class problem. This is another; this is quadratic discriminate analysis for the same three 

class problem. 
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This is how a decision tree based classification model is going to look like. Now 

although we are not going to cover this cart models, which I said is typically one that is 

covered in a course on data mining type of course actually. So, but it is no harm in 

looking at what is the type of output that one typically gets from decision tree based 

approach. So, it works in this particular way that, once the input is given at this particular 

root node of the tree based on certain conditions. And says a feature vector satisfying one 

of the conditions it takes a particular path in this particular tree. 

Now, the nodes of the tree can be branched into two parts, subsequent parts here. Now 

this part can further be branched into these branches as in this particular case. And then 

get down to the final root nodes. So, these are going to be what are called as root nodes. 

And what one looks at is, partition of the feature vector space based on such root nodes. 

So, these root nodes are going to induce a partition on the feature vector space and then 

the way that a particular feature vector is going to flow it might land up in a particular 

roots node. And then, classification of that particular feature vector would be 

corresponding to the identification level that is associated with such a root node. 
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It is quite an appealing method a graphical way of looking at this particular type of 

analysis. Now support vector machines based on perception learning approach is, one 

also quite popular method of building classifiers. So, what it tries to look at is, to look at 

classes which are linearly separable or otherwise one looks at finding classifier which is 



going to be actually maximum margin linear classifier. And that is what is going to lead 

us to support vector machine classifiers. This is how it looks like. 
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This is another example of a classification model. This is an output that would be 

generated when we look at an ANN based classification model. It actually predicts 

probabilities of a particular class, here it is a class here of Infosys crisis class. So, it is 

two class problem crisis or no crisis. 
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So, one looks at that as two predicted probabilities coming from an ANN model. Another 

important application is multiple linear regression models. 
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I am not going to talk much about that. I will end this particular lecture with giving you 

some, say references of some important text books in this particular subject of applied 

multivariate analysis. 

So, as I said that the first section is going to be basically looking at theoretical stuff and 

multivariate distribution theory. And associated inference three important and very good 

books as which serve as text books in most of the good universities and institutes across 

the world, are that of this aspects of multivariate statistical theory, which is by muirhead. 

That is a very nice book; one can look at a book. This book by Johnson and wincher, 

applied multivariate statistical analysis and also the book by mardia and (( )) the 

multivariate analysis. 
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These are mainly theoretical books here. When one talks about applied multivariate 

techniques there is once again whole lot of such books available in the literature. Some 

of the books which I consider to be good books as text books are listed here. Johnson and 

wincher’s book is also good from an applied multivariate technique point of view. Then 

we have a nice book by hardle and simar, which is on applied multivariate statistical 

analysis. 

Then, this book by Tibshirani (( )) Hastie Tibshirani and Friedman, this elements of 

statistical learning data mining inference and prediction, although it talks about statistical 

learning. But it does actually talk about, many such applied multivariate statistical 

techniques only. 
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It is a nice book actually for applied multivariate techniques. And there are other books 

this book is solely devoted to clustering, cluster analysis for data mining. And system 

identification, this book is solely devoted on principal component analysis. 
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This is on discriminate analysis and statistical pattern recognition and this is a nice 

handbook actually, handbook of statistics volume 24 data mining and data visualization 

by professor c r rao and (( )). Now, as I said that I along with my colleague doctor 

Sharmishtha Mitra is going to take you through the rest of this particular course. Here are 



the contacts of the two course instructors. This it is me here and this is my co instructor 

in this particular course, our email i d s are given here. In case of any queries regarding 

this particular course, one is free to approach us or with any sorts of problems. Thank 

you. 


