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Long-Term Behaviour of Markov Chains

Hi and hello, everyone. What we have been seeing so far is the ”discrete-time Markov chain” and certain properties
ok. We have seen some properties basically what we were interested in like you know, in one-step what happens or in
some finite number of steps what happens, but more often; what we are interested when studying this Markov chain is
what is called as the long term behaviour or the long-run behaviour of this Markov chain. So, what is the long-run
behaviour of this Markov chain, which means that as time after a large amount of time into the future like what is
going to be its behaviour, or when the system is in operation for a long time and in some stability is existing or not you
want to analyze. And what is its behaviour in such a situation is what would be the general interest in any analysis
that you do with the Markov chain theory. One way to characterize that is to look at lim

n→∞
Pn ;you know P is the

transition probabilities of one-step what is happening, Pn gives you the n-step transition probabilities. Now, n as
n → ∞; what is happening to this. So, this is what you want to look at it. Now, if you look at, say, for example: :

lim
n→∞

Pn = lim
n→∞

[
1/5 4/5
2/3 1/3

]n

=

[
5/11 6/11
5/11 6/11

]
.

So, this is a very nice behaviour that you are seeing with respect to this Markov chain; Markov chain, we mean like
we are characterizing by its TPM. So, initial distribution, its effect also is gone, and you are, in some sense, there is
some stability in the system. So, this is a very nice behaviour, but one has to understand that this kind of behaviour
does not hold for all Markov chains. So, you want to see for what kind of Markov chains or under what conditions,
or under what characteristic the Markov chain has such a behaviour. So, this is the typical behaviour that one would
expect to have in a particular system when things are in a stable situation or in equilibrium, in other words. So, the
long-term behaviour is related to, say, three concepts:

• Limiting distributions

• Stationary distributions

• Ergodicity

Now, what is a limiting distribution? So, you call a vector {πi}i∈S is called the limiting distribution for a MC with
transition probability matrix P = ((pij)) if πi = lim

n→∞
p
(n)
ji , i, j ∈ S (provided the limits exist) and

∑
i∈S πi = 1.

It may be possible that this limit exists, but not the limiting distribution, which means πi = lim
n→∞

p
(n)
ji might exist,

but they may not sum to 1 for all i ∈ S. So, in that case, you do not call that a limiting distribution; the moment you use
the word distribution, we mean that the sum is 1, limiting because you are looking at the limiting behaviour. So, in that
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case, you do not call that as limiting distribution; the moment you use the word distribution, we mean that
∑

i∈S πi = 1,
limiting because you are looking at the limiting behaviour. So, it is possible that the limiting probabilities would exist,
but not the limiting distribution. So, by this way of defining what do we mean by a limiting distribution, whenever a
limiting distribution exists, then it does not depend on the initial state. So, we can write πi = lim

n→∞
π
(n)
i , i ∈ S.. When

you take the n-step state probabilities rather than the transition probabilities, and if I take its limit as n → ∞, what I
would be getting as the same π’s. Because I call limiting distribution only if πi = lim

n→∞
p
(n)
ji is true when it does not

depend on the initial state, so, that would be then equivalent to, looking at πi = lim
n→∞

π
(n)
i . So, whether just you look at

state probabilities or look at the transition probabilities, you are ending up with this πi, and what is the interpretation
in this sense that you can see that πi is the probability of being in state i a long time from now. A long time into the
future, if you want to ask at an arbitrary point of time, what is the probability that you know I will be seeing state i the
probability is πi. Now the question is because this is what you want to see like in a long time into the future like, what,
where would be your Markov chain would be, what is the probability that I could find the Markov chain in a particular
state is what is the limiting distribution gives you. Now, the question is, when does a Markov chain have a limiting
distribution? In our case, limiting distribution means that it does not depend on the initial distribution.

And, if there is one exists how to determine it, of course, you can say that you know you raise compute this and do,
but is there an alternative way where you know, you can compute this πi in a much simpler way because this is not
going to be an easier way of doing it; obtain these n-step transition probabilities and then take its limit is not going
to be an easier way of course, though this is one of the ways you may be able to do for smaller ones, but in a more
complex situation this may not be possible. So, what you do like, is there a way or how to determine it is what is the
question that you want. Now, prior to that, what we call as a stationary distribution again, there is πi; this may be the
same as that one or otherwise. So, {πi}i∈S , and you will know why the same notation πi we are using it for both a
little later.
A vector {πi}i∈S is called a stationary distribution (or invariant distribution) for a MC with transition probability matrix
P = ((pij)) if πi ≥ 0 for all i ∈ S,

∑
i∈S πi = 1 and

∑
j∈S πjpji = πi for all i ∈ S.

So, this relationship can easily be derived using your Chapman-Kolmogorov equation by taking its limit as n → ∞.
You take n steps, and you break it up into what would happen in between n− 1 step and the 1 step, and then you take
the limit on both sides, take the limit inside the summation you will get to

∑
j∈S πjpji = πi. So, one can understand

how this limiting and this stationary are related by that process.
Nevertheless, like what is our definition of the stationary distribution. It is a probability distribution that satisfies

this
∑

j∈S πjpji = πi, and
∑

j∈S πjpji = πi, for all i you can put in matrix form as πP = π is very important. So,
you can think of this as πP = 1π is that is the thing. So, this π is basically the left eigenvector corresponding to the
eigenvalue 1, and since it is a distribution,

∑
i∈S π = 1 is what is written as πe = 1 where e is the vector of all 1’s. So,

a stationary distribution is a probability distribution such that it satisfies πP = π. Now, whenever a Markov chain,
if it starts at this P (X0 = i) = πi if the initial distribution of this Markov chain is equal to {πi}i∈S for the ith state,
then you can show easily that P (Xn = i) would also be exactly equal to πi for all n and for all i ∈ S and such a
scenario we will say that Markov chain is stationary or this is the stationary version of Markov chain. Now, you know
like why we call this a stationary distribution because if you start the process at this initial if you start, the process at
this distribution means that initial distribution; if you take it to be a stationary distribution, then the state probabilities
P (Xn = i) = πi from then onwards would also be given by at every step would be given by exactly by the stationary
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distribution. So, and hence the Markov chain is stationary.

So, if S is finite, then a stationary distribution would always exist. In general, a stationary distribution may not
exist, and even if it exists, it may not be unique; say, for example, you can look at the simple random walk case what
happens with respect to a stationary distribution. So, why do we care if our Markov chain is stationary or not. If it
were stationary and we know what the distribution of each of these Xn was, then we would know a lot because we
would know what is the meaning of this long-run proportion of time that the Markov chain was in any state. So, this πi
basically then gives you the long-run proportion of time that the Markov chain spends in that particular state is what is
given by this πi. So, how does this interpretation come we will see in a moment, but that is what is the interpretation
whenever this exists. The stationary distribution exists, one can see. Hence solving for π is an important part of the
Markov chain analysis, and we can also relate this to the limiting distribution; we will see that in a moment. So, there
is a reason why you want to look at this or compute the stationary probabilities, which is very simple; you have this P,
you solve this system of equations πP = π and πe = 1. Now, suppose assume that if this P is finite, then πP = π and
πe = 1 is a system of n plus 1 equations in n, one of them is redundant you can throw away any of these equations
from this πP = π any one of them you can remove, and you can replace with πe = 1, and you can solve this to get
this π that is a typical way of doing it. One can get that to get the stationary distribution.

Now, let us tie these two things limiting distribution and stationary distribution based on the properties that the
Markov chain may exhibit. So, this is the main result in that connection you can see. So, of course, this particular
slide has lots of content; please, try to go through it leisurely. So, for an irreducible Markov chain, a stationary
distribution π exists if and only if all states are positive recurrent. So, if you have an irreducible Markov chain, then
the existence of stationary distribution π is equivalent to all the states being positive recurrent. So, in this case, the
stationary distribution is also unique, and it is given by πi = 1/Mii, where Mii is the mean recurrence time to state i.
Further, if the chain is aperiodic, then the limiting distribution limiting probability distribution exists, and this equals
the stationary distribution, which is also, again, a unique thing that you have here. So, this is what is the main theorem
in connecting these two and connecting the concept of stationary distribution, limiting distribution to the properties
of the Markov chain; why we classified or looked at the properties of the states of the Markov chain; the reason is
basically in order to characterize them and connect them to such kind of quantities. So, if you see here, if it is an
irreducible Markov chain, that is what you know we are taking it here. A stationary distribution exists if all states
are positive recurrent if somehow you show that the state is irreducible. So, you take any one state, and if you can
show that it is a positive recurrent, then you know for sure that a stationary distribution exists, unique, and it is given
by πi = 1/Mii; what is a stationary distribution it is a solution to that equation π = πP and πe = 1, π ≥ 0, it is a
probability distribution. So, that πi would be the same as the πi, which is connected to the mean recurrence time to
state i because whenever you have positive recurrent, Mii is finite; that is what you know positive recurrent means. So,
then 1/Mii will be something that is strictly greater than 0, and this will be the solution to that. So, that means that pii
now can be obtained in two different ways. If you know the mean recurrence time, you can get πi’s, or you can solve
this πi from that stationary equation which is called πi = πP . Further, in such a situation, if the chain is also aperiodic,
then the limiting probability distribution exists, and it is equal to the stationary distribution. So, now, we answer the
question, if there is a limiting probability distribution, how do we get it. So, the limiting probability distribution exists
under aperiodic condition, and how do we get it; we get it as a solution to the stationary equation. So, if you find the
stationary distribution, which in this particular case is unique, so, that is the limiting probability distribution as well.
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So, these are all the one and the same; if you have an irreducible, aperiodic, positive recurrent Markov chain and
the limiting distribution is the same as the stationary distribution and which is a solution to the stationary equation,
and it is a unique solution, everything is coming from here. So, this is the ideal situation that one would want to have
here. Now we can also see we cannot make a transient or null recurrent Markov chain stationary; that means that if
there is no stationary distribution, then the Markov chain is either transient or recurrent and in such case, this πi = 0

for all i ∈ S; that means if there is no stationary distribution, you will see examples where the different variations
are there. So, if the chain is positive recurrent, then only you have a unique stationary distribution which is also the
same as the limiting distribution. If the chain is not positive recurrent or if it is either transient or null recurrent, then
there is no stationary distribution; that is what you know you will have here. Now, if the Markov chain is reducible,
what will happen? So, the irreducibility component if it is removed, if it is reducible, then the stationary distribution
may not be unique; that is what will happen, and no conditions on the period for the Markov chain for the existence
and or uniqueness of the stationary distribution. You see, here, this first part of the theorem talks about the stationary
distribution where we are not talking about the periodicity of the states. It is irreducible, so all the states have the
same period, but we are not talking about periodicity for the existence and uniqueness of stationary distribution; you
do not need the periodicity concepts. But it is not true with the limiting probabilities for limiting probabilities to
exist; the periodicity is relevant you will see in an example. So, the limiting distribution of a Markov chain is also
a stationary distribution; limiting distribution, whenever it exists, is a stationary distribution, and in a reverse way,
the existence of a stationary distribution does not imply the existence of a limiting distribution. You might see an
example where this would be the case later. And if it can also be shown, as you know given here in this cases, that
if the limiting distribution exists, then it is the only stationary distribution because limiting distribution limit you
know it it has to exist means it is a unique value. So that means, if that is the stationary distribution, then the sta-
tionary distribution is also unique, and that is the only stationary distribution that you will have here. So, this is tying this.

So, this theorem now, like the third notion, is connected with the long-run behaviour, which is what we said is
ergodicity. Now we say a state is said to be ergodic if it is aperiodic and positive recurrent, then we say this is an
ergodic state, and if all states of a Markov chain are ergodic, then the Markov chain itself is said to be ergodic, and in
such a case as this theorem, shows here this has a unique limiting stationary distribution, it has a limiting distribution
which is unique of course then, that is the only stationary distribution, and that is what we call it as an ergodic. So, for
that reason, this kind of theorem that all variations of this are called ergodic theorem, which gives the condition for
ergodicity of the Markov chain, but one thing I would point out here is that the way we have said about the ergodicity
of a Markov chain or ergodicity of state is in this way as far as we are concerned, but there is a slightly less restrictive
notion of ergodicity, and that is actually the complete or full notion of ergodicity, but for our purpose, we will confine
ourselves to be in this form. So, the aperiodic positive recurrent state is ergodic. In general, this aperiodicity need
not be insisted on. Still, you can define a notion of ergodicity, and that is what one does in a complete study of
the Markov chain. However, for our purpose, we mean an ergodic state means, in this case, aperiodic and positive
recurrent, and in that case, we will call this as ergodicity because our aim is basically to obtain this unique limiting
stationary distribution. So, we want to study the long-run behaviour of the Markov chain, which is characterized by
the limiting probabilities. Now the limiting probabilities are obtained through a solution of the stationary distribution
and which will have a unique solution. So, we are looking for conditions under which that can happen; these are
the conditions: Irreducible Markov chain, positive recurrent, aperiodic then you will have whatever the nice thing
that you are looking for, which is the unique limiting stationary distribution. So, this is the ergodic theorem as far
as we are concerned in this scenario. Now, let us look at a certain example and how you will use this theorem in
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this example, and that is the way we are going to use this theorem. This is the main theorem that will be used throughout.

Example 1.
Three out of every four trucks on the road are followed by a car, while only one out of every five cars is followed by a
truck. If you see a truck pass by on the road, on average how many vehicles pass before you see another truck?

Let {Xn} be a MC with S = {0, 1} (0-truck, 1-car) and with P =

[
1/4 3/4

1/5 4/5

]
. The unique stationary distribution

is π0 = 4/19 and π1 = 15/19.
If you see a truck pass by then the average number of vehicles that pass by before you see another truck corresponds

to the mean recurrence time to state 0, given that you are currently in state 0. By the above, the mean recurrence time
to state 0 is M00 = 1/π0 = 19/4, which is roughly 5 vehicles.

So, you can answer such questions using such modelling and analysis; that is what one does.

Example 2.
Now let us take another Markov chain which is given by

P =

 0 0.2 0.8

0 0 1

0.3 0.6 0.1


Irreducible, positive recurrent, aperiodic.
πP = π,π e = 1

⇒ unique π = (0.153, 0.337, 0.510)

Limiting distribution equals π.

0 1

2

0.2

0.8

10.3

0.6

0.1

Example 3.
Now look at this example.

P =


0 0.5 0.5 0

0 1 0 0

0 0 0 1

0 0 0.5 0.5


Reducible MC
3 communication classes {0}, {1} and {2, 3}
State 0 is transient, states 1, 2, 3 are positive recurrent
πP = π,π e = 1

⇒ Solution exists but not unique
π = α(0, 1, 0, 0) + (1− α)(0, 0, 1/3, 2/3), 0 ≤ α ≤ 1

No limiting distribution; limiting probabilities lim
n→∞

p
(n)
ij exists, but depends

on the starting state as observed from

lim
n→∞

Pn =


0 1/2 1/6 1/3

0 1 0 0

0 0 1/3 2/3

0 0 1/3 2/3



0 1

2 3

0.5

0.5

1

1

0.5
0.5

Look at this example this typical this is a typical example that is going to be helpful for us because this is the way
we are dealing with this is how we are going to use this ergodic theorem in our analysis.
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Example 4.

0 1 2 3 4q

p

q

p

q

p

q

p

q

p

q

With 0 < p < 1 and q = 1− p, MC is irreducible and aperiodic.
If MC is positive recurrent, then a unique stationary distribution exists and equals the limiting distribution.
If MC is null recurrent or transient, then there is no stationary distribution (and hence no limiting distribution).
Try solving πP = π,π e = 1

First part gives πn =
(p
q

)n
π0, n ≥ 1 and the normalization condition implies that

1 =

∞∑
n=0

πn = π0

∞∑
n=0

(p
q

)n
.

If p < q, then the geometric series converges and π0 > 0 (and hence πn > 0) and we have a solution to the
stationary equations.
▶ MC is positive recurrent if p < q.

If p ≥ q, then the geometric series does not converge and π0 = 0 (and hence πn = 0) and there is no stationary
distribution.
▶ MC is not positive recurrent if p ≥ q.

So, and hence in the long run, what you would find the long-run proportion of time then would become zero; that is
what if that is the interpretation that you are taking it, again, this πP = π, πe = 1 solution even though you are getting
I mean as a unique solution. For example, in this particular case, when p < q, it has two interpretations again: One
is the long-run fraction of time that the process spends in that particular state. The other is; what is the probability
that a long time from now you would find the process in that particular state, these are the two interpretations. The
second one is based upon limiting distribution; the first one is depending upon that it is πi = 1/Mii because of that
kind of thing that you have here. So, this is not positive recurrent if p ≥ q. So, our interest. So, we do not want to
see whether this particular thing either is null recurrent, or transient, so we do not distinguish between this for our
purposes, but if one wants to analyze further then, you can further look at when this will be null recurrent when this is
transient. So, that is it is always possible to do, but our interest is mainly to obtain a stationary distribution, a limiting
stationary distribution. So, that would require only positive recurrent. So, we will look at only whether the chain is
positive recurrent or not whenever you have irreducibility and aperiodicity is ensured in this case.

So, now, you see here how we are using the theorem; we are not proving that the chain is positive recurrent and
hence it will have a unique limiting stationary distribution, and we are finding πP = π. We directly try solving
πP = π, πe = 1, and whatever condition is required to get this distribution, the solution to the stationary distributions
is a unique distribution that is the condition for positive recurrent. So, you can also show now that or otherwise if
even if you are not taking this route, if you have to show this positive recurrence of this particular chain, it will be
possible only if p < q. So, under this condition, only this chain will be positive recurrent. So, this is the condition for
stability of this chain, or this is the condition for the positive recurrence of this chain. So, we are trying to use this
theorem in order to arrive at this; we will be using it in that way only like when we are dealing with the queuing system
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typically. We will try to solve this and whatever condition is required to be put on the parameters so that we have a
unique stationary distribution case, and that is the condition for the positive recurrence, and under that condition, the
system is going to be stable, and that is how we are going to infer.

Example 5.
Now, look at this example what happens here.

P =

[
0 1

1 0

]
MC is irreducible and positive recurrent.

Has a unique stationary distribution π0 = π1 = 1/2 (Ths system spends half of the time in each state).
What about the limiting distribution?

Pn does not converge as Pn =



1 0

0 1

 , n even,0 1

1 0

 , n odd.

No limiting distribution [Note: MC has period 2].

But, if we choose the initial distribution as π(0) = (1/2, 1/2), then π(n) = (1/2, 1/2) for all n.
i.e., Even though lim

n→∞
Pn does not exist, it is possible for lim

n→∞
π(n) to exist, but only if the starting state is chosen

randomly according to the stationary distribution.

So, now how the recurrence becomes an important idea, a concept to be determined in a Markov chain. So, how to
determine the presence of recurrence in a Markov chain. There are many results available in the literature one sufficient
condition that we will use at some point of time in our analysis is what we have given here, which we are treated as a
result which is the following.

Result: An irreducible, aperiodic chain is positive recurrent if there exists a nonnegative solution of the system

∞∑
j=0

pijxj ≤ xi − 1 (i ̸= 0) such that
∞∑
j=0

p0jxj < ∞.

Like, there are different varieties of conditions, various conditions depending upon, various nature of the systems
and equations, and so on, which can be given in order to show the positive recurrence of the chain. This result we are
stating because this is what we will be using it later on when we are dealing with at least one or two queuing models at
some point of time, right, I mean little bit the semi Markovian set up or in beyond and around that type.

Now, π = πP has also an interpretation which is also quite useful as far as we are concerned when we are trying
to write down the equations for describing the Markov chains. We said that it could be depicted; Markov chain can
be depicted through the transition state diagram, but if you have to do analysis, you have to write down this equation
π = πP so; that means, essentially P matrix you have to specify. So, that equation can be given interpretation. So that
one can write down that equation in a nice easier way.
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Look at the scenario; what is the meaning of this πi. So, what is this πi? This πi is the long-run proportion of time
the process spends in particular state i; since every time period spent in a particular state i corresponds to a transition
into state i, we can also interpret πi as the long-run proportion of transitions that go into state i, this exact same thing
you can give for the out of state. Meaning since every time spent in state i correspond to a transition out of state i

because you can always; whether your time is spent here in a particular state, whether you are looking at this point or
this point like depending upon that, so, the long-run proportion of time the time spent every time period spent in state i
corresponds to a transition out of state i. We can also interpret pi as the long-run proportion of transitions that go out of
state i. Now, when whenever it is going out since pij is the probability that this of going from state i, so given that you
are in state i, pij is the probability that you will move into state j.

So, the proportion πipij is the long-run proportion of transitions that go from state i to state j; now, if you think of
the transition from state i to state j as a unit of the flow of something, the flow from state i to state j, then πipij would
be the rate of flow from state i to j. If the transition is a flow, then multiplying by this πi would be the rate of flow from
state i to j. Similarly, with this interpretation, we can interpret this πj as the rate of flow out of state j, and if this is
πipij is the rate of flow from state i to state j, now if I sum over all i then

∑
i∈S πipij = “rate of flow into state j”.

πj = “rate of flow out of state j”. So, what you end up is having this equation π = πP has the interpretation that the
”rate of flow into state j” = the ”rate of flow out of state j” for every j ∈ S.

So, the meaning when we say that the stationary distribution is that the vector the stationary distribution vector
achieves the balance of flow, and hence the system is in equilibrium or the system is in stable condition, the stability of
the system. That is why sometimes this is also referred to as equilibrium condition or equilibrium probabilities because
this is what ensures that, of course, intuitively, if you think that is what it usually happens like when the system is in
equilibrium means that the rate of flow into or suppose if you think about a queueing system that, the rate of flow in
and the rate of flow out of the system they need to be at equilibrium in order that the system is in equilibrium. If there
is an imbalance here, then the system will move away from one of the equilibrium points. So, that is why π = πP are
called ”Balance Equations” or, rather more specifically, ”Global Balance Equations,” but we might simply call these
balance equations. So, all stationary distributions must create global balance because, by the name of it, it must create
the global balance equations. We will simply call balance equations because we will be dealing mostly with global
balance equations. Why the word global? Because there is another concept called ”Local Balance Equations,” which is
if the stationary probabilities π also satisfy πipij = πjpji, for every i, j ∈ S, the rate of flow between two states now
you are looking at it, not for the whole chain. So, the rate of flow from i to j if it is equal to the rate of flow from j to i,
then you see there is a local balance now; these locally two states are in a balanced state; that means that globally also
they will be in the balance state because any two states are in balance and hence it would imply. How do you see that
you take πipij = πjpji, now you sum over i on both sides, what you would get is exactly the global balance equations.
So, if you can find a vector π that satisfies local balance, then people also satisfy global balance because this implies
not the other way around.

Not every Markov chain would be locally balanced, but they will be globally balanced. So, the local balance
equations, whenever they are existing is much simpler to solve than the global balance equations, but we will mostly
consider the global balance equations, and we will work on that rather than the local balance equation because then we
do not need to worry whether the particular Markov chain has local balance and to know what the local balance idea to
be whether it is it will be there or not like we need to bring in some more concepts. Like for example, it is tied to the
concept of what is known in the Markov chain as the reversibility concept. We do not need to look at that. So, we will
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always work with global balance equations, and from there, automatically, things will follow. So, that is about the
interpretation of π = πP , which you will use. Of course, when we do continuous time, it will be more clear at this
point of time, we do not need to pay too much for that. But just understand that there is a balancing concept, that is
what the stationary distribution would do, and that is why the system is in equilibrium you are looking at. Now, the
memoryless property we said that the time a Markov chain spends in a particular state is going to be memoryless, and
hence it is geometrically distributed is what we are trying to see here. So, if for a Markov chain, if pii = 0, then the
time the particular chain spends in a particular state i is equal to 1 because the next moment, it is going to go out of
the state. Now for a MC with pii > 0, the number of time units that the system spends in the state i (also known as
sojourn time or waiting time or residence time) is geometrically distributed. How you will see you can easily see from
the following argument

• Assume that the MC has just entered the state i. It will remain in i at the next step with probability pii and it will
leave this state at the next step with probability 1− pii.

• Independent of what happened in one step, similar property holds in the next step as well.

• Let τi = min{n ≥ 1 : Xn ̸= i}. Then, the distribution of the sojourn time in state i is
Pi{τi = n} = (1− pii)p

n−1
ii , n ≥ 1.

Now, there is one typical simple Markov chain that has some relation to queueing theory, queueing system, or
which is a very simpler one which further theory can be developed though we are not going to do that is known as the
birth-death chain.

• A birth-death chain is a special of a DTMC with S = {0, 1, 2, . . . } and with TPM

P =


1− b0 b0 0 0 · · ·
d1 1− b1 − d1 b1 0 · · ·
0 d2 1− b2 − d2 b2 · · ·
...

. . .


where bi > 0, i ≥ 0 is the probability that a single birth will occur at the next time step, di > 0, i ≥ 1 is the
probability that at the next time step a single death will occur, and 1− b0, 1− bi − di, i ≥ 1 is the probability
that the state will not change at the next time step.
▶ Transitions to nearest neighbour states only (multiple births and/or deaths not possible).
▶ Very useful model for queues and obtaining of solutions is easier because of the special structure (tridiagonal)
of the TPM.

So, this is a very useful model for queues as well because when the queues are increasing or decreasing by one, this
is precisely what would be the model for it. And because the special structure which has this what we call tridiagonal
structure of this P. So, this can be analyzed nicely and where various birth and death rates or birth probability structures
this can be analyzed very nicely. But more we will see with respect to continuous time rather than in discrete-time
this birth-death process. So, we will see more details about similar ones in the continuous-time rather than in the
discrete-time because most of our models are going to be in continuous time, and hence we will be concentrating more
on the continuous-time Markov chain. But for the continuous-time Markov chain to understand that theory, you need to
understand the theory of the discrete-time Markov chain, and hence we are doing this whole week we have spent on
analyzing the discrete-time Markov chain. So, these are the basic concept that is needed for us to understand certain
things in queueing analysis queueing models when you try to analyze that, and that is what we have done this week.

9



We will see the continuous-time Markov chain things in the following lectures. So, here we end with the analysis, or
the ideas of discrete-time Markov chains; here.
Thank you, bye.
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