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Lecture - 07
Classification Properties of Markov Chains

Hi and hello, everyone. In the previous lecture, we have seen the definition of the Markov chain and some examples
and certain few properties, not properties, that you know with respect to something like a multi-step how you can
compute and everything. Now, what we will do in this lecture is we will look at a little bit more properties of Markov
chains, and the first thing we will talk about is what we call here accessibility.

• Accessibility: State j is said to be accessible from state i if there exists n ≥ 0 such that p(n)ij > 0, where

p
(0)
ij = δij .

▶ If j is not accessible from i, then P
(
Ever be in j|starting from i

)
= 0.

So, more of these properties that we are going to see, you will see that you can prove analytically, but it
is intuitively in a probabilistic way if you think. Then things will be clear; you do not need to worry too
much get into the proofs or anything. Because it should be true in an intuitive way, that is how now you
will see; that is what we call probabilistic reasoning would be sufficient enough to understand the properties
and why and how that should be true. So, it is more of this. So, accessibility means that you are starting
at some state i. Say, for example, you are starting at some state i, and you will reach state j if there is a
way to reach maybe, going through different states ultimately. It cannot be possible in one step; maybe it
is possible in two steps, maybe it is possible in three steps, and so on; there is some step at which it is pos-
sible. Then you would see that it is j is accessible from i, or we will say that j can be reached from i if this is true.

Now, communication; communication means it is also the reverse way; also, if it is accessible simply saying,
state j is accessible from i and state i is accessible from j, then we say both i and j communicate with each
other.

• Communication: Two states i and j are said to communicate if i and j are accessible from each other, i.e., there
exist m ≥ 0 and n ≥ 0 such that p(n)ij > 0 and p

(m)
ji > 0.

Notation: i → j: j is accessible from i.
i ↔ j: i and j communicate.

▶ Communication is an equivalence relation (i.e., it satisfies (Reflexivity) i ↔ i, (Symmetry) i ↔ j ⇐⇒ j ↔ i, and

(Transitivity) i ↔ k and k ↔ j =⇒ i ↔ j).
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▶ This relation partitions the state space into equivalence classes (known as communicating classes).

So, this the whole state-space S now will be broken into classes where each of these is a communicating state
would be there in any particular class like, so that is what it. So, this basically partitions means it divides the
state space into equivalence classes.

• Irreducible/Reducible: An MC is said to be irreducible if all states communicate with each other, i.e., there is a
single communicating class. A chain is reducible otherwise.

Most of the time, we will be dealing with this irreducible Markov chain, but of course, the theory is also required
for how to handle if the chain is reducible. So, this is what are the properties of accessibility communication and
irreducible or reducible.
Then we have the notion of what we call a closed set.

• Closed: A subset A of the state space S is said to be closed if no one-step transition is possible from any state in
A to any state in Ac.

If that is the case, then this is called a closed set which means that once you reach into that set, then you do not
have a way of going outside of it in a way. That is what it is you call closed sets.

Absorbing state, we have seen it in the earlier case we just mentioned, but this is what precisely it means.

• Absorbing State: If a closed set A contains only a single state, then the state is called as absorbing state.
▶ A state i is absorbing if and only if pii = 1.

We have seen in that example that one of the examples that this situation was true that pii for some i if it is equal
to 1. That means it is there currently in i, and it will be there in i in the next step as well, and forever it will be.
So the process got absorbed into the state; that is the terminology used in this particular case.

• If S is closed and does not contain any proper subset which is closed, then we have an irreducible MC. If S
contains proper subsets that are closed, then the chain is reducible.

So, you can also talk irreducible and reducible in this manner as well. You can see that if there is a single
communicating class, and that is a closed class, it does not contain any proper subset which is closed. Because
all of them form a single class, then we have an irreducible Markov chain. Suppose if it is not the case, then you
will have subsets that are closed more than one, then the chain becomes a reducible chain.

■ If a closed subset of a reducible MC contains no closed subsets of itself, then it is referred to as an irreducible sub-MC.

Because then that particular sub-Markov chain will have each transition probabilities, it will behave as if that is
itself a Markov chain because that p with itself be a stochastic matrix. So, one can handle that chain separately
as an independent of all other states, that particular class alone; you can treat it as if it is an irreducible Markov
chain, and you can handle that. That is the reason why you look at it that way.
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Example.

P1 =

1/2 1/2 0

1/2 1/4 1/4

0 1/3 2/3

 P2 =


1/3 2/3 0 0

1/2 1/2 0 0

1/4 1/4 1/4 1/4

0 0 0 1



Now, we will define after these properties of state; now we will define ”hitting time” what do we mean by that?

• Hitting Time: For any A ⊆ S, the hitting time TA is defined by

TA = inf {n ≥ 1 : Xn ∈ A} ,

with the convention that inf ϕ = ∞.

▶ TA is the first time after 0, when the chain enters A.
▶ TA is also called first passage/return time to A.
▶ T{i} will be denoted by Ti, i ∈ S.
First passage time or first return time plays a crucial role in the analysis of different Markov models. So, what
does that mean is that it is basically the first time something is reached a particular suppose you are looking at
building wealth and then you are starting at some 100, and you are looking at when you will reach 1000. Then
you will say that for the first time, 1000 is reached; when what is the timeline? What when it is needed? So, that
is what would represent in this particular case.

Then based upon this quantity TA the hitting time, we can also classify the states differently, and these are all the
basic definitions of that.

• Classification of States:

– A state i is called recurrent (or persistent) if P{Ti < ∞|X0 = i} = 1.
▶ State i is recurrent if and only if fii = P

{
Xn = i for some n ≥ 1|X0 = i

}
= 1.

– A state i is called transient if P (Ti < ∞|X0 = i) < 1.

– A recurrent state i is called null recurrent if E(Ti|X0 = i) = ∞ and positive recurrent (or non-null
recurrent) if E(Ti|X0 = i) < ∞.

Remember, it could be a probability, it could be a distribution, but the expected value need not be finite for every
distribution. So, that is what it would amount to here. So, now, let us be more precise on this.

• Let f (n)
ii be the probability that a chain starting in state i returns for the first time to i in n transitions. Then

fii =

∞∑
n=1

f
(n)
ii . For a recurrent state i, since fii = 1, {f (n)

ii } defines the first-return time or recurrence time
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distribution and the mean recurrence time is Mii = E(Ti|X0 = i) =

∞∑
n=1

nf
(n)
ii .

▶ Recurrent state i is positive recurrent if Mii < ∞ and null recurrent if Mii = ∞.

Similar to this, one can also talk about ”first passage time.” So, here fn
ii starting from i, you are looking at the

quantities which you are coming back to i. Now, this starting from i if you are looking at some state j which is not
equal to i, then the exact same thing we will be talking about that fn

ii would be the probability that chain starting in i

reach a state j in n steps for the first time. Then its properties and its distribution whenever that is equal to 1 and so on
if it can be done if it can be reached then always this will be 1, and its distribution will be first passage time distribution
it will be similar to this. That is what you might see.

Another concept that is also relevant is mainly in discrete-time. Of course, in continuous-time, you do not have this
notion of this periodicity, but in discrete-time, you have this.

• Periodicity: The period of a state i is defined by the greatest common divisor of all integers n ≥ 1 for which
p
(n)
ii > 0, i.e.,

d(i) =

gcd
{
n ≥ 1 : p

(n)
ii > 0

}
if

{
n ≥ 1 : p

(n)
ii > 0

}
̸= ϕ

0 if
{
n ≥ 1 : p

(n)
ii > 0

}
= ϕ.

If d(i) = 1, then the state i is said to be aperiodic.
If d(i) = γ > 1, then the state i is said to be periodic with period γ.

Example.
Consider an MC with S = {0, ±1, ±2, . . .} and with pi, i+1 = a, pi, i−1 = b, pii = c, where a + b + c = 1,
a > 0, b > 0, c ≥ 0.

Determine the period of states (different cases).

Now, you see here that the previous example that we said we would look at it later, and you will see here what
happens.

Example.

Consider an MC with state space S = {0, 1, 2, 3} and with TPM P =


1/3 2/3 0 0

1/2 1/2 0 0

1/4 1/4 1/4 1/4

0 0 0 1

 .
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0 1

2 3

2/3

1/2

1/3 1/2

1/4

1/4

1/4
1/4

1

MC has three classes {0, 1}, {2} and
{3} and hence reducible.

So, in any Markov chain, whenever it is reducible, it will so happen that there is one, there will be n number of open
communicating classes, and you will have that recurrence transition. So, these are all recurrent or positive recurrent
states and so on; you can analyze this. So, with some more results in hand, one can do that thing. So, these are some
more results that we have with respect to this. These are all simply we are stating it, but intuitively also, it should make
sense you can think a bit more probabilistically to understand that this is actually the case that will happen here.

1. (Number of Visits) For any state i, let Ni be the number of visits to state i. Then,

a i recurrent implies P{Ni = ∞|X0 = i} = 1.

b i transient implies P{Ni = n|X0 = i} = fn
ii(1− fii) for n = 0, 1, 2, . . ., where fii = P{Ti < ∞|X0 = i}

is the probability of returning to i starting from i. Thus Ni|X0 = i ∼ Geo(1− fii).

Corollary: A state i is recurrent iff
∞∑
n=1

p
(n)
ii = ∞ and transient iff

∞∑
n=1

p
(n)
ii < ∞.

▶ P{Xn = i for infinitely manyn|X0 = i} = 1 or 0 iff recurrent or transient.

2. If the state space S is finite, then at least one state must be recurrent.

3. Positive recurrence, null recurrence and transience are all class properties. Also, all the states in a class have the
same period.

4. All states of a finite irreducible MC are positive recurrent.

5. Let i be recurrent and i → j. Then fji = P
{
Ti < ∞|X0 = j

}
= 1 and j is recurrent. [Note: Not true if i is

transient.]

6. Suppose that {Xn} is irreducible and recurrent. Then for all i ∈ S, Pµ {Ti < ∞} = 1 for any initial distribution
µ.

If it is irreducible, all states communicate with each other, and it is recurrent, it will come back to 1. So, no matter
what is the initial distribution (µ), Pµ{Ti < ∞} = 1 will happen; that is what it means; here, the thing is that the
independent of this, this will happen; that is what it is.

So, these are some of the properties of the Markov chain that we are seeing in this lecture. We will see a few more
properties, which will complete our discussion of the Markov chain which will be used. So, to develop for to use to
come to that kind of conclusion, we need all these notions. Accessibility, communication, irreducibility, closedness,
or periodicity, recurrence, positive recurrence, null recurrent, transient because this is all is what. So, how can one
determine what they actually mean in a Markov chain scenario? So, all these things are what we have seen. So, we will
continue in the next lecture with some more properties.
Thank you, bye.
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