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Hello, everyone; in this lecture, what we are going to see is about the transforms in general
and mainly "Laplace" and "Laplace-Stieltjes Transform" and the "Generating Functions," which is
what is going to be used extensively in our analysis that we are going to see. In queueing theory,
when we analyze a particular queueing system, it is often the case except for the simplest of
models, it is often the case that you are not able to obtain explicitly or even not able to do some
sort of analysis to take it a little bit forward to get some insights; in an explicit form or in the
usual domain. So, what is done in such a situation is that then you transform the domain from
one to the other and look at it in the transformed domain, probably like your analysis could be
done in an easier way. And that is what is being done generally, and the tools that help us to do
all these transforms in general. I mean, people familiar with differential equations, like how much
these Laplace transforms are useful, and probably the other ones are Fourier transforms, and
their uses in different areas are also known. But in applied probability and stochastic models
also, these transforms play a critical role in the analysis. So, in this lecture, what we will try to
do is we will just try to recap and try to understand what this is and its certain properties of
it. So, that it can be readily referred to later whenever we are doing the analysis with respect
to a particular queueing system, so, as we said that, it is basically the time-domain normally
when we work on, is what our analysis is. So, any quantity, for example, whether it is number in
the system at time t or in the waiting time of a customer how long is wait, these are all in the
time domain which queueing has to be transferred to some other domain. So, a useful transform,
transform here means; that it is mapping from one space to the other like typically, these are all
from mapped from some real space to complex space. And this queueing analysis has a lot of
importance in this case.

Now, let us see what a Laplace transform is. It is defined as:- Let f : [0,∞) → R be a
suitable function, by a suitable function; I mean the function is piecewise continuous, and of
exponential order means it is at least piecewise continuous in any finite domain in [0,∞) . And
it does not grow beyond an exponential function, but it does not grow faster than a function of
an exponential function; that is what it would mean in general. But anyway technical part, you
can always look it up. So, for such a function, the Laplace transform of f is defined. So, this
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is the notation that typically might be given L{f(t)} or f̄(s) the bar is what we denote by the
Laplace transform of f is defined to be

L{f(t)} = f̄(s) =
∫ ∞

0
e−stf(t)dt, (t ≥ 0)

where s is a complex variable. Under the broad conditions, it can be shown that f̄(s) is analytic
in the halfplane where Re(s) > α, for some constant α, that alpha is related to this exponential
order. And there is a one-to-one correspondence between the f(t) and f̄(s); that is why you
would see volumes of books, I mean a book which contains exclusively functions and their Laplace
transform given as in a table form for ready reference because for different function you obtain
and working with f(t) would be in some sense equivalent to working with f̄(s) that is what we
will also be doing it. And there is a one-to-one correspondence between the function and its
Laplace transform, which means that if you know the function, you know the Laplace transform,
or if you know the Laplace transform, then you know what the function is. So, some common
pairs of functions and its Laplace transform, which again for ready reference for anything it
comes you can just put it into this and then obtain this integral. But suppose if the function
is the constant function 1, then you put this instead of the f(t) you put 1 then what you will
end up with 1/s. And if the function is t, so then it is te−st, so if you evaluate that, you will
end up with 1/s2 as the Laplace transform. In general, for tn, n!

sn+1 for n = 0, 1, 2, . . . ,. So,
1←→ 1

s , t←→ 1
s2 , tn ←→ n!

sn+1 for n = 0, 1, 2, . . . , is what the Laplace transforms.
Now if I have e−at

e−at ←→ 1
s + a

, e−attn ←→ n!
(s + a)n+1 for n = 0, 1, 2, . . . ,

We can substitute and see. Now

cos bt←→ s

s2 + b2 , sin bt←→ b

s2 + b2 , e−at sin bt←→ b

(s + a)2 + b2

So, these are some common pairs or any other thing that you normally you encounter; you can
always substitute here and try to understand. So, most of the things like we will be concerned
with something of this kind of forms we will be arriving at, you will see like in the analysis when
you go further.

So, for example, if I take f(t) = λe−λt, what is this particular function means; it is the
probability density function of an exponential random variable, and if I can compute f̄(s):

f̄(s) =
∫ ∞

0
e−stλe−λtdt = λ

s + λ

.
Now, certain properties that you need to know so that you can use them.

▶ L{a1f1(t) + a2f2(t)} = a1f̄1(s) + a2f̄2(s)

▶ L{e−atf(t)} = f̄(s + a)
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▶ L{f(at)} = 1
a f̄( s

a)

▶ L{f (n)(t)} = snf̄(s)−∑n
i=1 si−1f (i−1)(0), for derivative f (n)(t) of order n ≥ 1

▶ L{
∫ t

0 f(x)dx} = f̄(s)
s

▶ L{
∫ t

0 g(t− y)f(y)dy} = f̄(s)ḡ(s)

▶ (Limit property) lim
t→∞

f(t) = lim
s→0

sf̄(s) and lim
t→0

f(t) = lim
s→∞

sf̄(s)

So, even if you are in the time domain, even if if you are in the Laplacian domain if you want,
you do not have the function explicit form, and you want to look at this kind of behavior, and
this kind of results are useful, like this a looking at this is same as looking at this. So, these are
certain properties of the Laplace transform that we might be using it. Differentials, integrals,
convolutions, linearity and shifts, and so on.

A related transform is what is called a Laplace Stieltjes transform, which is defined for a
function F : [0,∞)→ R as

L∗{F (t)} = F ∗(s) =
∫ ∞

0
e−stdF (t),

where the integral is the Lebesgue-Stieltjes integral.
So, this integral, as you see, is the Laplace sorry Stieltjes integral, Riemann Stieltjes integral,

whereas the first one is Riemann integral. So,
∫ ∞

0 e−stdF (t) is what; we said in the probability
review; also, like we pointed out, this kind of integrals will come. So, no matter, you do not
need to worry too much about this; what is this even if you do not know, but it is you will
know soon anyway; the alternative way of looking at that where the integral is the Lebesgue
Stieltjes integral. So,

∫ ∞
0 e−stdF (t) is what is defined as Laplace Stieltjes transform as, you

might have known from the properties of this substituting both discrete and continuous nature
of this function F . Now, in our case, what is our F , of course, it also requires some condition
on this particular function, F ; of course, e−st is what we have given it. So, now, you need to
impose some conditions on this F . So, this integral is well defined. For us, there is not much
problem on that count. Because we consider this F to be the distribution function or cumulative
distribution function of a nonnegative random variable X.
So, F ∗(s) = E[e−sX ]. You see, whenever you encounter F ∗(s), whether it is discrete or continuous
or mixed or any random variable for us in our case like the Laplace Stieltjes transform F ∗(s),
you can always relate to E[e−sX ]. Anyway, the expectation you know how to compute. So, this
is nothing but this expectation, E[e−sX ] is what the Laplace Stieltjes transform. And again, we
consider our f in Laplace transform whenever we are defining our f would be there the PDF of
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it. Now suppose for an exponential random variable with mean 1/λ, you can obtain the Laplace
Stieltjes transform F ∗(s) = λ

s+λ , which you notice is the same as the one that you obtain as a
Laplace transform of its density function. Now, for a discrete random variable X, where X takes
value P (X = 3) = 3

10 , P (X = 4) = 1
5 and P (X = 9) = 1

2 . You can see that this Laplace Stieltje
transform is nothing but F ∗(s) = 3

10e−3s + 1
5e−4s + 1

2e−9s, again; recall that this is nothing but
this F ∗(s) = E[e−sX ]. Even if you do not know the theory of Stieltjes integral business, so, you
can always use E[e−sX ] to arrive at that, so that is what it is F ∗(s) = 3

10e−3s + 1
5e−4s + 1

2e−9s,
and that is what is the Laplace Stieltjes transform, which we will call LST for, later on, we will
simply use the abbreviation LST for this purpose. So, when a nonnegative random variable X has
a PDF, then, as we just noticed in the case of an exponential distribution, the Laplace Stieltjes
transform of the distribution function, which is F ∗(s) = λ

s+λ , equals the Laplace transform of
its PDF; the probability density function, which means when you have a nonnegative random
variable which has a PDF it is a continuous type random variable when it has a PDF. Then
whether you are talking about the Laplace transform of its PDF or the Laplace Stieltjes transform
of its CDF, they mean one and the same. More generally, one can say that if I want like this
is you see f̄(s) it is not F̄ (s); we are not inferring that part. So, more generally, one can show
that this is what is the case in that scenario. F ∗(s) = sF̄ (s), you see here, which is what for
any such thing that you can find. But F̄ (s) nothing but equal to the Laplace transform of its
PDF, that is what. So, this is also like you can keep in mind sometimes this will be useful. But
for a discrete, you do not have this Laplace transfer function. So, that is the reason why you
always deal with Laplace Stieltjes transform. So, you are incorporating both the quantities in
one transform or in one tool that you want to use it.

So, basically, whether it is a continuous like exponential or a discrete like this three-point
distribution, you can you will have this Laplace Stieltjes transform. Now, for example, if I pick
F (t) = 1− ρe−µ(1−ρ)t, t ≥ 0, where ρ = λ/µ, if this is what is given to be the function, look at
this little carefully, this is not of a continuous type, not of a discrete type, but it is of mixed
type. Meaning it has a mass of 1− ρ at the point 0, and for t > 0, this function is continuous
and differentiable. So, for t > 0, it has a PDF, and at t = 0, there is a mass, so the mass is 1− ρ.
So, the remaining mass of ρ is what is distributed between t > 0 and ∞. So, it is a mixed type
random variable now if I use the definition of its Laplace transform of F . So, what you will end
up is

F ∗(s) =
∫ ∞

0
e−stdF (t) = 1− ρ + ρ

∫ ∞

0
e−stµ(1− ρ)e−µ(1−ρ)tdt = (s + µ)(1− ρ)

s + µ(1− ρ) .

Now we can also obtain the above using F ∗(s) = sF̄ (s); like you have this F̄ (s) you have, you
can try to obtain s F̄ (s) and so on and then you can see this is an exercise that you can try.
Now, the properties of LST are similar to the properties of Laplace transform again, like F (t)
and F ∗(s) both have a one-to-one correspondence with each other which means F (t) can be
uniquely determined from F ∗(s). So, if I know this, it is equivalent to knowing this. Now, certain
properties again, this is one property that has one-to-one correspondence, but the most the
other useful property in our analysis turns out to be this part. The LST of the convolution of
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independent random variables is the product of the LSTs of individual random variables.
That is suppose if F ∗(s) is the Laplace Stieltjes transform of X and G∗(s) is a Laplace Stieltjes
transform of Y . Then the Laplace Stieltjes transform of X + Y if X and Y are independent is
given by the F ∗(s)G∗(s).

And you know that this is what the convolution component is what the property that is what
you know we are stating here. The other used property is this continuity, that is if Xn, n = 1, 2, . . .

be a sequence of RVs with DFs Fn(t) and LSTs F ∗
n(s), and if as n→∞ if Fn → F that has an

LST of F ∗(s). Then F ∗
n(s) → F ∗(s) for s > 0, and conversely. So, this is sometimes useful in

finding out the limiting form of certain distributions that you might encounter. Now, we can
relate by looking at this Laplace Stieltjes transform that you just notice that it is the E(e−sX).
And recall if you have a nonnegative random variable as we have it in our queueing analysis that
the moment generating function MX(t) is nothing but E(etX) which is given by

∫ ∞
0 etxdF (x) (if

exists) we need to worry about that part. This is similar to LST of F , with −s replacing t, i.e.,
MX(t) = F ∗(−t). What are properties that I have for you know Laplace Stieltjes transform I can
transform now to this moment generating function whenever this exists. So, this is the connection.

And for example, for an exponential random variable, we know that MX(t) = λ
λ−t , for

t < λ, and F ∗(s) = λ
λ+s , which is the same as the Laplace transform of its PDF, or for the

random variable, we can refer to that. Now, recall for a nonnegative random variable, we
also know this function which is nothing but the characteristic function, which is defined to
be ϕX(t) = E[eitX ] =

∫ ∞
0 eitxdF (x). Again in this particular case, we can relate this to LST

with −s replacing this it. So, this ϕX(is) = F ∗(s), that you know you might find. So, for an
exponential, for an example, ϕX(t) = λ

λ−it , what is your characteristic function, but F ∗(s) = λ
λ+s

is the Laplace Stieltjes transform that you can see. And from here, like I can get the moments of
this right, that is what is important.

• Moments:
▼ E(Xn) = i−nϕ

(n)
X (0)

▼ E(Xn) = M
(n)
X (0)

▼ E(Xn) = (−1)nF ∗(n)(0)

So, why this is relevant because, if you know, we have said that the transform and its function
have a one-to-one relationship, so, normally, instead of working in the time domain, we transform
to the transform domain and work on that I am not going to simplify it. Finally, you find the
inverse Laplace transform or inverse Laplace Stieltjes transform to get back to the time domain.
Now, many a time, that can not be possible like it will be very complex in nature. So, in that case,
what you do is at least try to obtain moments of the random variable originally. So, you can use
E(Xn) = (−1)nF ∗(n)(0) directly to get the moments; you do not even need to invert back; if that
is what is complex in nature. So, that is a beauty that is an advantage that you deal with such
quantities in a different domain. But we will be contained with MGFs, and Laplace transforms,
or Laplace Stieltjes transform of mainly continuous random variables meaning that of course,
whenever LST means dealing with discrete of course, this will be Laplace Stieltjes transform.
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Continuous means one can refer to any one of these in a way. But what I mean to say is that we
will deal with MGFs mainly rather than the characteristic function, so we will be content with this.

So, because of this relationship, MGF too has similar properties, so there is a one-to-one
correspondence between MGFs and their probability distributions. The MGF of the sum of
independent random variables is the product of MGFs of the individual random variables that
also you know. So, again then, these are all one and the same, so it has the similar properties
you have here. The other quantity that is of interest to us in our queueing analysis is what we
generally call generating function. We just said that moment-generating function because it is
the moments that are used to construct such a function. So, it generates moments like we just
saw this here. So, E(Xn) can be obtained from its M

(n)
X (0) the same thing.

So the other one is what we call probability generating function, which is an example of
a generating function of a sequence and equivalent to the z transform of the probability mass
function. And these generating functions are, in general, useful in solving difference equations.
Difference equations not just arise in our queueing theory, but elsewhere in many different fields
of applied mathematics, you will encounter difference equations. And while to solve that, the
z transform is what is quite helpful in using that; we will also come to now soon. So this is a
probability generating function in our language in probability theory; this z transform equivalent
in a certain form is what we call a probability generating function, which is defined for a random
variable X, a discrete random variable with P (X = n) = pn, n = 0, 1, 2, . . . and ∑∞

n=0 pn = 1.
Then this one P (z) sometimes some books call it P (s), it does not matter, is

P (z) = E[zX ] =
∞∑

n=0
pnzn

is the probability generating function (PGF). So, what you do here is that you take each of this
pn’s, and you put a tag that is zn and put together and put it in a single basket rather than
representing all p0, p1, p2 and so on. You represent it in ∑∞

n=0 pnzn form, and as a coefficient
of zn, you can always extract pn. I mean, these are all used in that manner. You represent
P (z) = E[zX ] = ∑∞

n=0 pnzn, so this is whether I represent in P (X = n) = pn form by giving all
p0, p1, p2, p3, and so on, or I just describe this function P (z) it is one and the same.

And so this is what is called the probability generating function because the coefficients
generate the probabilities of the discrete random variable, which has support on nonnegative
integers. And this is similar to MGF with now again you see, z if you replace by e to the power t
then what you are going to get is the, for such random variables if you have the MGF, then you
can find the PGF using MX(t) = P (et), or if you have PGF, the MGF is given by in this case.
Say, for example, for a Poisson random variable, we know that MX(t) = eλ(et−1) is the MGF.
Now, this et if I replace by z, eλ(z−1) is going to be the probability generating function. So, you
can try to expand eλ(z−1) here e−λ will be outside, and then there is eλz; you make it as a power
series expansion, and you extract the coefficient of zn you get the probabilities. So, whether I
describe the probability distribution through the description of this pn’s or just by giving P (z),
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you should know what the transform is. So, we have given, I mean in the tables of distribution
on its MGFs. So, MGF, if you have like if you replace et in the MGF by z, what you are go-
ing to get is the corresponding transforms for appropriate random variables like Poisson and so on.

Geometric, Poisson are the typical random variables that we will encounter, so it is just
sufficient if you know a few of these transforms. Now, again this P (1), as, like I mean in simple
terms suppose if I think like, suppose if I put in z = 1 in ∑∞

n=0 pnzn What will happen? This is
simply the sum of pn, which must be equal to 1. So, that is what essentially we are saying in
the limit for this function P (1) = limz→1 P (z) = 1 because we need to worry about the range
for this; if it is a little bit more than that, then the properties of power series come into play
when you are differentiating and passing the limit inside. So, the series converges absolutely for
at least for all complex numbers in |z| ≤ 1, but if it is slightly more than 1, then we will not
have a problem directly we can substitute; otherwise, you have to take the limit is from below,
it is a technical part we do not need to worry. But for our cases, we are in good shape; you
do not need to worry about that, so you can simply substitute one and then see that P (1) = 1
that is a property that you need to remember. Then again, if I differentiate this, for example,
simply you can think if I differentiate pnzn with respect to z, then I will have nzn−1. So, I
will have a form of some npnzn−1. Now, if I substitute z = 1, then what am I going to end
up with? This quantity E(X) = P ′(1). Similarly, E(X2) = P ′′(1) + P ′(1). So the double
derivative or the triple derivative or, in general, the nth derivative evaluated at 1 will give you
E[X(X − 1)(X − 2) · · · (X − n + 1)] = P (n)(1) which is what is called the factorial moment.
So, that is what you will get from this; remember, MGF, you differentiate, and put 0, you will
directly get the nth raw moment.

But here, you differentiate with and put the value 1 or evaluate the derivative at value 1;
then, you will get the factorial moments from the probability generating functions. Now, that is
a simple exercise example that you can see. So, you have a scenario where Xn, n = 1, 2, . . . be
independent and identically distributed discrete random variables with pk = P (Xn = k) and with
PGF P (z) = ∑

k pkzk. Generically we are taking it. Further, suppose that this capital N is also
a discrete random variable with the P (N = n) = gn and with its PGF being G(z) = ∑

n gnzn.
Now assume that this random variable Xn and N , this Xn’s already are independent among
themselves. Now they are also independent of this N ; that is independent of Xn. Now you define
SN = X1 + X2 + · · ·+ XN where N is already a random quantity, and let PGF of SN be H(z).

▶ Exercise: Show that H(z) = G(P (z)).

Easy you have to use the conditional argument that practice should come, so this is one
start. So, basically, H(z), you know what H(z) is. It is basically SN ′s distribution, and if
you want to call that as some hn then using that, you can do that. Say, for example; you can
define hn as the probability of Sn for fixed n equal to some, this n and that n are different, so
P{Sn = k}; is what then is the distribution of SN . Now, this particular n is also random in
our case. Then you condition on that, and then you will use this expression and then you will
arrive at finally, this one you can easily do it is not a big problem. Now, what is important for
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us is that from H(z) = G(P (z)), using the properties that we have just stated, you can deduce
E(SN ) = E(Xn)E(N). If this is a fixed one, if S is a fixed one, they are all IID. So, S1 suppose
S10 suppose if you are looking at it. Then there are 10 such random variables. So, E(S10) is
10E(S1); that means that the fixed value instead of E(N) times E(XN ) is what then you will
know. What this says when this is random, then this particular quantity is to be replaced by this
expected value of this particular random variable which you can deduce from here. Similarly, the
V ar(SN ) = E(N)V ar(Xn) + V ar(N)[E(Xn)]2, you can deduce. So, these are all some simple
exercise that helps to get you started. So, you can try these examples. Now, for practice again,
you can consider the above means this whole thing; you keep this as generic pk, but you assume
N to be that not just any generic random variables, but this is a Poisson random variable with
parameter λ. And see like what would be this. What is that? That means the form of G you
know, which is the Poisson random variable you know what its probability generating function is.
So, G(P (z)) will be then the G form, you know, but the P form you still retain is P (z). So, that is
what is the form that you will use. So, you know what you will obtain in this case; you will obtain
that as a compound Poisson distribution. Again you can extend the above by considering these
Xn’s as the continuous random variables than discrete here with a PDF f and Laplace transform f̄ .

And you can deduce that the Laplace transform of SN is nothing but G(f̄(s)) is what you
would obtain here. Again, you know you can extend a similar exercise where it is now continuous.
Now, where do these kinds of things occur, and why do we worry about these kinds of things.
So, let us look at this typical simple example that we are giving here. Suppose there is a clinic,
and the patients visit the doctor in the clinic. The number of patients visiting a doctor is a
Poisson random variable with mean λ, and the time taken by the doctor on a patient is IID
uniform in [o, h], say in minutes. So, he will take the time to treat one particular, or the time
the doctor spends on a particular patient is uniformly distributed between [0, h]. So, suppose h

suppose if you assume to be some 5 minutes or 10 minutes. So, it is anywhere between 0 and 5 is
what he is going to spend on each of his patients; patients’ arrival is a Poisson random variable
with the Poisson process. So, the number of patients visiting the doctor is a Poisson random
variable; this is what then we are assuming here. Now, if you want to find the mean and the
variance of the time taken by the doctor to complete the consultation of all the patients, so what
you have here is the number of patients you can relate to N . Xn’s are the time taken to serve
a particular patient. So, this is given to be uniform on [0, h]. N is given to be in a Poisson
random variable. So, you can simply use G(f̄(s)) to get the transform of SN , and from there,
you can obtain mean and variance. So, you are interested in, say, what is the mean time taken
by the doctor to complete all the patients to attend to all patients. And what is the variance of
that suppose if you see since you do not know how many patients would have arrived during a
particular time interval in which you are considering. Say, for example, in a day, it is random
according to some distribution, and the time taken is also not deterministic it is also a random
according to some distributions. You are assuming that they are independent because there is
no relationship between the time taken for a previous patient and the time taken for the next
patient. So, that is, you are taking in to be IID for ease and then some distribution in. Then
you know you want to see what is the overall mean-variance; suppose this is a simple clinic with
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a single doctor, it is fine, but if it is a big clinic where multiple numbers of doctors, then to
understand how many doctors are needed or how to increase the capacity or whether overcapacity,
overstaffing is there everything to analyze you need to understand, but things are random here.
To understand all those things because your interest if it is only mean and variance. So, now,
remember that if I want to compute the distribution of SN = X1 + X2 + · · ·+ XN , it will be very
complex, but the mean one I can obtain here. If I know the mean and variance of the N and
Xn, I can get the mean and variance of SN . So, how do we arrive at this? I have to do this analysis.

So, this is the expression that you would have. Again in queueing situation, you would find
you know many a type this kind of scenarios, given a time interval how many people would
arrive, how much time server would have spent in you know in a similar situation. So, this is you
know something similar to that is what then. So, such kinds of situations would arise it is not
just in queueing and elsewhere in other stochastic models as well. For example, biology or DC, I
mean all these kinds of things like you know you would find these are so common it is not just in
queueing, but it is also in the more general stochastic process this kind of thing would come.
So, to understand that you know you will need this, but the tools that you use you see here the
PGF, I have I can answer, or I can handle this kind of scenarios with this kind of knowledge.
So, these are all the techniques that we would need from the transform thing Laplace transform
Laplace Stieltjes transform and the probability generating function. We will use mainly LST
because it is the same as LT in that it can incorporate discrete to random variables as well and
PGF whenever it is much easier than the other one to handle in such scenarios. Because we are
dealing directly with the probabilities, we are working with probabilities, and then inversion will
give you probabilities as well, so that is what it is. These are all the tools you might need; you
can get familiarized with this, and we may get going in the next lecture.
Thank you.
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