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Hi and hello, everyone; what we saw in the previous lecture was this M/G/1 Queue, and what we have done is that
we have derived the PK mean value formula by considering the system at arrival points. By employing the mean value
arguments and using results from renewal theory, we have obtained the PK mean value formula. Basically, what we
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and the third quantity is 1/µ, which is basically the E[S] is what, so that is what we have obtained. And from this, we
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is what we call the PK mean value formula.

And we have seen that in the case of M/Ek/1 or M/D/1, we can obtain the directly using this as well the mean
value quantities is what we have seen. Now, let us take another example where we will use this PK mean formula to
give certain inferences to the system under consideration.

Example.

• Assume that a system is currently working as an M/M/1 system with λ = 10 and µ = 12, per hour.

• The server undergoes a training session at the end of which it is expected that while the mean service time would
increase slightly, the variance would see an improvement.
▶ The mean service time now is 5.5 minutes and the standard deviation is 4 minutes.
▶ The system is now an M/G/1 system.
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• Management is interested to know the impact of the training and whether they should have the server undergo
further training.

• Let us compare L and W :
For M/M/1: L = 5 and W = 30 minutes.
For M/G/1: L = 8.625 and W = 51.75 minutes.

You see how you thought that with a variability reduction in the service time, system parameters should improve,
but you can see deterioration here.

• Hence, it is not profitable to have the server better trained.
▶ Here, with training, while the mean increased by 10%, the standard deviation decreased by 20% (from 5 to 4).
▶ The performance is more sensitive to mean than to standard deviation.

That is why even though the standard deviation reduction was 20%, the mean increased by 10%; this was crucial.
So, that is what you ultimately see here.

Example 1. • Now, if you ask the question that what is the reduction of variance required to make up for the
increase of 0.5 in the mean. So, instead of 4, say, for example, if I have to make for this 5.5, what would be the
reduction that would require whether it is 3, whether it is 2 or 4.5, what is the required variance so that you will
see the same L at least.

• We can do this by solving for σ2
B in the PK formula for L:

L = 5 = ρ+
ρ2 + λ2σ2

B

2(1− ρ)
,

where ρ = 11/12. This yields σ2
B < 0, which is not possible.

▶ This means that L > 5 always (even with σ2
B = 0).

▶ The minimum value of L, achieved in the M/D/1 system, turns out to be L = 6.

So, you can not reduce it any further if the mean is increased to 0.5; but now you can ask for a slightly different
one along the same line.

• Exercise: Determine the value of σ2
B required to yield the same L if the mean service time were increased to only

5.2 minutes after training.
Because that is what is the idea that, how much variability I can reduce from there you can compute this along

using the same line, so this is sort of, a reverse engineering kind of thing. If you want to retain the same L, what would
be then the variability how much reduction you would expect after the training to happen so that you retain the same
L? So, you can ask this question, of course, and try that. So, this is another example there where we are using this
result; basically, we are comparing the systems as well between this and so on. So, you can directly use this PK mean
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value formula to answer questions of this nature, where you are not concerned about the system size probabilities but
only on the mean values.

Now that we said; that was the first derivation using the arrival points, the same formula can be derived by using a
similar argument but by using now departure time points.

• We can derive the PK mean formulas given in table earlier considering the queue at times when customers depart
from the queue.

• Considering the number of customers remaining in the system immediately after a customer has departed from
the system, we can first derive a formula for the expected system size L at departure points.

• This is then seen to be equal to the expected steady-state system size at an arbitrary point in time.

• Instead of doing this, we will treat the steady state system size probabilities at departure points, from which too
the PK mean formulas can be obtained.

Even if you do not want to consider the departure point system size probabilities, one can even consider departure
points, and again by the mean value formula directly; you can obtain that is the idea behind this. Because it is just a
repeat, only thing is the ideas are slightly different, but we will directly go to departure point system size probabilities
which for the M/G/1 queue, which is what we will it will result in this PK formula or more specifically, now what we
are going to get is this PK transform formula.

• Let πn denote the steady state probability of n in the system at a departure point.

Excluding the customer who is departed, which means just after the time point; immediately after the time point,
what is the number in the system, just after the departure, what is the number in the system that is what we
denote it by πn.

▶ In general, it need not be the case that πn = pn, but it is true here for the M/G/1 model.

pn is what is the arbitrary time point probabilities an’s earlier we have considered these arrival point probabilities.
Now, πn in this particular case is what the departure point system size probabilities. In general, this need not be
the case; the departure point probabilities need not equal the arbitrary time point probabilities. But here, in the
case of M/G/1 queue, this is true, so that we will see later. So, if we obtain this πn, if this is true and true here,
then this will also be equal to pn. And that is the reason why we said that here even though you are looking at
the departure times and then obtaining the moments, it will also be equal to arbitrary time point moments. But
now, we are looking at the probabilities themselves.

• The M/G/1 queue, viewed only at departure times, leads to an embedded discrete-time Markov chain.
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We said that we are going to use this embedded Markov chain technique for the analysis of semi Markovian
queuing system. So, here for the M/G/1 queue, if you view the system at departure points, then you can extract
an embedded Markov chain.

• The number in the system process
{
N(t), t ≥ 0

}
is not a Markov process here, because the state of the system

after a transition depends not only on the state of N(t), but also on the amount of elapsed service time of the
person receiving service, if any. [Together, they form a Markov process]

Now whereas, this was not the case in Markovian queuing models because the elapsed time is again exponential
other residual lifetime is again exponential. So, one need not worry about that, but here it does matter because
the service time distribution does not have the memoryless property. But this {N(t), t ≥ 0} is not a Markov
process, but suppose if I call the amount of elapsed service time as some other process, say some Q(t), then this
{N(t), Q(t)} as a two-dimensional process will be a Markov process.

That is what we said together they form a Markov process; {N(t), t ≥ 0} alone is not a Markov process.
{N(t)}, Markov process means what? Whether it is in one dimensional or two dimensional, or in any number of
dimensions, the future evolution of the process depends only on the current state of the process; if that is the case,
then the Markovian property is holds true. It does not depend on anything in the past; that is what you see here.
So, here {N(t)} alone would not determine as obvious, because how long the current customer who is currently
undergoing service was in service that will determine how much more time he is going to get service. So, that is
required to be known for the future evolution of the process, even if you look at the number in the system so,
so that is the reason why this {N(t)} is not a Markov process. But together they form because together now
you get the complete information about it. But if we look at such a process at some specific time points, then
you can extract a Markov chain, or you can see at those time points the system will behave like a Markov chain.
And here, in the M/G/1 queue, one such point or set of points is the departure point. Because as you see at any
point of time t if you look at it, you need to remember what is the number in the system at that point of time
and how long has been the service completion happened for the current customer who is currently undergoing
service. But if I look at departure points, that elapsed service time is 0. So, if that is the case, then the evolution
of this {N(t)} from this departure point to next departure point, if I can look at it, I can forget the elapsed time.
Now, I need to know that apart from what is there at this point, it is basically a regeneration point or restarting
point. Suppose I call this as a departure point, now from and this is the next departure point. From this to this the
departure point, what I need to know is what was the number here and how many people who arrived during this
period would determine the number in the system at the next departure point. So, if I can get along with this, the
number in the system at this departure point say nth departure point; now, if I want to look at the number in
the system at (n+ 1)st departure point. Now between this nth and (n+ 1)st departure, what were the number
who arrived if I know that, and what was the number at nth departure point. Then I can determine what is the
(n+ 1)st departure point, what was the number in the system.

▶ If we consider the system only at those points when a customer completes his service, there will be no elapsed
service time.
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▶ So, in that way, like this evolution of this N(t) which is what our ultimate aim is that the number in the system
in the queueing system can be captured very nicely if I look at departure points in this particular case.

So, say, for example, to put it in a more concrete form:

• Let t1, t2, . . . be the sequence of departure times from the system.

• Let Xn = N(tn+) be the number of customers left in the system immediately after the departure at time tn.

That means that this is the number in the system immediately after the departure of a customer at time tn.

• If Y (t) denotes the number of customers left-behind in the system by the most recent departure. That is,
Y (t) = Xn, tn ≤ t < tn+1.

Then Y (t) will give me the number of customers left behind in the system by the most recent departure.

▶
{
Y (t)

}
is a semi-Markov process having {Xn, n = 0, 1, ...} as its embedded Markov chain.

▶
{
(Xn, tn), n = 0, 1, 2, . . .

}
is a Markov renewal process.

▶ The sequence of intervals {tn+1 − tn, n = 0, 1, 2, . . . } being the inter-departure times of successive units (or
equivalently {tn, n = 0, 1, 2, . . . }) defines a renewal process.

Go back to your definition of renewal process; we have taken some IID random variables Xns and used it to
define Sn and used it to define the process, say {Y (t)}, which is a semi Markov process. So, here that tn+1 − tn

is what are those Xns and this tns is what correspond to those Sns and Y (t) = Xn, tn < t < tn+1 we are
defining it in this manner with semi Markov process. So, this is what you have here, so {Y (t)} is what is
the semi-Markov process that you are considering under this. So, {Y (t)} is the semi Markov process; this
{(Xn, tn), n = 0, 1, 2, . . . } is the Markov renewal process, or, equivalently, {tn+1 − tn, n = 0, 1, 2, . . . } is
the inter-departure times of successive units. This is what will constitute the renewal process; that is why here
we have Markov Poisson process arrival and a renewal service process; renewal service process means, this is
what the inter departure times are renewal process is what you have. Then basically, what you have is this semi
Markov process, and where Xn is given by N(tn+), and you think that you are defining this process {Y (t)}.
So, this {Y (t)} process is what is the semi Markov process connected with this M/G/1 queue is this one Y (t),
which is the number of customers left behind by the most recent departure that is semi Markov process that we
have here. So, this is what is the Markov chain that we are talking about. So, if I look at here Xn, then we know
this {Xn, n = 0, 1, 2, . . . } is the embedded Markov chain that is what we were looking for it. Now what we
will do? We will treat this {Xn} to study like what we can do with this and how one can analyze the M/G/1

queue based upon this {Xn}.

• Let An be the number of customers who arrive during the service time of the nth customer. Then, for all n ≥ 1.

Xn+1 =

Xn − 1 +An+1, Xn ≥ 1,

An+1, Xn = 0.
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Suppose if there is no customer was there in the system when the nth customer left. Then what would have
happened? First, one customer could have arrived at some point of time, and during then, the (n+1)th departure would
be the customer who arrived when an empty system was there, and his departure is what is (n+ 1)th departure. So,
what would be the number that he will be leaving behind in the system is exactly the number of customers who arrived
during his service time that is simply An+1. So, that is the relationship here, when Xn = 0. Suppose if leaves at least
one customer in the system when the nth departure happens, then when (n+ 1)th departure happens. So, the number
who were originally there at the point of time of nth departure was Xn, and when (n+1)th departure means out of this
Xn, 1 will depart. So, out of those Xn, Xn − 1 would be now the new number, but during this one customer who was
getting served during his service time, An+1 many number of customers would have arrived. So, the total number that
will be left behind by the (n+ 1)th customer is basically Xn − 1 +An+1. This is the recursive relationship between
the Xns; basically, the Xns are the departure point system sizes. Now we want to see that this is a Markov chain. In
general, it is easy to see if you know the Markovian theory that if Xn+1 is a function of Xn and some other random
variable that is independent of the past process of this Xns.

Then that will define a Markov chain; it is obvious because the evolution of this Xn+1 as long as this An+1 is
independent of this Xn − 1, Xn − 2, and so on. Then Xn − 1 +An+1 quantity, this whole evolution would depend
only on the what is the system state at the time n or what is the value of Xn and An+1 and An+1 has no relationship
with this past history of Xn. So, if that is the case, this will be a Markov chain that will be clear.

• We see that {Xn, n ≥ 1} is a Markov chain.
♦ Need to show that future states of the chain depend only on the present state – more specifically, we must show
that given the present state Xn, the future state Xn+1 is independent of previous states Xn−1, Xn−2, . . . .

• First observe that Xn+1 depends only on Xn and An+1. If An+1 is independent of Xn−1, Xn−2, . . . , then {Xn}
is a Markov chain.

• An+1 is the number of customers arriving during the service time of the (n+ 1)th customer.

Remember, what in the arrival process? Arrival process is a Poisson process, which has stationary increments
and independent increments. So, because of those properties, this An+1 depends only on the length of the service
time but does not depend on the events that occurred earlier, which means the queue size at earlier departure
points. Because whatever be the duration the past, what has happened, like how many arrivals is happening in an
interval of length t it depends only on the length t like; where this interval is positioned, it does not matter. So,
what has happened before the nth departure, what was the size and duration, it has no impact on the number of
customers who are going to arrive during this period. That is the independent increment property that helps you
to get. And where this interval is positioned is also because this station increment property is just the length of
the interval; that is all it requires.

▶ Thus, An+1 independent of Xn−1, Xn−2, . . . and hence {Xn} is a MC.

Of course, if this is the case, An+1 is independent of Xn − 1 and so on, and Xn+1 is a function of Xn and An+1.
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Then it is a Markov chain one can easily show in general that is what it is happening here. So, this is we have
shown that this is a Markov chain.

• We now derive the transition probabilities for this Markov chain

pij = P{Xn+1 = j|Xn = i}.

• The transition probabilities depend on the distribution of the number of customer who arrive during a service time.

Now, since the nth or n+ 1th or some kth customer, the index does not play a role in was for the distribution of
this service time because they are all IID. So, we drop the subscript An, and we consider A and S.

• Let S denote a random service time (with CDF B(·)) and A denote the random number of customers who arrive
during this time (we drop the subscript as the distribution does not depend on the index of the customer). Define,
for i = 0, 1, 2, . . . ,

ki = P{i arrivals during a service time} = P {A = i} =

∫ ∞

0
P
{
A = i|S = t

}
dB(t).

So, this is what you have obtained where we have written this as a Stieltjes integral. So, even if it is discrete
distribution or any other distribution, one can still write this nicely. But whenever the density exist, you can see
that dB(t) is equal to the density times dt, then it becomes an ordinary Riemann integral. As we said in the
beginning, itself like, most of the results, you will write in this form to make it uniform or fit in more general
situations. But now I have to find P{A = i|S = t}, but what is this probability, this S is fixed at t; I am looking
at A arrivals during an interval of length t.

• Note that A|S = t is a Poisson random variable with mean λt, and hence P
{
A = i|S = t

}
=

e−λt(λt)i

i!
giving

us

ki =

∫ ∞

0

e−λt(λt)i

i!
dB(t).

ki gives you now the probability of i arrivals during a service time is given by this expression. So, ki is an
important quantity in this analysis. So, you just remember that this is what you have you have obtained as ki.

• Then from the relationship between Xn’s, we get

pij = P
{
Xn+1 = j|Xn = i

}
=

P {A = j − i+ 1} , i ≥ 1

P {A = j} , i = 0

P{A = j − i+ 1} = kj−i+1, and P{A = j} = kj ; that is what we have just denoted here; that is what is this
particular case P{A = i} is what is ki. So, this is P{A = j − i + 1} = kj−i+1 and P{A = j} = kj . So,

pij = P
{
Xn+1 = j|Xn = i

}
=


kj−i+1, i ≥ 1, j ≥ i− 1

kj , i = 0, j ≥ 0

0, otherwise
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• We the have the following transition probability matrix

P = ((pij)) =



k0 k1 k2 k3 . . .

k0 k1 k2 k3 . . .

0 k0 k1 k2 . . .

0 0 k0 k1 . . .

0 0 0 k0 . . .
...

...
...

...


This matrix is called M/G/1 type matrix; in general, in queuing theory, this type of matrix is referred to as
M/G/1 type of matrix. So, this is the transition probability matrix of this embedded Markov chain in the case
of n M/G/1 queue. Now, this is what I obtained as pgf.

• Assuming that steady state is achievable ( which is basically when we have to put find out the condition under
which the system is ergodic, the necessary and sufficient condition for the steady-state to exist; which is the
usual condition of ρ < 1, which you are not going to prove, but you can assume that that is what is the case.), the
steady state probability vector π = {πn} is found in the usual manner as the solution of the stationary equations:

π = πP, πe = 1.

Writing down explicitly, these equations are

πi = π0ki + π1ki ++π2ki−1 + · · ·+ πi+1k0

= π0ki +

i+1∑
j=1

πjki−j+1, i = 0, 1, 2, . . .

• Now define the generating functions

Π(z) =

∞∑
i=0

πiz
i and K(z) =

∞∑
i=0

kiz
i (|z| ≤ 1)

• Multiplying the steady state equations by zi, summing, and solving (Exercise!) for Π(z) yields

Π(z) =
π0(1− z)K(z)

K(z)− z

Now, as we say, as usual, we need to determine what is this π0, for which we have to use the boundary condition
or the normalization condition that Π(1) = 1.

• Using the fact that Π(1) = 1, along with L’Hospital rule, and realizing that K(1) = 1 and K ′(1) = λ(1/µ), we
find that

π0 = 1− ρ (ρ = λE [S] < 1 is the condition for ergodicity)

and therefore we obtain finally

Π(z) =
(1− ρ)(1− z)K(z)

K(z)− z
.
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This is known as Pollaczek-Khinchin (PK) Formula or Pollaczek-Khinchin (PK) Transform Formula.

We will later see that we can write |Pi(z) in one more form again using transforms, but here both of them are z

transforms is what you see here. So, this is what is known as PK transform formula. So this is what you can go
as far as the analysis or the simplification of the process of obtaining the departure point system size probabilities
go. Now, what do you need? Once I know Π(z), I can obtain the PK mean value formula; like I can differentiate
Π(z), I can obtain the departure point, equilibrium, or mean values, and then you will get that that will be equal
too since we have already seen not shown. We are already observe said that this will be equal to arbitrary time
point. So, that will be the L in the general one as well, and hence other measures also one can obtain. So, how
do we then work out in such scenarios?

• Given the service time distribution B, we can obtain ki’s and hence K(z). Substituting this, we obtain Π(z), the
PGF of the distribution of the departure epoch system size. {πn} can then be obtained from its PGF.
▶ It is the case here that πn = pn.

You see here in this semi Markovian system what we have done? Though the process {N(t)} is semi Markovian,
one way to extract a Markov process, consider this {N(t)} along with the elapsed service time. Then together, they
form a Markov process; then, one can apply the Markov process theory, which is called the supplementary variable
technique. But instead of what we did, we looked at this {N(t)} process only not at all times, but at specific time
points, which are the departure epochs, and we could extract a Markov chain, and from the steady of this Markov
chain, we obtain for that corresponding Markov chain at those time points what is the system behaviour, whether it is
mean number or probabilities and so on. Now, if one can show that that system behaviour at those specific time points
would be probabilistically equal to the system behaviour at an arbitrary time point, then we have done the analysis
for the complete arbitrary time point analysis. So, for which what we need to see is that this whether this is true. We
repeatedly said that πn = pn, but how this pin = pn is what we will see now quickly.

• To prove that πn, the steady-state probability of n in the system at a departure point, is equal to pn, the steady-state
probability of n in the system at an arbitrary point in time.

• We begin by considering a specific realization of the actual process over a long interval (0, T ).

• Let N(t) be the system size at time t. Let An(t) be the number of unit upward jumps or crossings (arrivals) from
state n occurring in (0, t). So, you fix the state n. So, from the process N(t), how many times it crosses it is
going above n is what you are counting that is the number of the unit upward jumps from state n in (0, t) is what
you call it as An(t). Let Dn(t) be the number of unit downwards jumps (departures) to state n in (0, t). From
state n how many times it goes up is what you are counting this An(t) and to state n how many times it reaches
is what you are counting is what you call it as Dn(t).

• Since arrivals occur singly and customers are served singly, we must have

|An(T )−Dn(T )| ≤ 1. (1)

• Furthermore, the total number of departures, D(T ), relates to the total number of arrivals, A(T ), by

D(T ) = A(T ) +N(0)−N(T ). (2)
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So, N(0) is the initial number when you are starting the system at time 0. N(T ) is the current one. Number of
arrivals that has happened A of T plus N(0) was the initial one. So, A(T ) +N(0) was the total number who
were either in the system or arrived in (0, t), and N(T ) is the current number. So, the departure is essentially the
difference of these two.

• The departure-point probabilities are

πn = lim
T→∞

Dn(T )

D(T )
. (3)

• By adding and subtracting An(T ) from the numerator of (3) and using (2) in its denominator,

Dn(T )

D(T )
=

An(T ) +Dn(T )−An(T )

A(T ) +N(0)−N(T )
(4)

• Since N(0) is finite and N(T ) must be too because of the assumption of stationarity, it follows from (1), (4),
and the fact that A(T ) → ∞

lim
T→∞

Dn(T )

D(T )
= lim

T→∞

An(T )

A(T )
(5)

with probability one. Since the arrivals occur at the points of a Poisson process operating independently of the
state of the process,

• Since the arrivals occur at the points of a Poisson process operating independently of the state of the process, we
invoke the PASTA property that Poisson arrivals find time averages.

• Therefore the general-time probability pn is identical to the arrival-point probability an = lim
T→∞

An(T )
A(T ) , which is

in turn, equal to departure-point probability from (5).

• Thus, all three sets of probabilities are equal for the M/G/1 problem (i.e, an = pn = πn).

And hence what we have obtained so far, whether we look at the mean value formulas arrival point departure point
the departure point system size probabilities, will all be the same even if you consider at the arbitrary time point. So,
that is what you are seeing it here. So, all three sets of probabilities are equal for M/G/1 probability. So, what we
have obtained though it is a departure point system size probabilities; they can also be considered as the arbitrary time
point system size probabilities, arbitrary time point mean value formulas, and so on. Let us quickly take an example
before we close.

Example.
If we set the service time distribution as exponential, then M/G/1 should reduce to M/M/1.

Take B(t) = 1− e−µt, t ≥ 0 (and 0 otherwise). Then

ki =

∫ ∞

0

e−λt(λt)i

i!
dB(t) =

∫ ∞

0

e−λt(λt)i

i!
µe−µtdt

=
λiµ

i!

∫ ∞

0
tie−(λ+µ)tdt =

λiµ

i!

Γ (i+ 1)

(λ+ µ)i+1

=

(
µ

λ+ µ

)(
λ

λ+ µ

)i

, i = 0, 1, 2, . . .
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So, the number of arrivals during an exponential service time is what is geometric distribution.If you know like a
Poisson process, of course, if you have two independent Poisson processes, then also one can get in in this manner

easily, so that is what it is actually. Therefore, K(z) =
1

1 + ρ− ρz
, where ρ = λ/µ. Using K(z), we can obtain the

PGF Π(z) as

Π(z) =
(1− ρ)(1− z) 1

1+ρ−ρz
1

1+ρ−ρz − z
=

(1− ρ)(1− z)

(1− z)(1− ρz)
=

1− ρ

1− ρz
,

which is the PGF in the M/M/1 model (equal to P (z)), as required.

Even if you have some other distribution here, this is the process that you need to follow. ki either you find directly
K(z), or you obtain ki, and then you find K(z). Now once I obtain K(z) given the service time distribution, I can
obtain K(z). K(z) substitute in this PK transform formula to get Π(z). Now extract from this to get the system size
probabilities. So, that is the way one does the analysis with respect to the M/G/1 model.

So, we will stop the discussion of M/G/1 model at this point of time which is basically we what we have
considered is the PK mean value formula PK transfer formula, we are given to obtain the mean values as well as the
system size probabilities. So, given any service time distribution now, you can think about any arbitrary service time
distribution; it could be one-point distribution, two-point distribution, or a discrete distribution, continuous distribution,
or anything you can think about it. This is the steps that you will follow to arrive at Π(z); how complex is that depends
on the distribution that you are picking it up. So, in this case, for example, it is very easy; it is exponential; we wanted
to show that this formula reduces to the exactly same formula corresponding to M/M/1 case. So, that is what we have
done here. So, we will stop here; we will continue with our discussion further some more ideas of M/G/1 in the the
following lectures.
Thank you.

11


