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Hi and hello, everyone. What we have seen so far are Markovian Queueing models, which are basically nothing
but queueing systems modeled by a continuous-time Markov chain. We have seen that there are enough of such
models themselves to actually model many of the related systems in a more realistic manner, especially when you
generalize, to say, a phase-type distribution or something like that, and all features can also be studied. But still,
what it is the case that they can be viewed as if they are the special cases of some Markov processes, analysis of
some Markov processes, though the analysis that we carry out are within the context of queueing systems. So, that
is that is what we have seen so far, whether it is BDP-based queueing models or more general Markovian queueing
models, or Markovian network-based models. All these models are all basically built on are based on the Markov
processes, or Markov chains, especially the CTMC, except the discrete type model was basically the DTMC model.
Now, then all the theory that you developed in Markov chain were basically used to study this. But now, what we
are going to do is that we are going to go a little bit beyond purely Markovian models to what are we call as semi
Markovian models, where we still retain some amount of Markov property there in the whole process, but it is not
that a fully Markov process. So, we will see I mean, as we go along, you will understand what this exactly means.
To understand that, we need to extend our knowledge of Markov process to beyond something called, as you know,
semi Markov processes. Now, that is what we are going to do as a stepping stone; what basically we define or
consider for our analysis are what are called as renewal processes. And this renewal processes, in fact, played a
good role in proving certain results of Markov process as well. Say, for example, you have seen that whenever the
stationary distribution exists, the probability that you find the system state is n is 1/mean recurrence time; the mean
recurrence time is what then you have. So, that result basically follows immediately from a result of this renewal process.

So, like that, there are some books like Ross, for example; they first treat renewal processes, then they come to
Markov process so that the proofs become easier and so on. So, this is also an important process, but in our context,
this is an important process with respect to queueing models, in the way of generalizing our queueing models from the
Markovian queueing models to something more general. So, we will give some definitions and some basic ideas about
these processes before we actually jump into the semi Markovian queues. Let us start with what we call as renewal
process. What is a renewal process? It is; basically, we are first defining it before we look at anything else. So, this is
what is the definition.

Definition. Let {Xn, n = 1, 2, . . .} be a sequence of non-negative independent and identically distributed random
variables with distribution function F and finite mean µ. Define the sequence {Sn, n ≥ 0} by

S0 = 0, Sn = Sn−1 +Xn = X1 +X2 + · · ·+Xn, n ≥ 1
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The random variable Sn is called the nth renewal time, while the time duration Xn is called the nth renewal interval.
Further, define the random variable of the number of renewals until time t by

N(t) = sup {n : Sn ≤ t}

Then the continuous-time process {N(t), t ≥ 0} is called a renewal process with distribution F (or generated or
induced by the distribution F ).

So {N(t), t ≥ 0} is what is called the renewal process; here, the interest is mainly in the number of events that are
happening. You can think you can associate this with number of certain kinds of an event happening. And this Xn is
basically you can think of it as if the time between the consecutive events is what this Xn’s denote and this Sn will
give you the time of the nth event. And this N(t) would define the number of events happened by the time.

Now, you can associate, for example, with respect to our queueing model itself if you think of it as an arrival.
If you think of it as an arrival that, Xn is the inter-arrival time, Sn is the time for the nth arrival, and N(t) is the
number of arrivals by time t is what then you can think. So, in general, the word which is used is these renewals.
We may also say that {Xn} defines a renewal process, and some authors also say that {Xn} itself is the renewal process.

Because in this definition, once Xn’s are specified, then Sn = X1+X2+ · · ·+Xn, and then N(t) you are defining
in terms of Sn, which is basically in terms of Xn. So, one can define this process {N(t)} as a derivation of that, so
{Xn} itself one can call it as a renewal process.

So, what we have here, suppose if you look at the timeline here. So, this is 0. So, this is time I can call this as
S1; this is S2, this is S3, this is S4, and so on; then this interval is basically what X1, this is X2, and this is X3, and
this is X4 and so on. So, that is what you have here. Now, you see here this is what is the given X1, X2, X3, X4,
which are all IID and positive; S1, S2, S3, S4 are the partial sums of this sequence you can say; then N(t) is basically
sup{n : Sn ≤ t} Suppose if I pick a t here, say, for example, here. Suppose if my t is somewhere here; suppose if I call
this as my t, then the N(t) is here. Suppose if my t is here, then the maximum of {n : Sn ≤ t}, this set n, such that
Sn ≤ t is 0, it is empty set, so the max supremum of that is 0 with the convention that we follow. So, N(t) is 0. So,
you will get if t is here, it is 0. If t is here, then you can see the maximum of n; see this is S1 ≤ t is satisfied. So, the
set is nonempty, and n is 1, but n 2 is not there, so it is only 1. So, N(t) = 1. So, here N(t) = 2; because for S1 also
this will be true, and for S2 also this will be true; for S3, this will not be true. So, my N(t) = 2 in this interval for any t

in this interval. Now, in this interval, suppose if since I am taking this t here. So, my N(t) = max{1, 2, 3}. So, if you
want to include 0, you can include 0 no problem; otherwise, you can see this thing here. So, N(t) = max{1, 2, 3} = 3

is what then you will get here. For any t in this interval, my N(t) will be the maximum of n’s. So, n is 1, 2, 3. So,
N(t) = max{1, 2, 3} = 3. So, basically, N(t) gives you the counts the number of renewals that have happened by
time t see this is what is the number of renewals has happened; because the fourth renewal happens or the fourth arrival
happens after time t which is what you have taken as this point here. So, this is what is the renewal process. So, this
is what it is again; you can think about it. Now, you can easily correlate this with your Poisson process; if I take my
Xi’s to be IID exponential, this is nothing but your Poisson process. Rather than taking any nonnegative IID with
distribution function F , if I take an exponential, then what you are going to get or what you have got is basically the
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Poisson process. So, this is, in a way generalization of this Poisson process; by removing that, we will just see that now.

Now, if Sn = t for some n, then renewal is said to occur at time t, and hence Sn gives the time or epoch of the nth
renewal and is called the renewal epoch, a regeneration epoch; mainly renewal epoch, regeneration because of some
other reason, but I mean called so, which we will see little later, we will see why this word is also used. So, this N(t)

gives the number of renewals occurring in [0, t]. This Xn is the inter-event time or waiting time between the (n− 1)st

and nth renewal. So, inter-event times are IID; that is what now we have seen.

Now, the Poisson process is the unique renewal process with Markov property; because we have seen from this kind
of picture, we are drawn for the Poisson process as well, you can see that you can easily relate to it. This generalization
of the Poisson process means that the renewal process is a generalization of the Poisson process. And if the renewal
process is obtained, if you remove the restriction of exponentially distributed holding times and by considering that the
inter-event times are any general IID nonnegative random variables, if you consider so, then what you get is renewal.
So, between the Poisson process and the renewal process, this is the difference you have here.

So, any example that we have considered so far Poisson process arrivals happen, departure happens; wherever you
got this exponential, if you remove, if you remove that exponential assumption and you replace with any IID positive
random variable with the distribution function F and mean µ, then what you are going to get is a renewal process, that
is the model that we have it in mind.

Example.
Consider a stage in an industrial process relating to production of a certain component in batches. Immediately on
completion of production of a batch, that of another batch is undertaken. Suppose that the times taken to produce
successive batches are IID random variables with distribution F . We get a renewal process with distribution F .

If you take arrivals, the inter-event times arrivals, if it is the case, then you can think of that as in the arrival context,
in the queueing context that as a renewal process. If you take the service process; the duration of the service, the
service times are all any positive IID random variable, then the service process is a renewal process. Any other process
that we have considered, be it working vacation or anything, that wherever exponential is there if you can replace
this, then what you get is the corresponding renewal process models. Of course, one has to look at how one can
analyze such models, which we will come to a bit later; but as a way of generalizing the model, if you can think of a
Markovian model, where the Poisson process is exponential distribution is there if you replace with, then what you get
the corresponding renewal processes, that is the way. How to handle such a process and how to analyze it is another
question that we have to look at.

• We will always assume that P{Xi = 0} = 0. The strong law of large numbers implies that Sn/n → µ with
probability one as n → ∞. Hence Sn < t cannot hold for infinitely many n and thus N(t) is finite with
probability one.

• We have the distribution function of Sn, for n ≥ 1 as Fn(x) = P {Sn ≤ x} = Fn∗(x), where Fn∗ is the n-fold
convolution of F with itself.
▶ The above follows from the fact that, if X and Y are independent and distributed according to CDFs F and G,
respectively, it has a different distribution function; just for the sake of consideration, you consider that these are

3



F and G. Then

P{X + Y ≤ t} = F ∗G(t) =

∫ t

0
G(t− u)dF (u), for all t ≥ 0.

In discrete random variables, it is summation say p and r are the PMFs of these random variables; then we know∑
i

p(n− i)r(i) is what is the quantity that you will have, which is exactly the same thing in this particular case

with respect to the distribution function which you write, this is what we call it as the convolution. Now, what is
Fn∗(x)? This is n-fold convolution;

∫ t
0 G(t− u)dF (u) is two-fold in a way, so this n-fold convolution is what

then you get. Of course, if you are working in the transform domain, in this particular case, this is nothing but
the nth power of the transform of the random variables Xi’s. But when you are working in the time domain, this
will become the n-fold convolution; that is what it is.

• It can be shown that lim
t→∞

N(t)

t
=

1

µ
holds with probability one. Therefore, the quantity 1/µ, here you have to

be careful, this mu is different from in Poisson process λ or µ that we have used, (i.e., the inverse of the mean
length of a renewal interval) is called the rate of the renewal process.

If you want to call say something as the rate of the renewal process, much like the case that you had for in the case
of the Poisson process, then you would call this 1/µ, where µ is the mean of the inter-event times or in that renewal
times. So, that 1/µ is what you call the rate of the renewal process. So, we have to remember that the distribution
function this Fn, which is basically of Sn, is basically given by the n-fold convolution of the distribution function of X
because Xn’s are IIDs. So, that is what we are going to construct, and we will see what that is and so on.

• Observe that {N(t) ≥ n} ⇔ {Sn ≤ t} (or equivalently {N(t) < n} ⇔ {Sn > t}).
Therefore, the distribution of N(t) is given by

pn(t) = P
{
N(t) = n

}
= P

{
N(t) ≥ n

}
− P

{
N(t) ≥ n+ 1

}
= P {Sn ≤ t} − P {Sn+1 ≤ t} = Fn(t)− Fn+1(t)

= Fn∗(t)− F (n+1)∗(t).

• The function M(t) = E(N(t)) is called the renewal function of the renewal process with distribution F . The
renewal function plays a fundamental role in renewal theory. The expected number of renewals in [0, t] is given
by

M(t) =

∞∑
n=0

npn(t) =

∞∑
n=0

n
{
Fn∗(t)− F (n+1)∗(t)

}
=

∞∑
n=1

Fn∗(t)

= F (t) +
∞∑
n=1

F (n+1)∗(t).

• Now, observe that
∞∑
n=1

F (n+1)∗(t) =

∞∑
n=1

∫ t

0
Fn∗(t − x)dF (x) =

∫ t

0


∞∑
n=1

Fn∗(t− x)

 dF (x), assuming

that interchange of summation and integration is valid.

• Substituting the above in M(t) above, we get the fundamental equation of renewal theory or renewal equation
given by

M(t) = F (t) +

∫ t

0
M(t− x)dF (x).

4



So, the renewal equation is nothing but the integral equation; here, this is an integral equation because M(t) is
the one you need to determine, and this M(t) appears inside this integral and also outside. So, this is an integral
equation. So, this is the integral equation satisfied by the renewal function, what is called the renewal equation or
the fundamental equation of renewal theory.

In the study of the renewal process, the major portion is concerned with the properties of this M(t), and from
there, what is the inference that you can give with respect to the renewal process also.

• Renewal theorems (elementary renewal theorem, Blackwell’s theorem, key renewal theorem) involving limiting
behaviour of M(t) are powerful results in renewal theory and are important from the point of view of applications
(Refer to any standard text, like Ross).

Of course, we require that much, so we just start going into details and also for lack of time. For interested
people, you can always refer to this.

So, the renewal function means M(t) = E(N(t)), and the renewal function satisfies M(t) = F (t) +
∫ t
0 M(t−

x)dF (x) renewal equation. So, once I have this renewal equation, you can write the solution of this also; the solution
will be in terms of again renewal function and so on, so that is a different matter. Now, the two quantities here that are
of interest and will have to be handled carefully compared to our earlier models are called residual life types and excess
lifetimes. So, basically, what do we have?

• We consider two random variables of interest in renewal theory. For any given t > 0, there corresponds a unique
N(t) such that

SN(t) ≤ t < SN(t)+1

{
i.e. t falls in the interval XN(t)+1

}
• The residual (or excess) lifetime at time t is given by the time from t to the next renewal epoch, i.e.

Y (t) = SN(t)+1 − t {It is also called forward recurrence time at t}

• The spent (or current) lifetime or age time t is given by the the time to t since the last renewal epoch, i.e.

Z(t) = t− SN(t) {It is also called backward recurrence time at t}

So, if I look at the diagram here, basically, this is my SN(t), and this is my SN(t)+1, and if I call this as t, then
this quantity is what you call it Z(t), and this is you call it as Y (t). So, that is what we are saying here. So, this
is also called age; because this is what is happening, also called backward recurrence time.

• The total lifetime at t (or length of the lifetime containing t ) is given by

Y (t) + Z(t) = SN(t)+1 − SN(t) = XN(t)+1.

You can think about this in the queueing context as well. Suppose if you are thinking about this arrival, the same
thing with service or anywhere even, but let us stick to arrivals here. So, if the events that we are talking about here are
arrivals, that means there is an arrival here at this point, there is an arrival at this point, this is your current time. So, this
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Z(t) would then denote that it is the elapsed time since the last arrival, and this is the time to the next arrival from the
current time point. Now, in the Poisson process case or in the Markovian queueing models’ case, when we associate
this relationship for the time interval, the first one the arrivals at any given point of time; because of this memoryless
property, this distribution is that whether you are looking at is Z(t) or Y (t), they are all like simply exponentials. So,
this mainly we will be interested about time for the next arrival, so that will be exponential because of the memoryless
property. So, that is the reason there you had, but here since it is exponential distribution is the only distribution that
has the memoryless property. So, you do not expect; that when you assume a general distribution for inter-arrival times
or service times, you do not expect that exponential property to hold here. So, we need to consider this exclusively if
we are interested in, say, residual lifetime or an excess lifetime, and so on. So, this will play a critical role wherever, for
example, wait in time computation; at whatever time it is you are arriving, now the time when the last customer arrived
and time now, like in the earlier case what we did? You just counted in front of you how many customers are there;
you just summed up them, all of them are basically exponential. Suppose if it is not, if it is service is happening with
respect to general distribution, then you have to compute the remaining service time for the customer who is currently
in service and add up to the remaining ones who are waiting in the queue. So, you have to split that into this case. Now,
to compute that, you need the distribution of the remaining service time, which is basically this Y (t) process. So, that
is where the modification will come, and hence this is important in the analysis; if you are using a renewal process as
opposed to a Poisson process for arrival or service and so on. Now, before we talk about its distribution, we define this
notion of what is called as a random variable or its distribution function being lattice. What do we mean?

• These random variables Y (t) and Z(t) arise naturally in queueing contexts (e.g., arrivals, departures).

• Definition: A non-negative RV X (and also its CDF F ) is called lattice if there is a positive number d > 0 with
∞∑
n=0

P{X = nd} = 1. If X is lattice, then the largest such number d is called the period of X (and F ).

• The distribution of Y (t) can be obtained as

P{Y (t) ≤ x} = F (t+ x)−
∫ t

0
[1− F (t+ x− y)]dM(y), x ≥ 0 [and 0 for x ≤ 0].

If F is non-lattice, then the limiting distribution of Y (t) is

P{Y ≤ x} = lim
t→∞

P{Y (t) ≤ x} =
1

µ

∫ x

0
[1− F (y)]dy, x ≥ 0.

• Noting that {Y (t) > x} = {Z(t− x) > x}, the distribution of Z(t) can be deduced as

P{Z(t) ≤ x} =


0, x ≤ 0

F (t)−
∫ t−x

0
[1− F (t− y)]dM(y), 0 < x ≤ t

1, x > t

If F is non-lattice, then the limiting distribution of Z(t) is

P{Z ≤ x} = lim
t→∞

P{Y (t) ≤ x} =
1

µ

∫ x

0
[1− F (y)]dy, x ≥ 0.

• When these exist, the two limiting distributions Y and Z are identical. It can be easily verified that for exponential
Xi, the distributions of Y (t) and Z(t) are again exponential with the same mean µ = E (Xi).
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• The mean of Y and Z can obtained as E(Y ) = E(Z) =
E(X2

i )

2E(Xi)
.

• If F is a lattice distribution, then the distributions of Y (t) and Z(t) have no limits for t → ∞ except in some
special cases.

Now, some generalizations of this renewal process. So, let us look at here what is called first a delayed or modified
renewal process.

So, if we start with the process at time 0, if there is a renewal that happens, and if the process is continuing, then it
is the ordinary renewal process, which is the case. For example, if you have a tube light or bulb which you are installing
for the first time and then, from then you are counting the time of its failure, the next renewal, renewal, renewal so and
so on it goes on. Rather if you are counting, for example, the bulb was installed at some point of time; you do not know
when, but now you are starting your count at this point of time. So, the bulb was in operation for some time before. So,
you are starting at this point of time; the bulb will fail after some time. So, basically, this the first one then is not the
same as the subsequent ones; because this is not the point of renewal, this is the point of non-renewal; like renewal
happened sometime before, which you do not know, you did not capture. So, at this point, only you are observing.

• Delayed (modified) Renewal Process: First, suppose that the first inter-arrival time X1 (i.e. time from the
origin upto the first renewal) has a distribution G which is different from the common distribution F of the
remaining inter-arrival times X2, X3.... i.e. the initial distribution G is different from subsequent common
distribution F . We then get what is known as a modified or delayed renewal process. Such a situation arises
when the component used at t = 0 is not new. When G ≡ F , the modified process reduces to the ordinary
renewal process.

• Alternating renewal processes. Consider a stochastic process
{
X(t), t ≥ 0

}
with state space {0, 1}. Suppose

the process starts in state 1 (also called the ’up’ state). It stays in that state X1 amount of time and then jumps to
state 0 (also called the ’down’ state). It stays in state 0 for Y1 amount of time and then goes back to state 1. This
process repeats forever, with Xn being the nth up time, and Yn the nth down time. The nth up time followed by
the nth down time is called the nth cycle.

Example.
We consider the working of a component, the lifetime (or time to failure) being given by a sequence {Xn} of IID
random variables, on the assumption that the detection of failure and repair or replacement of the failed component
take place instantaneously. Here the corresponding system has only one state-the working state and a renewal occurs at
the termination of a working state (ar failure af a component).

Consider now that the detection and repair or replacement of a failed item are not instantaneous and that the time
taken to do so is a random variable. The system then has two states-the working state and the repair state (during which
repair of the failed component or search for a new one is under way). Here the two sequences of states-the working
states and the repair (failed) state alternate. Suppose that the duration of the working states (or lifetimes or limes to
failure) are given by a sequence IID random variables and the duration of repair states (times taken to repair or search)
are given by a sequence of IID random variables. We have then an alternating renewal processes or two-stage renewal
process.
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So, this is a what all about renewal process that we want to get some idea about; basically, what is the renewal
process, how this is connected with other processes that we have seen earlier. A Poisson process is a Markov process;
whenever you have this, the renewal intervals or IID exponential, it becomes a Markov process and Poisson process
especially. So, this is a generalization of what we have considered. And then the additional notion required in the excess
lifetime mainly, its remaining lifetime or time for the next arrival in our context; a time for the service completion of
the ongoing service, when you look at an arbitrary time is what these quantities are in effect. So, this is what one has to
consider and how we will consider everything that we will do as we go along. So, this is about the renewal process. So,
the semi Markov process thing like we will take it up in the next lecture.
Thank you, bye.
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