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Hi and hello, everyone. What we have been seeing so far is the Closed Jackson Network or Gordon-Newell
Network. We have seen the basic theory and how it is different or how one can analyze that based upon our analysis of
the open Jackson network that we have done earlier. And we have seen an example.

Example.

• The steady state joint probability distribution is given by

pM−m,m =
1

G(M)
ρM−m
1 ρm2 , m = 0, 1, 2, . . . ,M.

We must find ρi from µiρi =
k∑

j=1

µjrjiρj . Here, the routing matrix R is R =

(
q 1− q

1− p p

)
and hence the

traffic equations becomes

µ1ρ1 = µ1qρ1 + µ2(1− p)ρ2

µ2ρ2 = µ1(1− q)ρ1 + µ2pρ2

Since these equations are linearly dependent, as we know already, we can set one of the ρi’s to 1 and solve for
the other.

Set ρ1 = 1. Then, from the second equation, we get ρ2 =
1− q

1− p

µ1

µ2
.

In that example, one thing I just want to point out here is this particular point. If you look here, the traffic equation

is given by µiρi =
k∑

j=1

µjrjiρj , in terms of rhoi. But now, it may be a little awkward to use the same ρi because we

have been using this ρi for denoting the utilization factors. In this form, if you directly look at everything properly like
it will, it may be of that, but here it is not exactly equal to ρi of the actual utilization of the thing, but it is relative to
that. Because we are setting, for example, in this particular case ρ1 = 1, we are setting.

We know that may not be the case here in general for any network. But the ρ2; then we are obtaining in terms of
that. Suppose, if you set rho2 = 1, then ρ1 would be some other value. So, it is relative. So, this relative thing will be
taken care of when actually you are computing the G(M), when you are actually computing pM−m,m like it will not
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make a difference.

But, if you want to interpret this ρ as the actual utilization, that is not correct. So, it can be less than 1 or more than

1; yeah, as you can see from ρ2 =
1− q

1− p

µ1

µ2
, for example, for certain values of p, q, µ1, µ2, like this may even be more

than 1 or less than 1. But what we are saying is we are it is just relative to this 1, we are which we are fixing it. That is
what we have to keep remembering.

So, this is not really the actual throughput or actual utilization. I mean throughput in the sense λi’s corresponding
ones, but this is the relative utilization is what this ρi. So, never interpret that as such is actual. So, that is why some
books like they use a different notation for this ρi rather than using ρi as we are using it here. But from the context of a
closed queuing network, you just have to keep in mind that this is not actually the actual utilization, but it is a relative
utilization that we have here.

Let us look at one more example here, which is basically what we have in the text as well; the two-machine
three-node closed queuing network because the example that we are going to see is going to come again and again.
So, just pay attention to this because in the remaining complete portion, whether this algorithm that we are going
to introduce, we are going to come back to this example only, and we are going to talk about its implementation
aspects. So, that is why this particular example is important. The previous one we have given because, in a simple node
situation, you may have more different; for example, this

network that we have, is a single server queue. So, for a single server, one can have much more quite neat results
for various other quantities like what we have had here G(M−1)

G(M) , for example, these ρ2
G(M−1)
G(M) kinds of quantities that

we have had. You can write more, but in general, it will be difficult to give that. But our concern is only obtaining the
joint distribution. So, we will confine to that.

So, let us look at it here. This is what we call as a two-machine three-node Closed Jackson Network or Gordon-
Newell Network.

Example. [Two-Machine Three-Node Closed Network]

• Two special-purpose machines are in operating condition and they need to be maintained in that position at all
times. The machines break down according to an Exp(λ) distribution.
▶ Call this operating node as node 1.
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• Upon failure, a machine
▶ has a probability of r12 being repaired locally (node 2) by a single repairman with repair times following an
Exp(µ2) distribution, or
▶ must be repaired by the single specialist (node 3) with probability 1− r12 who works according to an Exp(µ3)

distribution.

• After the service completion locally, the machine may require specialist attention with probability r23, or return
to operation with probability 1− r23.

• After the special service (node 3), the unit always returns to operation (r31 = 1).

• Here at node 1, the servers are machines, so c1 = 2 with the mean service (or holding time) at node 1 is the mean
time to failure of a machine. This means that µ1 = λ.

So, if you depict this diagrammatically

So you have really node 1, you have two machines which are in working condition which is with rate λ, it will
fail. Now, once it fails with probability r12, it goes to node 2, which will take an exponential amount of time for the
local repair. Then after which, either it can move to node 3 for specialist repair, which will happen with probability
µ3, or it can come to the operating node with 1 − r23. Similarly, from here, once the machine fails, it can also go
for specialist repair with this probability, but after repairing in the specialist repair facility, the machine will come
to operating condition. So, this is with probability 1; you have this node. So, this is what we had here. Really, like
there is no queuing happens here. Just for the completion sake, we have put this. But as you see, there are two servers
or a maximum of 2; what you call 2 servers are there and two machines only, 2 customers only. So, both can be
accommodated here. Whereas here, there could be a possibility that one is being repaired, the other is waiting for
repair; one is being repaired other is waiting for the repair. But here it will be both. So, there is actually there is no
queue. But we are just depicting it because we are allowing it, no problem. But there is no queue happens there actually.
This is what the model is. Now, what do we have to do?
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Example.

• The steady state joint probability distribution is given by

pn1,n2,n3 =
1

G(2)

ρn1
1

a1(n1)
ρn2
2 ρn3

3 , ni = 0, 1, 2; i = 1, 2, 3,

where a1(n1) = 1 for n1 = 0, 1 and a1(2) = 2. We must find ρi from µiρi =
k∑

j=1

µjrjiρj .

Here, the routing matrix R is

R =

 0 r12 1− r12

1− r23 0 r23

1 0 0


and hence the traffic equations becomes

λρ1 = µ2(1− r23)ρ2 + µ3ρ3

µ2ρ2 = λr12ρ1

µ3ρ3 = λ(1− r12)ρ1 + µ2r23ρ2

Example. Since these equations are linearly dependent, as we know already, we can set one of the ρi’s to 1 and solve
for the rest.

Set ρ2 = 1. Then, from the second equation, we get ρ1 =
µ2

r12λ
. Substituting these two into the third equation, we

get

ρ3 =
λ(1− r12)

µ3

µ2

λr12
+

µ2

µ3
r23 =

µ2(1− r12 + r12r23)

r12µ3
.

We thus have the steady state solution for the closed network as

pn1,n2,n3 =
1

G(N)

(
µ2

r12λ

)n1 1

a1(n1)

(
µ2(1− r12 + r12r23)

r12µ3

)n3

, n1, n3 = 0, 1, 2.

The normalizing constant G(N) can be obtained by summing pn1,n2,n3 over all cases for which n1 + n2 + n3 = 2.
♦ There are six cases in total: (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1).

Now, like if I evaluate these quantities for each of these cases and I sum it up to express what is going to be my
G(N) here. So I can obtain the normalization condition appropriately. So, that is how you handle this. So, you have
for this network. Now, for illustration purposes, for easy understanding, and then going forward as well, let us take
some specific values for the parameters.
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Example. [Illustration]

• Assume λ = 2, µ2 = 1, µ3 = 3, r12 =
3

4
, r23 =

1

3
. Then, the joint distribution is

pn1,n2,n3 =
1

G(N)

(
2

3

)n1 1

a1(n1)

(
2

9

)n3

,

where G(2) is computed to be

G(2) =

(
2

3

)2 1

2
+ 1 +

(
2

9

)2

+
2

3
+

2

3

2

9
+

2

9
=

187

81
= 2.3086.

n̄ (2,0,0) (0,2,0) (0,0,2) (1,1,0) (1,0,1) (0,1,1)

pn̄ 0.0962 0.4332 0.0214 0.2888 0.0642 0.0962

So, once we obtain this distribution, then marginals, the mean number in the system, everything can be obtained
from this. But there are certain facts; I mean, if these were the parameter values, then there are certain facts that
you need to look at with respect to the values as you always look at.

• Only 9.62% of the time, both machines are operating.

• At least one machine available for 44.92% of the time.

• Performance not up to the mark. Decide how to improve!

So, this is with respect to these particular values, but what we are looking at is how we are getting this and how we
are implementing this. So, that is what then you are obtaining here with respect to this particular example that we have
here. So, this example, we will keep coming back and remember this particular slide where we have the distribution, as
well as the probabilities, given. So, this part is what you will come back to again and again. In the previous example,
because it was a two-node, the computation of the normalization constant, which is basically G(N), was relatively
easier. In this case, because there are two customers only and even though there are three nodes, things were not that
difficult; a naive computation can give easily. But in practice, this is not that easy to compute. The main computational
difficulty when you are trying to obtain the joint distribution of the number in the system in the whole network is
connected with the evaluation of this G(N). Up to this; the process is the same. Now, G(N) is this way of evaluating
by enumerating all such possibilities. Here it so happened that n1 + n2 + n3 = 2 gave rise to only 6 states. So, you
can evaluate all the 6 states what was going to be, and then you can compute this G(2) directly. But it may not be that
simple in general.

• In Gordon-Newell networks, the joint probability distribution is determined in terms of the normalization constant
G(N).

• In the examples considered so far, the ’naive computation’ approach of calculating G(N) was easy. But, this is
not the case in general.
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• For large N and k (i.e., for large networks), there are many possible ways to allocate N customers among the k

nodes (it is actually
(
N + k − 1

k − 1

)
ways which is of order Nk−1).

So, you can imagine if N is large or k is large, what would be the number of states that might come.

▶ Calculations also become prone to numerical errors.

• Efficient algorithms are needed to make the computation of G(N) easier (and less prone to numerical errors).

• Buzen (1973) developed an efficient algorithm to compute G(N) recursively, using a total of Nk multiplications
and Nk additions (single server case - which is a significant improvement).
▶ Very useful for larger networks.

Again, we trust that it is very useful for larger values. In smaller networks, with smaller values of N and k, we
have seen that it can be done very easily, it is not very complex, but for large networks, this is. So, what is this
algorithm is, that is what we will see, how we can compute this G(N).

• We will now describe Buzen’s Algorithm or Convolution Algorithm.

So, let us call this factor which is the product factor in the product form solution; whatever is the product term, let
that factor be called as fi(ni). So, here we are writing it for, in general, for a multi-server case. If you specialize
this algorithm to a single-server case, then you can get some more expression, some more neat results as well
for certain performance quantities of interest as well. But since that was not our interest mainly. So, we restrict
ourselves to, I mean, or we take it in the generality of multi-server case. So, we retain this factor. By the way,
this algorithm is also called as the convolution algorithm because the factor coming out is basically convolution
form it will come into this case.

• Let fi(ni) =
ρni
i

ai(ni)
where ai(ni) =

ni! ni < ci

ci!c
ni−ci
i ni ≥ ci

.

Then, the normalization constant G(N) can be written as

G(N) =
∑

n1+n2+···+nk=N

k∏
i=1

fi(ni).

• Now, define an auxiliary function

gm(n) =
∑

n1+n2+···+nm=n

m∏
i=1

fi(ni). (i.e., with m nodes & n customers).

• Observe that we have G(N) = gk(N). We now set up a recursive scheme to calculate G(N).

Now, what we will do is that the algorithm is basically aimed at the computation of gm(n) in a recursive way. So,
that is a scheme that we have to figure out what is the recursive scheme that we can have.
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• Take gm(n) and fix nm = i. Then, we have

gm(n) =
n∑

i=0

 ∑
n1+···+nm−1+i=n

m∏
j=1

fj(nj)


=

n∑
i=0

fm(i)

 ∑
n1+···+nm−1=n−i

m−1∏
j=1

fj(nj)


=

n∑
i=0

fm(i)gm−1(n− i), n = 0, 1, . . . , N.

• Note from the above that g1(n) = f1(n), for n = 0, 1, 2, . . . , N , and gm(0) = 1, for m = 1, 2, . . . , k. These
form the starting conditions.

• The above relationship of the auxiliary function can then be recursively used to calculate

G(N) = gk(N).

• The algorithm is efficient for large networks.

We will see simple examples only where you may not see the power or utility of this algorithm, but in practice, this
is quite useful for large networks. And there is nothing like 1 node, 1 customer, 2 customer network, which is much
easier to even observe. You do not really need a lot of whole stuff of this kind of queuing analysis to be done, and only
when you have a large number of systems that you have here.

• These functions also helps us in calculating the marginal distributions as well.

• Suppose that we want pi(n) = P{Ni = n}.

Let Si = n1 + n2 + · · ·+ ni−1 + ni+1 + · · ·+ nk. Then

pi(n) =
∑

Si=N−n

pn1,n2,...,nk
=

∑
Si=N−n

1

G(N)

k∏
i=1

fi(ni)

=
fi(n)

G(N)

∑
Si=N−n

k∏
j=1,j ̸=i

fj(nj), n = 0, 1, 2, . . . , N

In general, this may be cumbersome to compute. But for node k, the expression simplifies to

pk(n) =
fk(n)

G(N)

∑
Sk=N−n

k−1∏
j=1

fj(nj) =
fk(n)gk−1(N − n)

G(N)
, n = 0, 1, 2, . . . , N

To find other marginals, permute the node of interest with k (requires resolving some of the functions gm(n)).

If there is only one marginal distribution, then you can set that as the last node, and then you can do the computation.
But if I want more than that, then this way of doing it would be difficult; there are efficient ways, but we are not getting
into that. So, there are efficient ways, even with little modification to this process, that one can get the marginals. But
what is the crux here, or what is the thing that you are taking away from here is that these quantities, that auxiliary
functions that we defined, in the convolution algorithms or Buzen’s algorithm, also help us to compute the marginal
distribution. That is what you have to take. Now, let us see how this algorithm can be implemented for the example that
we just did the two-machine three-node model.
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Example. [Two-Machine Three-Node Closed Network - Illustration - Revisited]

• First, the factors fi(ni) are

f1(0) = 1, f1(1) =
2

3
, f1(2) =

2

9
, f2(0) = f2(1) = f2(2) = 1, f3(0) = 1, f3(1) =

2

9
, f3(2) =

4

81
.

So, once you obtain this, then your algorithms can start.

• The gm(n)’s are given by

G(2) = g3(2) =

2∑
i=0

f3(i)g2(2− i) = f3(0)g2(2) + f3(1)g2(1) + f3(2)g2(0)

and

g2(2) = f2(0)g1(2) + f2(1)g1(1) + f2(2)g1(0)

g2(1) = f2(0)g1(1) + f2(1)g1(0)

with the starting conditions

g1(0) = f1(0) = 1, g1(1) = f1(1) =
2

3
, g1(2) = f1(2) =

2

9
, gm(0) = 1,m = 1, 2, 3.

Example. • Calculations give us

g2(1) = 1 · 2
3
+ 1 · 1 =

5

3

g2(2) = 1 · 2
9
+ 1 · 2

3
+ 1 · 1 =

17

9

g3(2) = 1 · 17
9

+
2

9
· 5
3
+

4

81
· 1 =

187

81
= 2.3086.

[Also, g3(1) = f3(0)g2(1) + f3(1)g2(0) = 1 · 5
3
+

2

9
· 1 =

17

9
.]

gm(n) m = 1 m = 2 m = 3

n = 0 1 1 1

n = 1
2

3

5

3
17
9

n = 2
2

9

17

9

187

81

• This example (where the algorithm is not much simpler) is to only illustrate the algorithm. The efficiency will be
evident when you consider larger networks.

8



Now, the tabular form we have kept here, just for easy reference and understanding of how this algorithm works.
So, the first column is what is given by g1(n); this is the one, g1(n) is what is given by the first column. This is given
by the initial condition, which is equal simply f1(n). Once you compute that, then you will get this one. Similarly,
this one gm(0) will give you this first row which is also coming from the initial condition, then the rest of the table
you have to start filling. Now, you know that this 5/3 if I look at here, it is here it involved this 2/3 and 1 which
are basically these two quantities. So, these two quantities will determine this and for determining this, all these 3

quantities determined this.

If I have more, then these 4 would determine this 4th quantity, 5th quantity I have this all 5 quantities will
determine the 5th quantity here if I have something more. But this first column, the first row, will be given by the
starting condition, then you have to start filling these elements one by one by computing with this. So, you have to
multiply this appropriately. So, this is as you see here, this 1 is multiplied by this 1, and this 2/3 is multiplied with this
1; that is what you know that is coming from the other ones, f function, f2 function. So, that is what you get here. So,
basically, how will you fill it up? You will have this; you will have this to start with, then you start with this involving
these two and the corresponding f. These three and the f , like this, you will start filling up this table. Once you get
this, then you will get this column and this column. Remember, here; we need not compute this. If our final objective is
to compute the last element, which is the G(N), at least for the last column, you need not compute the intermediate
values but the last one directly; you can use all the previous column values, and then you can compute this. That is
what pretty much we have done. But this column also, this entry also we have computed in this particular case then we
have plug it here.

The reason that it is good that you have the complete table is that the performance measures or if, for example, these
are the single server network, I mean you can write down a nice expression for the utilization and other performance
measures throughput and other performance measures everything in terms of these, m’s. Recall, in one of the previous
examples, we wrote certain probability as G(m− 1)/G(m) sort of thing. So, this is sort of your, G(n), and this is sort
of your G(n− 1). So, that is what, in such situations, these entries may be of some help, but if your interest is only the
final entry from the previous column, you can directly get here, and then you can stop as we have computed here. So,
this is what the algorithm is and how one can work it out.

Now, once I compute; so, this Convolution algorithm or the Buzen’s algorithm is only for computation of this
normalization constant which will be plugged now into your usual expression for the joint probability distribution, and
once we have the priority distribution, then you can get the other performers measures of interest.

So, go back, like if you have seen, G(N) is what we are computing it through that algorithm rather than computing

it in G(2) =
(
2
3

)2
1
2 + 1 +

(
2
9

)2
+ 2

3 + 2
3
2
9 + 2

9 = 187
81 = 2.3086. this manner. Now, once you plug it here, then this

pn1,n2,n3 = 1
G(N)

(
2
3

)n1
1

a1(n1)

(
2
9

)n3

, will give you these probabilities, and then further things will go further.

So, that is what you know you have here. Of course, a little bit more can be said if it is everything is a single server
or just specific cases. But our objective was to introduce this algorithm in computations so that you can; if you want to
understand more, you can explore yourself from here, from this point onwards. We will stop here, and then we will
come back with another algorithm in the next lecture.
Thank you. Bye.
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