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Hi and hello, everyone; what we have studied so far in the queueing models
that we have considered up to now is either whether it is a BDP-based model or
a General Markovian model. We have considered only continuous-time models
because we have considered the time to be only continuous-time. In which what
that the t the time that we are talking about was always a nonnegative real number
and the interarrival times and service times were exponential or something related
to exponential so far or whatever it is they are all nonnegative random variables.
But they are continuous random variables; that is how we have considered, and
this is how the initial development of queueing theory was that every model was
considered only in continuous time and the continuous-time Markov chain theory
to start with as a first level like was applied to study them and so on. Most queueing
systems until the early 90s, in a way, were developed only in continuous time, there
have been some works, but they were far less as compared to the continuous-time
version. Because the researchers did not see compelling major reasons to study
the model in discrete time, but if you look at it in one way, the continuous-time
model is only an approximation in some sense because things happen in discrete
time in most situations in real life. So, at a micro-level, if you go and look at it,
it is always a discrete quantity. So, no matter whatever, even if you pick a rupee
or time, it goes to second, or if you go to millisecond or anything like it is again,
you can think of it as a discrete. But since it is so small, the difference between
one unit and the next unit that you assume to be a continuous-time model for the
analysis becomes easier. But what happened was that there were many situations
like, for example, a telecommunication system. There all analyzed in discrete-
time these days; in most of the cases, because it is based on mainly the discrete
technology, the technology itself has become from analog to digital it has become.
So, it becomes like a discrete one; the quantities have become discrete points. So,
for practical measurement purposes, it is considered discrete, especially in modern
communication systems, which are more digital and where we work in the time
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slot. So, the time is basically slotted; suppose you will look at an ATM network,
and you have the packets or cells with a certain number of bytes that are created
and sent, so the duration is taken to be one slot. So, to transmit to one packet like
how much it takes, it is basically slotted in that way. So, naturally, the time is
slotted in such situations or even otherwise; if you look at it, you may not observe
any queueing system in a continuous manner; you will observe it every minute,
every hour, every day. So, things become discrete, so the discrete-time models are
appropriate in many situations when you want to see them. The reason why initially
like much attention was not paid was that one could analogously analyze a discrete-
time model; for every continuous-time model, there is a discrete-time version of it
one can create, and the analogous analysis can be done, and if in some sense the
limiting quantity if you take it then it will become the continuous-time model. So,
that is how you know it was viewed, but there are reasons as to why this may not
be really the case; we will come up later. So, the reason in the last, say 30 years or
so, because of the nature of the problem that you encounter required that you look
at the system as it is. That means, in discrete-time rather than as an approximating
continuous-time model. So, and hence more emphasis more analysis was done in
the last say 30 years majority of the discrete-time model works were in that and still
continuing because of the demand in that. So, to analyze that so we have to get into
the framework of discrete-time queueing models, that is what we call it again; only
in this lecture we will concentrate on the discrete-time queues; we are not going
to consider anything further for any of the other models we will come back to the
continuous-time at a later stage after this lecture. But this gives you an idea about
how the analysis could be done in discrete time. Whether it is analogous or not
analogous to the continuous-time and just to give a flavor of what is a discrete-time
queue and how one looks at it in that scenario. So, that is what is the objective of
this lecture. So, to start, we have to take this simple model again in discrete-time,
which is a discrete-time birth-death process.

• In the discrete-time version of a BDP, we assume the following:
▶ the birth-process is a state dependent Bernoulli process, and
▶ the death-process follows a state dependent geometric distribution.

Of course, it is not really a process; basically, the duration follows a geomet-
ric distribution.

[Note: A simple process {Sn, n = 0, 1, 2, . . . } is called a Bernoulli process,

if S0 = 0 and Sn =
n∑

i=1

Xi, where the increments Xi’s are IID Bernoulli
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random variables. ]

• The parameters are :
▶ λi = Probability that a birth occurs when there are i ≥ 0 customers in the
system.
So, the time to birth, then naturally, will become a geometric distribution be-
cause, in each time unit, it has a probability λi of there is a birth; if you look
for the occurrence of birth as a success, so, how many failures preceding
that. So, you will generally have a geometric distribution comes into play.

▶ 1− λi = λ̄i = Probability that no birth occurs.

So, in this lecture, wherever the bar is there, it means 1 − λi which is the
probability that no birth occurs in that slot.

▶ µi = Probability that a death occurs when there are i ≥ 1 customers in
the system.
▶ 1− µi = µ̄i = Probability of no death occurs.

• Assumptions for the model:

– The arrivals are governed by the Bernoulli process with parameter λi,
i.e., the interarrival times are IID geometric random variables with pa-
rameter λi.

– The service-times, independent of arrivals, are IID geometric random
variables with parameter µi.

• Let the state space S = {i : i ≥ 0} denote the number of customers in the
system.

• Then the transition probability matrix P is:

P =


λ̄0 λ0

λ̄1µ1 λ̄1µ̄1 + λ1µ1 λ1µ̄1

λ̄2µ2 λ̄2µ̄2 + λ2µ2 λ2µ̄2

. . . . . . . . .


• Define πi(t) (So, many a time, it is preferred to use n rather than t, but for

this lecture, it will be assumed that t to be the same just like λ and µ; we
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have taken the same notation) as the probability that there are i customers
in the system at time t (note that t is discrete now, though we use the same
notation).
And, π(t) = [π0(t), π1(t), π2(t), . . . ].

• If P is irreducible, aperiodic and positive recurrent then you will have this
π = lim

t→∞
π(t) and will be satisfying the stationary equations given byπP =

π, πe = 1, which are all the normal theory that you have here.

• Then, π = [π0, π1, π2, . . . ] satisfies

π0 = π0λ̄0 + π1λ̄1µ1

π1 = π0λ0 + π1(λ̄1µ̄1 + λ1µ1) + π2λ̄2µ2

πi = πi−1λi−1µ̄i−1 + πi(λ̄iµ̄i + λiµi) + πi+1λ̄i+1µi+1, i ≥ 2

We get

π1 =
λ0

λ̄1µ1
π0, πi =

i−1∏
j=0

λjµ̄j

λ̄j+1µj+1
π0, i ≥ 1, µ0 = 0

From the normalizing condition πe = 1, we obtain

π0 =

1 + ∞∑
i=1

i−1∏
j=0

λjµ̄j

λ̄j+1µj+1

−1

♦ Note that for stability, we require that 1+
∞∑
i=1

i−1∏
j=0

(λjµ̄j)
[
λ̄j+1µj+1

]−1
<

∞.

So, the discrete-time BDP theory is almost similar to what you would have
had for the continuous-time model. Now here, as opposed to continuous
time in discrete time, you have to worry about at what point of time you are
looking at the system; accordingly, the analysis would vary.

• There are two types of systems, namely “Early Arrival” system and “Late Arrival”
system based on different assumptions made on arrival times and departure
times in relation to time slot boundaries.

So, what is the Early Arrival system and Late Arrival system this is depend-
ing upon different assumptions made on arrival times and service times in
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relation to the slot boundaries like how things are slotted and where arrival
happens, where departure happens, and at what point of time you are look-
ing at the system that is what is important. In continuous-time, this does
not matter because, in an infinitesimal interval, there is only one thing that
is possible, and it does not matter if you are looking at it continuously. So,
things will happen and no issue, but here you are observing the system only
at discrete time points. Now, suppose if the arrivals have happened or depar-
ture happens in between your observation point of time, how you are going
to count it at what place you are going to add and what place you are going
to count accordingly that this description is what we give here.

• To make our life easier, we first divide the time axis into a sequence of con-
tiguous slots (0, 1], (1, 2], . . . , (n− 1, n], . . . .

Now let us consider what an Early Arrival system is.

• In “Early Arrival” system, arrivals join the system immediately at the be-
ginning of a slot and departures are recorded immediately before the end of
a slot.

So, what happens is that suppose if this is my say n here, and this is n minus
and n plus if I look at as two time adjacent to this slot. So, somewhere here
is n plus 1, and this is basically this difference; this between n to n plus 1 is
what one particular slot. So, now I am looking at it here. So, in the Early
Arrival system, what happens is that arrivals join the system immediately at
the beginning of a slot, and departures are recorded immediately before the
end of this slot. So, where is the potential arrival point, the arrival point is ba-
sically here. So, these are the potential arrival points at the beginning of the
interval. Now, these are, so these are basically potential departure points. So,
that is what we are assuming here. So, basically, what Early Arrival means,
so this is what it is basically. So, for the nth one, when you are looking at it,
the arrivals up happened just after this one, and the departures happen just
prior to this is what is the EAS system or Early Arrival system.

▶ A customer completing service at the end of slot j leaves behind those
arrived in the jth slot and those waiting at the beginning of the slot. A
customer starts being served always at the beginning of a slot.
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• It is important to know exactly when the system is noticed.
Let Xn = X(n), Yn = X(n−) and Zn = X(n+).

Consider a sample path example with arrival instants 1, 2, 4, 6, 7 and service
times 3, 1, 1, 2, 1.

t0 1 2 3 4 5 6 7 8 9
0

1

2

3

Xn : 0 0 1 2 1 1 0 1 1 0
Yn : 0 0 1 2 2 2 1 1 2 0
Zn : 0 1 2 2 2 1 1 2 1 0

Early Arrival System

• In the “Late Arrival” system, the arrivals appear just prior to the end of a
slot and departures at the beginning of a slot.

t0 1 2 3 4 5 6 7 8 9
0

1

2

Xn : 0 1 2 2 2 1 1 2 1 0
Yn : 0 0 1 2 1 1 0 2 1 0
Zn : 0 1 2 1 1 0 1 1 0 0

Late Arrival System

• Observe that Zn = Yn+1.

So this is called the LAS system or EAS system. So, it depends on when you
are looking at the system and how you are sequencing the events that can happen in
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a particular slot, that is what these two systems can do. Now, with this idea of the
basic thing, we can look at the first or the simplest discrete-time queueing model,
which is called as Geo/Geo/1 or Geometric/Geometric/1, which is typically
called a Geo/Geo/1 under EAS. Of course, this may not be written there when
queueing is mentioned because in many books, say, for example, in alphas book,
which we have referenced in the beginning, it is always assumed that everything,
the whole treatment, is based upon one particular type which is LAS system. But
when you want to distinguish, you can make this kind of distinction.

• The simplest discrete-time queueing model is the Geo/Geo/1 system which
is analogous to the M/M/1 model in continuous time (and hence similar
assumptions holds here too).

It has infinite capacity FIFO discipline one server is there. The only change
is that the times are now slotted in discrete time units and the interarrival
time and service times are all exponential distributions.

• This system can be modelled as a special case of discrete BDP with λi = λ
and µi = µ.

• Arrivals and departures are according to the early arrival system.

• Let queue-size at (discrete) time t be X(t), for t = 0, 1, 2, . . . .
▶ Then X(t) is a discrete-time Markov Chain with state space {0, 1, 2, . . . }.

• Consider the case of viewing the system exactly at the point of division in
the EAS system. Observe that

X(t+ 1) = X(t) +N(1),

where N(1) represents the net addition to the system during the interval
(t, t+ 1].

• N(1) is independent of t and has the following distribution:

▶ For X(t) ≥ 1, N(1) =


1 with probability λµ̄,

0 with probability µ̄λ̄+ λµ,

−1 with probability λ̄µ.

▶ For X(t) = 0, N(1) =

{
1 with probability λµ̄,

0 with probability 1− λµ̄.

If you change the LAS system, then the change will be only on this N(1); one
would see that.
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• Remembering that Xn = X(n), we find that {Xn} is a homogeneous MC
with transition probability matrix P given by

P =


1− λµ̄ λµ̄
λ̄µ λ̄µ̄+ λµ λµ̄

λ̄µ λ̄µ̄+ λµ λµ̄
. . . . . . . . .


• It can be shown that the steady state solution for this MC exists when λ < µ.

The stationary equations are

π0 = (1− λµ̄)π0 + λ̄µπ1

πi = πi−1λµ̄+ πi(λ̄µ̄+ λµ) + πi+1λ̄µ, i ≥ 1

Starting from the first equation, we can obtain recursively

µλ̄πi+1 = λµ̄πi, i ≥ 0

• This leads to

πi = αiπ0, i ≥ 1,

where α =
λµ̄

µλ̄
.

• Using the normalizing condition
∞∑
i=0

πi = 1, we get π0 = 1 − α, provided

α < 1 which is equivalent to λ < µ. Therefore,

πi = (1− α)αi, i = 0, 1, 2, . . . ,

▶ The stationary distribution is geometric as in the continuous-time case (but
with parameter α rather than ρ = λ/µ).

• Performance metrics and their analysis can now be carried out in the usual
manner.

We will not go into that, but we will highlight some other points here. Now,
some remarks are in order with respect to this model.

So, here we viewed it at the point of, say, for example, what did we start to view
the system exactly at the point of division in the EAS system, which means we are
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looking at these points, not at this point not at this point and so on. Like we are
looking at this point, and that is typically the case in all queueing models. Once
you sequence it out, then you will sequence it out in such a way that something
happens before something happens after or either way, and you will always look at
this, n that is a normal thing to do.

• Now, instead of viewing the system at the points of division, consider view-
ing the system just prior to it, i.e., we are studying {Y (t)}. In this case,

N(1) (for Y (t) = 0) changes to N(1) =

{
1 with probability λ,

0 with probability 1− λ.

Denoting the steady state probability distribution by {π̃i}, writing the bal-
ance equations and proceeding in an analogous manner, it can be shown that,
provided ρ < 1,

π̃i =

{
ρ(1− α)αi−1, i ≥ 1

1− ρ, i = 0

▶ Here, the distribution is not geometric, but conditionally so given that the
system is not empty.

• The case of viewing the system just after the points of division (i.e., the pro-
cess {Z(t)}) does not need any new treatment and the stationary distribution
is the same as the one given above since Zn = Yn+1.

• The stationary distribution for the continuous-time is derivable (with con-
ditions on the parameters as t → ∞) and, in all the above three cases, we
obtain (1− ρ)ρi of the M/M/1 model.

So, whichever way you look at it in discrete-time, it matters, but when you
take it to the continuous-time limit, all of them will lead to the same limit, which
is what one would expect to happen because it cannot go differently. So, that is
what we have. So, normally this is only for our illustration purpose that we have
given here, but normally once you define whether EAS, LAS, or any other type of
system that you have. Suppose you have vacation or other retrials, then you have
to sequencing it out the events that can happen in a particular time slot, and then
your analysis will proceed accordingly. So, this is only for the illustration purpose
of what would happen if you look at the system at another point in time and how
this will vary.

• We now consider the Geo/Geo/1 under LAS scheme. Let the queue size at
time t be X(t).
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• Consider the case of viewing the system exactly at the point of division. As
before,

X(t+ 1) = X(t) +N(1)

where N(1) represents the net addition to the system during the interval
(t, t+ 1]. N(1) is independent of t and has the following distribution:

▶ For X(t) ≥ 1, N(1) =


1 with probability λµ̄,

0 with probability µ̄λ̄+ λµ,

−1 with probability λ̄µ.

▶ For X(t) = 0, N(1) =

{
1 with probability λ,

0 with probability 1− λ.

• The TPM of the MC is

P =


λ̄ λ
λ̄µ λ̄µ̄+ λµ λµ̄

λ̄µ λ̄µ̄+ λµ λµ̄
. . . . . . . . .


with the balance equations

π0 = π0λ̄+ π1λ̄µ

π1 = π0λ+ π1(λ̄µ̄+ λµ) + π2λ̄µ

πi = πi−1λµ̄+ πi(λ̄µ̄+ λµ) + πi+1λ̄µ, i ≥ 2

Solving the above, with α =
λµ̄

λ̄µ
, we have

πi =

(
αi

µ̄

)
π0, i ≥ 1

• Using the normalizing condition, we get

π0 =
µ− λ

µ
= 1− ρ, ρ = λ/µ.

and therefore, we get

πi =

(
µ− λ

µµ̄

)
αi, i ≥ 1, λ < µ
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So, you see here in the EAS system, if you are looking at the prior to time
point, the similar solution is what you are getting in a LAS system kind of thing.
So, you define what system you are following, EAS or LAS, and look at the point
of division to get the solution that is normally done here.

Now, at least for these LAS, one can obtain the performance measures that are
the major four:

• Mean number in the system:

E [X] =

∞∑
i=1

iπi =
µ− λ

µµ̄

[
α+ 2α2 + 3α3 + . . .

]
=

λλ̄

µ− λ
.

• Mean number in the queue: Let the number in the queue be Y , then the
mean queue length is obtained as

E [Y ] =
∞∑
i=2

(i− 1)πi = E [X]
λ

µ
.

Now, mean waiting time in the queue; of course, once you have generating
functions defined and more general, one can easily get from the generating func-
tions. But here we are trying to obtain it directly.

• Mean waiting time in the queue: We assume that queue discipline is FCFS.
Let Tq be the waiting time in the queue for a customer and let wq

i =
P {Tq = i}, then

wq
0 = π0 =

µ− λ

µ

wq
i =

i∑
j=1

πj

(
i− 1

j − 1

)
µj(1− µ)i−j , i ≥ 1

■ Reasoning: You are viewing the system in FCFS. So, you look at a cus-
tomer who is arriving here; if we have j customers in the system, as arriving
customer will wait i units of time if in the first i− 1 time units exactly j − 1
services are completed and the service completion of the jth item occurs at
time i then his waiting time would be equal to i. This is then summed over j
from 1 to i.
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And that is precisely what you can look into this argument; this is your usual
probabilistic argument that you adopt here, or one can obtain this using gen-
erating functions and things like that. But we will not go into that.

The mean time in the queue E(Tq) is obtained as E(Tq) =
λλ̄

µ(µ− λ)
.

• Mean waiting time in system: Let T be the waiting time in the system and
T equals the sum of Tq and the service time. Therefore, the mean waiting

time in the system is E [T ] = E [Tq] +
1

µ
.

So, this is for the LAS system; similar things for the EAS system also you can
obtain. Now, some remarks are in order. Now, we have seen here we have con-
sidered the Geo/Geo/1 model. We saw that the discrete-time BDP was applied to
that, and the analysis was something similar to what we had done for the M/M/1
model in continuous time you are simply applying. You are; basically, it looked
like as if you are simply replicating or doing a similar and analogous analysis in
discrete time only. That is true, but that is not true for any general cases in general,
but in this particular case for Geo/Geo/1 model, that might be true.

• The case of Geo/Geo/1/K can also be handled in a similar manner as a
special case of discrete BDP.

But what is important is that the next point that we are highlighting.

• Unlike the continuous time case, multi-server discrete time queues such as
Geo/Geo/c model is not a discrete BDP model.

But in continuous time, when M/M/c was a multiserver model or even infi-
nite server model, you could model with BDP. But in discrete-time, it can no
longer be modelled with the discrete version of the BDP, the discrete-time
BDP. So, Geo/Geo/c model, the reason is that now, when more than one
customer is there, and each of these servers is independent, then it is pos-
sible that there could be more than one service completion happen during a
time slot when you have multiple servers in the place.

So, it will no longer be the BDP as long as a single server is there, of course;
you can look at it as a BDP special case. But again, if you want to complicate
except the Geo/Geo, also if you remove it, then, of course, you are not going
to get the BDP. But maybe a discrete-time Markov chain that you will have.
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But here, if you have multiple; directly, you will reach, and you are no longer
into the BDP framework. So, it is true that M/M/1 is continuous-time BDP,
Geo/Geo/1 is discrete-time BDP. So, you can just mirror the analysis you
can think of, but not every model will fit into that framework. Because we
just said that M/M/c is in continuous time, it can be modelled through a
continuous-time BDP, but here in the discrete-time Geo/Geo/c model, that
c server discrete-time model cannot be done with the BDP models.

▶ This key difference makes the discrete time multiserver queues more in-
volved in terms of analysis.

There are other reasons why you look at, of course, from the application
point of view, this is more appropriate. So, and hence the discrete-time anal-
ysis is also relevant in most cases.

So one does, but it is not that every model also you have; what you have to keep
is that you keep in mind is that every model is not just the discrete-time version of
the continuous-time model and vice versa because the model could itself change
in a way so, that you have to keep that in mind. So, with this, then we will end
this discussion on discrete-time queues. Of course, we are not going to come back
to discrete-time queues anymore just to give an overview of how a discrete-time
queue and, again, the Markov chain within that you are having. So, this is we are
putting it under the Markovian queueing system analysis. But as we said, more can
be heard from there are many books exclusively for discrete-time queues and their
application. So, one can look into that for further analysis.
Thank you bye.
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