
Introduction to Queueing Theory
Prof. N. Selvaraju

Department of Mathematics
Indian Institute of Technology Guwahati, India

Lecture - 17
Erlang’s Loss System, Erlang Loss Formula, Infinite-Server Queues

Hi and hello, everyone. What we have been seeing so far is the Birth-Death Queueing Systems, meaning queueing
systems where the arrivals and departures happen one at a time. So far, we have seen a few models; let us continue our
discussion with a few more models this week as well in the next few lectures. he first one that we will see now is what
we call Erlang’s loss system, which is in our queueing notation; if you have to denote it, this will be denoted by an
M/M/c/c model.

• One of the first and the most famous system in queueing theory, with wide applicability (e.g. telecommunications
design).

For example, in telecommunication designs where originally, Erlang developed this particular model in the
context of telephone traffic.

• The origin of the traffic theory or congestion theory started by the investigation of this system (by Erlang).

So, this is one of the first models that has been considered by him; along with M/M/c and M/M/c/c, this is a
loss system. So, why do we say this is a loss system? As you see the description that the arrival process is a
Poisson process with rate lambda, the service process is also the service times follow the exponential distribution,
and there is c number of servers, and the capacity of the system is c. So, basically, what you see here is that there
is no queue happens here. Because either all servers are busy, then any arriving customer would be a loss to the
system, so that is why this is referred to as a loss system. Whereas where the systems where there is queueing
happening like in M/M/1 or M/M/c or even M/M/c/K, there is some amount of people can queue, whether
it is a finite number or we are assuming to be an infinite number. There is always a possibility of people queueing
up for service customers queueing up for service. So, those are all called delay systems because what happens
there is that you have customers waiting, so then after some delay, he is going to get his service. So, those are all
referred to as some delay systems as opposed to loss systems in this particular case, but here there is no delay
happens. Even in the MM cK model, of course, there will be some amount of people who would not be able to
enter into the system. But here, it is the case that there is no queueing happens, so it is a pure loss system.

• And as we said, this is one of the very first models, and this model can be regarded as a special case of M/M/c/K

1



with K = c, and modelled by a BDP with rates

λn =

λ, n < c

0, n ≥ c
and µn = nµ, n = 1, 2, . . . , c.

0 1 2 c-1 c

λ

µ

λ

2µ

λ

3µ

λ

(c− 1)µ

λ

cµ

• The stationary distribution can be obtained in the usual manner as

pn =
(λ/µ)n

n!

/ c∑
i=0

(λ/µ)i

i!

 =

rn

n!
c∑

i=0

ri

i!

, 0 ≤ n ≤ c, r = λ/µ.

You will get this as the distribution, and as you would see that this is nothing but a truncated Poisson distribution.
So, once we have this stationary distribution in place, we can again look at various performance measures with respect
to this particular system which might depend on the number in the system.

• The most important measure of the system is pc.

That means, what is the probability that you find the system in this particular state c at which what happens is
that there is no entry of any more customers being allowed into the system. So, typical happens suppose if a
telephone line has some c channels or right or a network which we call talk in terms of bandwidth, so what is the
capacity right. If it is not able to connect, then the call gets dropped. So, that, so that is where this quantity will
come in. So,

pc =

rc

c!
c∑

i=0

ri

i!

= B(c, r)

which is referred to as Erlang’s loss formula or Erlang-B formula or Erlang’s first formula.

We have already seen an Erlang-C formula, in the context of M/M/c, which is the probability of delay; it is an
important measure. Similarly, what is the probability of the loss here. There what is the probability of queueing
is what you are interested in the Erlang-C formula. And here is the probability of loss, so this is what is the
probability that the system state would be in c at any point of time. So, this is what is referred to Erlang’s loss
formula and Erlang’s-B formula Erlang’s first formula; here, this is all called the blocking probability this is
what is called the call the blocking probability. But then, there are true notions of blocking here that you need to
understand. It so happens that both the notions coincide in this particular case of the Erlang loss system, but it
may not be true in general for any other loss system. We will be going to see one later on where you will see that
these two quantities are really different. But it so happens here that both this concept of blocking is same as is

2



equal or is one and the same in the case of Erlang. So, this itself would be simply referred to as Erlang’s loss
formula.

♦ (Time blocking) pc is the probability that all c servers are occupied at an arbitrary time (= the fraction of time
that all c serves are occupied)

We know from the notion of stationary distribution and limiting distribution that this is what you get. When the
Markov process has a stationary distribution, and if you start with the stationary distribution, then the Markov
process is what we call the stationary Markov process. For a stationary Markov process, these quantities would
be given by pc the equilibrium probability of finding the system in that particular state. So, in so in that sense,
time blocking would be given by this pc for a stationary Markov process by the equilibrium distribution or
stationary distribution, and that would then equal to pc. So, pc is what we called here or which is also called as
capital B(c, r) as the Erlang-B formula, is the probability that all c servers are occupied at an arbitrary point of
time and which is also the fraction of time all c servers are occupied. This is clear from our knowledge of the
Markov process that this is what you are going to be interpreting for this, and this is what is referred to as time
blocking. Now there is a notion of call blocking.

♦ (Call blocking) pc is also the probability that an arriving customer finds all c servers occupied (= the fraction
of arriving customers that are lost). This is due to the Poisson arrivals and the PASTA property.

So, we are not concerned about an outside view of the system at an arbitrary point of time; we are looking at
the system at the point of arrival of a customer; what happens to the system is what is more interested in such
systems. That is why this call blocking when a call arrives. What happens to that call? So, what is the probability
of this blocking here? Now, here it so happens this pc is also the probability that an arriving customer would find
all c servers occupied, which would also be equal to the fraction of time, the fraction of arriving customers that
are lost. So, this pc here has now as you can see a four interpretations as we see here because time blocking is
also equal to call blocking. And why this is? How is this happening? Because of the nature of Poisson arrivals
here and the PASTA property, that is what is giving us this call blocking, the same as the time blocking in
this case. So, and hence totally in such case without any distinction, we will be simply calling this a blocking
probability in this particular case, when there is no difference between this that one might simply refer to as
blocking probability. This is what is given by Erlang’s formula, and this is what is relevant in this particular case.

• Due to the importance of B(c, r) in practical problems, calculators are readily available (e.g., http://www.erlang.com)

So, you can utilize you can look at this particular thing for an online calculator of this Erlang’s formula, which
is for ready reference. Like any other tables that you know have been developed for in different fields like in
statistics like, if there are tables of distributions it is given normal distribution and so on. So, in the same way,
this is also available tables as well as calculators to get the value of B(c, r) is available. But the beauty of this
result or the significance of this result is because of certain insensitivity properties that this particular result holds.
What do we mean by that? We see that this formula it can be shown later, but we will not be showing it, but it
can be easily seen when we see MG type of models like when you do a similar analysis you would arrive at this
particular result.

3



• This formula is valid for any M/G/c/c, independent of the form of the service-time distribution.

Whatever be the service time distribution, this formula holds true, a very significant result. And that is the power
of this result; that is what we call the robustness of the result of Erlang-B formula or the insensitivity of this
result to the service time distribution.

• The two formulae by Erlang (delay and loss) are fundamental results in teletraffic engineering and queueing
theory, and are still used today.
♦ They relate quality of service (QoS) to the number of available servers.

As a typical example or application of this formula or how one looks at these particular formulas, both of them
plots related to this Erlang-B formula or loss formula. The one and the same though I have given two different ways, it
is the title, just to get familiarized that these two are one and the same.

We just depicted this here just because of the importance of this formula, but a similar kind of analysis can be done
with respect to any performance measures, and that is what is all about performance analysis. Performance modeling is
when you take a system, you create a model and get the quantities, performance analysis you do this; this is up to you
like what kind of analysis that is required to be done and what you wanted to do like you can carry on with this kind of
things. Now some remarks are in order with respect to this particular model.

• While r = λ/µ is the offered load, r(1−B(c, r)) is the carried load.

Because pc is the fraction of arrivals that are lost or load that is lost, so, 1− B(c, r) would be the load that is
going inside. So, r(1−B(c, r)) would be the carried load.

• The throughput, defined as the rate at which customers depart from the system after being (admitted and) served,
is given by λ(1−B(c, r))

Because out of this λ proportion of customers who are arriving in a Poisson fashion, pc is the fraction of
customers that is lost, again because of this call blocking idea, not because of time blocking ideas here. So, that
is 1−B(c, r), so λ(1−B(c, r)) would be the throughput for this system.

▶ This is the rate at which customers are accepted for service (these two rates must be equal in steady-state)

4



• Loss and delay systems

And as we said, this is the loss system, and in a loss system, sometimes, such as this particular Erlang loss
system, these kinds of wordings are used. So, you need to get familiarized, which is basically this is a system
that is referred to as a system where blocked calls are cleared; they are not in the queue. The moment you are not
able to get access to the server, you are lost; you are cleared like you are out of the queueing system. So, that is
as opposed to a delay system. So, that is where the delay means where you are being kept in the system, but with
the delay, you will be able to access the server.

• In a loss system (such as this), blocked customers are said to be cleared.

• The expected number of busy channels equals the carried load (Prove this!), and hence the expected number of
idle channels equals c− r(1−B(c, r)).

So, the expected number of busy channels is r(1 − B(c, r)). So, how do you compute this? Prove this as I
said like you can look it up, or otherwise, you can simply compute. You have the distribution of what is the
probability that the number of channels n some 1, 2, 3, 4, 5 number of channels is busy. So, what is the number
of channels busy, multiply to the corresponding probabilities will give you this. Now, c− r(1−B(c, r)) is the
free channel, so c minus the expected number of busy channels will give you the number of free channels. These
are all performance measures that you would talk about with respect to this particular system.

Exercise. Determine L,Lq,W and Wq.

And again, all these quantities, for example, throughput, carried load or busy channels, idle channels; everything
you can look at in terms of parameters and analyze deeply so on. So, this is what we are saying for every model
it is possible to do, and that depends upon the requirement that you will be doing that.

But this formula, if you look at it carefully here, you need to compute this pc you need to compute rc/c! and∑c
i=0 r

i/i! which involves a critical quantity which is c!. But as long as c is very small, you can directly compute c!.
But if c is a large number, then this factorial itself cannot be handled by the computer within its capacity. So, you need
to find a way of getting this; computing this factorial. Like 170, if it crosses, then you are running into trouble.

• But many real-life applications have a large value of c.

The telephone line capacity if you think or nowadays in a place where the call-centers are there, 200 lines is not an
uncommon phenomenon that you might find in a big call center operations. So, this c which is a number of channels or
number of servers, assuming large values is not an uncommon phenomenon. So, one needs to handle it, but in that case,
this direct application of this formula runs into trouble, or it will take a long time even if it is doable in a complicated
way.

• An alternative approach is to use an iterative relationship, by observing (Prove this!) that

B(c, r) =
rB(c− 1, r)

c+ rB(c− 1, r)
, c ≥ 1, with initial condition B(0, r) = 1.

5



So, start with B(0, r) = 1, so then B(1, r) you can compute B(2, r) you can compute and so on. So, you can
compute for the same r the required number of servers, c could be thousand you can easily compute it very easily.
But whereas, a direct application using that factorial function would be very difficult to implement. So, this is the
relationship that you know we can use to compute. Say, for example, this is a very simple one, but you can go further
and see how much you can go.

Example.
Let λ = 6, µ = 3, c = 4. Calculate the fraction of customers blocked for an M/M/c/c system.

Since r = 2, we want to compute B(4, 2).
From the iterative process, we have B(0, 2) = 1, B(1, 2) = 2/3, B(2, 2) = 2/5, B(3, 2) = 4/19 and B(4, 2) = 2/21.

Of course, for the same system, you may have other questions that you can also answer through the other
performance measure you might develop. Now, what is the relationship between these Erlang’s-B and C formulas.

• B(c, r) can also be used to determine performance metrics of M/M/c model.

• Recall that C(c, r) = 1− FTq(0) is the probability of delay in an M/M/c model. This can be computed using
the following relationship (Prove this!) between the two formulas

C(c, r) =
cB(c, r)

c− r + rB(c, r)

• Also, for M/M/c model, recall that we can write L,Lq,W and Wq in terms of C(c, r) (Try this!). For example,
Lq can be given by

Lq = C(c, r)
ρ

1− ρ
= C(c, r)

r

c− r

Example.
Say, for example, in the same example, if you want to compute C(4, 2) what is the probability of delay. This is the
previous one says this is the probability of loss the blocking probability is what this B(4, 2). So, the corresponding
C(4, 2) would be if it was an infinite capacity queueing system, a delay system as opposed to a loss system, then what
would have been the probability of delay is what this one is, 4/23 and Lq = 4/23.

I can compute L and so on for the corresponding one; so, this relationship can also be exploited to obtain the
quantities related to Erlang using the C formula or corresponding M/M/c model. So, this is the loss system that e
have seen. Now, what we will see next is, again, this is a no queue system, but this is not a loss system in a way.

But this is called infinite server queues or queues with unlimited service capacity, which we denote by M/M/∞,
which means there is an infinite number of servers; this is basically a self-service system. If I have to say this could
be something like there is a radio broadcast going on, and then the number of customers who want to listen to that
particular broadcast, pretty much everyone can listen to that. So, there is no need to wait before you listen to that.
Similarly, suppose there is a TV show which is being aired, and then you are watching the TV show. So, pretty much
everyone on the earth, if you want to watch, they can always watch. So, that is what in the self-service model is what
this system that.

6



• The system can be modelled using a BDP with λn = λ, µn = nµ, ∀n.

Do not ask me whether people who are tuning in to a particular radio show; will arrive according to your Poisson
process.

So, that is the critical question, but if it is so, if the data shows that people are tuning in according to your Poisson
process, then this model is applicable, and they listen to number the duration, they listen to an exponential
amount of time again this M can be questioned like this every assumption can be questioned, but under the as-
sumptions, the model is true. And we have a BDP for this, and that will have this particular rate that you have here.

The steady-state system size distribution is obtained as

pn =
rn

n!
p0, p0 =

 ∞∑
n=0

rn

n!

−1

= e−r

Thus, pn =
rne−r

n!
, n ≥ 0

• The Poi(r) distributed system size distribution holds true for an M/G/∞ queue in general (robustness).

• Here, L = r = λ
µ , Lq = 0 = Wq, W = 1

µ .

So, you have a partial result or partial confirmation or confidence-boosting measure with respect to this particular
form of the distribution that you better have. So, this is true for the M/G/∞ model. So, this particular steady-state
distribution which is Poi(r), is true as long as the arrival process is Poisson and it is insensitive or independent of the
service time distribution what is required is the mean rate what is the mean service rate is what is it will depend upon,
which is from there only you are going to get µ. So, this is true, and this is what you have here with respect to this
infinite server queue. So, we will possibly end here this in this lecture. So, we will continue with some more types of
models in the next lecture.
Thank you, bye.

7


