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Birth-Death Queues: General Theory, M/M/1 Queues and their Steady State Solution

Hi and hello, everyone. After having seen the basics of queues and some general results and having acquired the
background from the theory of stochastic processes needed to understand and analyze a queueing system through a
Markov chain model. We will now move into the analysis of queueing systems of various different models which can
model different queueing systems. The first step in the analysis is to consider queueing systems, broadly called Birth-
Death queueing systems or elementary queueing systems, or exponential model-based, exponential distribution-based
queueing systems, the simplest ones.
Many simple but interesting and nontrivial queueing systems can be studied through birth-death processes. It is
so simple yet highly effective in implementing many of the real-life situations that can be modelled through these
birth-death processes. Recall

• A BDP is a continuous-time Markov chain on the state space of non-negative integers, where the state transitions
occur only to neighbouring states.

• From a queueing perspective, an arrival is regarded as birth and a departure is regarded as death with the state
denoting the number in the system.

Whenever we are talking about a solution of analysis of a queueing system, or we primarily mean the number in
the system so, that will be our main objective or main object of study in any queueing system that is queueing
system whether it is single or network or anything that is with the primary objective will be there. So, that is why
the state mainly denotes the number in the system.

• In a birth-death queue, the arrivals as well as the departures happen one-at-a-time.

So, the probability of arrival and departure happening exactly at the same time is 0, or negligible. So, we can
always slot it in such a way that they are distinct.

• We will always assume (unless stated otherwise) that the arrivals occur from an infinite source, for all queueing
systems (birth-death or otherwise).
when we will go later on into more general Markovian queueing systems or semi Markovian queueing systems,
we will always assume that the arrivals occur from an infinite source which means that there is an infinite
population from which the arrivals happen to the particular queueing system which is what we want to study.
Wherever that is a finite source, we will mention that as well. So otherwise, we will assume that this is the case.
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• We will mainly be concerned with the steady-state (or equilibrium) analysis of the queueing systems (though we
will see briefly some transient analysis as well).

• The birth-death queueing models are also sometimes referred to as ‘exponential models’.

Again, we will repeatedly come back to the birth-death process because this is the last time we will be doing it after
that; we are not going to come back again.

• A birth-death process (BDP) is a continuous time Markov-chain (CTMC) on state space {0, 1, 2, 3, . . . }, with
state transitions occurring as unit jumps up or down from the current state.

– When n ≥ 0, time until next arrival (or “birth”) ∼ Exp(λn).
▶ At arrival, the system state moves from n to n+ 1 at rate λn.

– When n ≥ 1, time until next departure(or “death”) ∼ Exp(µn).
▶ At departure, the system state moves from n to n− 1 at rate µn.

– Here the ‘states’ denote the number of customers in the system.
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– The generator matrix (or rate matrix) for a BDP is Q =


−λ0 λ0 0 0 . . .

µ1 −(λ1 + µ1) λ1 0 . . .

0 µ2 −(λ2 + µ2) λ2 . . .
...

...
...

...
. . .

 .

• Let pn denote the long-term fraction of time the system is in state n.

• pn can be determined from 0 = pQ, subject to certain conditions on λn and µn.

• For the BDP, the vector-matrix equation 0 = pQ can be written in component form as

0 = −(λn + µn)pn + λn−1pn−1 + µn+1pn+1, n ≥ 1

0 = −λ0p0 + µ1p1

Equivalently,

(λn + µn)pn = λn−1pn−1 + µn+1pn+1, n ≥ 1 (1)

λ0p0 = µ1p1.

• The above equations in (5) are called “global” balance equations which must be satisfied at equilibrium, since
they equate the total mean flow into each state with the total mean flow out of that state.

This is called the ”global” balance equation or simply balance equation; we may not use the word global I mean
often, but balance equation we always mean the global balance equation, which is what is given here. Now, how do
you write down this again, you can look at this graph.
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• One method (an iterative method) of finding the solution for pn is described below.
Rewriting (5), we get

p1 =
λ0

µ1
p0 and pn+1 =

λn + µn

µn+1
pn − λn−1

µn+1
pn−1, n ≥ 1.

From the above,

p2 =
λ1 + µ1

µ2
p1 −

λ0

µ2
p0 =

λ1λ0

µ2µ0
p0 (by putting the value of p1)

Similarly,

p3 =
λ2 + µ2

µ3
p2 −

λ1

µ3
p1 =

λ2λ1λ0

µ3µ2µ1
p0.

In general, one can show by mathematical induction that

pn =
λn−1λn−2 . . . λ0

µnµn−1 . . . µ1
p0, n ≥ 1

= p0

n∏
i=1

λi−1

µi
(2)

• Since probabilities must sum to 1, i.e.,
∞∑
n=0

pn = 1, it follows that

p0 =

1 +
∞∑
n=1

n∏
i=1

λi−1

µi

−1

(3)

We observe that p0 > 0 if and only if 1 +
∞∑
n=1

n∏
i=1

λi−1

µi
is convergent and this is the necessary and sufficient

condition for the existence of a steady state distribution {pn} for the BDP because this is the condition that
makes the underlying BDP positive recurrent, and in such case, it is already irreducible, positive recurrent, and
hence there is a unique stationary distribution which is also same as the limiting distribution which is given by
the stationary equation pQ = 0 and

∑∞
n=0 pn = 1.

• The “product” solution obtained above for pn, n = 0, 1, 2, . . . , is a principal equation in birth-death queues, and
is extremely useful in analyzing a variety of queueing models.

Once you know the rate because here we remember, we are given in terms of generically λn’s and µn’s. So,
now, once you know the rates, then you can obtain the solution very nicely by simply putting it here by simply
pn’s in terms of pn = λn−1λn−2...λ0

µnµn−1...µ1
p0, n ≥ 1. So, this is the main equation for the birth-death in the iterative

method; this is what the iterative method; this is the main equation, and once pn’s expressed in terms of p0, then∏n
i=1

λi−1

µi
is also getting get simplified. So, p0 =

(
1 +

∑∞
n=1

∏n
i=1

λi−1

µi

)−1
series and under the condition

whatever be the condition under which this series is convergent that is the condition for the positive recurrence of

the chain, and hence one can directly use it. So, p0 =
(
1 +

∑∞
n=1

∏n
i=1

λi−1

µi

)−1
, so, one can directly use. So,
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that is why this is a kind of a principal equation for birth-death queues because once you have birth-death queues,
you can simply substitute that is going to be one of the ways to solve; now you do not need to write down

0 = −(λn + µn)pn + λn−1pn−1 + µn+1pn+1, n ≥ 1

0 = −λ0p0 + µ1p1

flow balance equation and start from this to get solved. Once you know that it is a birth-death queueing system,
simply determine the rates λn’s and µn’s. Substitute in pn = λn−1λn−2...λ0

µnµn−1...µ1
p0, n ≥ 1 to get pn in terms of p0,

and the exact same thing will give you what would be this p0 =
(
1 +

∑∞
n=1

∏n
i=1

λi−1

µi

)−1
. Once we get p0,

then all pn’s are determined, and you are done with the solution that is how you know things will go, and that is
why this will be the principal equation for birth-death queues in analyzing the variety of queueing models which
can be modelled through a birth-death process.

• A second method of obtaining the above product solution is through the local balance equations λn−1pn−1 =

µnpn, n ≥ 1.

n− 1 n n+ 1

λn−2

µn−1

λn−1

µn

λn

µn+1

λn+1

µn+2

Now, look at this

(λn + µn)pn = λn−1pn−1 + µn+1pn+1, n ≥ 1 (4)

λ0p0 = µ1p1.

Now, take the first equation with n = 1; now, what will happen then. You have (λ1 + µ1)p1 = λ0p0 + µ2p2.

On the left side also, there is µ1p1, and this side is, let us say, λ0p0, and from λ0p0 = µ1p1, we know that
these two quantities are equal. So, this gets cancelled, and you are left with λ1p1, which is equal to µ2p2.
lambda0p0 = µ1p1 and λ1p1 = µ2p2. Now, one more step you go, you will get λ2p2 = µ3p3 and so on. So,
basically, from

(λn + µn)pn = λn−1pn−1 + µn+1pn+1, n ≥ 1 (5)

λ0p0 = µ1p1.

you will get that equation which is what we call as ”local” balance equation, and that is what this λn−1pn−1 =

µnpn, n ≥ 1 is true; this is what you are seeing here. Now, from λn−1pn−1 = µnpn, n ≥ 1 , you can easily see
pn = λn−1pn−1

µn
, and you iterate it, what you will get is pn = λn−1λn−2...λ0

µnµn−1...µ1
p0, n ≥ 1. That is what you are;

you are going to get it, and this is what we call the local balance equation.

Now, what is this local balance equation? Remember, this global balance equation we wrote with respect to state
right looking at the state and when what is the flow into this particular state and out of the particular state will give you
the global balance equation or simply balance equation. So, one can write down local balance equations directly for
birth-death queueing models, but this is not true for any general Markov chain. The global balance will always imply
local balance, but this local balance need not always imply the global balance; and there is another concept called
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reversibility, and if the chain is reversible, of course, this both imply each other, but in this case, we do not need to
worry because we will always handle with the global balance equations or simply balance equations or flow balance
equations. But for birth-death, there is a simpler way of obtaining the flow balance, which is via this local balance, and
that is you are looking at as if you are standing somewhere in the middle, not on the state, but somewhere between two
states and you are looking at the flow on the one side and the flow in the other side and in equilibrium, they must be
equal that gives you the local balance equation. This is only a piece of additional information we are giving, but we
will not use this local balance in any of our analyses. We will always write global balance equations. Now, consider
having understood BDP again once more with a little bit more details.

So, we will now consider the first basic model, which is called M/M/1 queues.

• The celebrated M/M/1 queue is the simplest nontrivial interesting queueing system because of randomness you
have brought in.
If it is deterministic, then, of course, that suppose in our notation what we mean this M denote the interarrival
times the second M denotes the service time and 1 server with the infinite capacity and FCFS discipline. Now,
suppose if these are all deterministic, then there is nothing much to analyze; everything will fall through, but the
moment you bring in randomness, the simplest model is basically M/M/1 model. So, M/M/1 is in Kendall’s
notation; we just explained what that means.

• The study of behaviour of an M/M/1 system is vital on many counts.
▲ Serves as a benchmark for new methods and new performance measures.

So, first of all, anything you develop and you try to apply for an M/M/1 queueing system to see that things
work well or what improvements it gives or whatever is the case that you are looking for it. So, this, in some
sense, is a benchmark model because anything that you want to do, you always try to do at the level of M/M/1

queue before you move to any other queue, say M/G/1 or anything of that sort.

▲ Much of the behaviour manifested in M/M/1 is characteristic of more complex queueing system behaviour.

So, the behaviour that you observe here is what would be similar to what you would get to observe in more
complex systems. So, the major aspects can of any particular complex queueing system be heard if you analyze
the M M 1 version of it M M 1 type. So, that is why the understanding of this M M 1 queue is important it is
very simple it is not at all complex. But you have to look at it in a way whether you know what is that it is giving
you what is that that you want to take out of the analysis of this. So, you always have to look for it to get what is
the nature of this behaviour and so on. So, that is why the study of this simplest model is what is very important.
Now, what is it M M 1 queue?

• An M/M/1 queue is a single server queue with a Poisson arrival process and with an exponentially distributed
service time distribution.
♦ Interarrival times are assumed to be IID Exp(λ) distributed, service times are assumed to be IID Exp(µ)

distributed and they are independent of each other.
♦ The arrival rate λ > 0 and the service rate µ > 0 are fixed.
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• It is further assumed that an infinite waiting space is provided and that the customers are served according to a
FCFS (or FIFO) discipline.

So, in pictorially like, if you want to depict this particular queueing system, this is what you will have.

Poisson Arrivals (with rate λ) Departures

Queue Server
µ

• Let N(t) denote the number of customers in the system at time t.

• The process {N(t), t ≥ 0} can be modelled as a BDP with λn = λ, n ≥ 0 and µn = µ, n ≥ 1.
The transition rate diagram for the BDP (or for the M/M/1 queue):

0 1 2 3

λ

µ

λ

µ

λ

µ

λ

µ

Now, you can also look at what is the Q matrix here in this particular case.

Q =


−λ λ 0 0 . . .

µ −λ− µ λ 0 . . .

0 µ −λ− µ λ . . .
...

...
...

...
. . .

 .

Now, the quantity of interest pn(t) here whenever we have such a system. So, now, you assume that things are
interarrival. So, this basically the conditions that we have put for M/M/1 queue that you know in a small interval
of length, say delta t what the probability of arrival is, what is the probability of a departure, what is the probability
of more than one event happens that is how you typically define for a BDP. And exactly the same thing is happening
here for the M/M/1 queue because of your assumption that the interarrival times are exponential, service times are
exponential. So, basically, you are getting exactly the same condition, and hence this can be modelled through a
birth-death process because it is the transition that happens one at a time. So, the quantity of interest here you will be
for this queueing system is the number in the system at time t.

• Let pn(t) = P{N(t) = n} for n ≥ 0. The system of differential-difference equations (forward Kolmogorov
equations) for the system state probabilities this BDP are given by

p′0(t) = −λp0(t) + µp1(t)

p′n(t) = λpn−1(t)− (λ+ µ)pn(t) + µpn+1(t), n ≥ 1.

• Ideally, we would seek a solution (known as time-dependent or transient solution) to the above equations, subject
to the initial probability distribution {pn(0), n ≥ 0}.
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• For now, we will focus on the equilibrium behaviour of this system model which means that we assume that
the system has reached an equilibrium because the system is in a stable situation and has reached a steady-state
situation. So, it is operating under a steady-state situation, and in that situation, we want to look at what are these
quantities; that means, we try to determine pn = lim

t→∞
pn(t) directly rather than obtaining pn(t) and then taking

its limit.

We said that complexity is there, but we will see how complex is that as an example for M/M/1 queue a little
later, but in all our analyses except that part when we are going to the transient analysis, the rest of the complete course
we are dealing with only equilibrium analysis. So, we will always be interested in what happens to pn and how we can
get pn which is what is of our interest.

• Assume that the M/M/1 system is in steady state.

• The (global) flow balance equations for this system are

λp0 = µp1

(λ+ µ)pn = µpn+1 + λpn−1, n ≥ 1. (6)

Equivalently,

p1 =
λ

µ
p0 and pn+1 =

λ+ µ

µ
pn − λ

µ
pn−1, n ≥ 1. (7)

• Three methods to solve the above system of equations are:
▶ Iterative method, Generating function method and Operator method.
▶ The purpose is to illustrate the methods, as one method may be superior/easy to other depending on the model
at hand.

So, you will try to adapt which method is going to work; that is why I said these are the not just all the methods;
there are many more different methods that can be utilized, but we will highlight these three methods for the time being
because these are the things which we will be using it in the future. The reason is just for illustration purposes of how
these methods work.

• Since M/M/1 system is a birth-death process with λn = λ and µn = µ, we can directly apply the iterative
method given earlier for a BDP with λn = λ and µn = µ.

• It follows that

pn = p0

n∏
i=1

(
λ

µ

)
= p0

(
λ

µ

)n

, n ≥ 1.

We can get p0 using the fact that
∞∑
n=0

pn = 1. This gives us

1 =
∞∑
n=0

pn =
∞∑
n=0

p0

(
λ

µ

)n

= p0

∞∑
n=0

ρn, where ρ =
λ

µ
= r is the offered load or traffic intensity.

⇒ p0 =
1∑∞

n=0 ρ
n
= 1− ρ.

using geometric sum:
∞∑
n=0

ρn =
1

1− ρ
, for ρ < 1
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Therefore, we obtain pn = P{N = n} = (1− ρ)ρn, n = 0, 1, 2, . . . , ρ = λ
µ < 1.

Thus, N ∼ Geo(1− ρ).

We are simply whatever iterative method that we have already developed there; we are simply employing it with
λn = λ and µn = µ parameters, and we are getting the solution pn; this is one method. The other method is using
generating functions. How do we do?

• Define the probability generating function P (z) =
∑∞

n=0 pnz
n, (z complex with |z| ≤ 1).

• We solve for and express P (z) as a power series and then obtain pn’s as coefficients of zn.

• Rewrite the balance equations in terms of ρ as

p1 = ρp0

pn+1 = (ρ+ 1)pn − ρpn−1, n ≥ 1.

Multiply both sides of the second equation above by zn & sum over n from 1 to ∞ to get

∞∑
n=1

pn+1z
n = (ρ+ 1)

∞∑
n=1

pnz
n − ρ

∞∑
n=1

pn−1z
n

⇒ 1

z
[P (z)− p1z − p0] = (ρ+ 1)[P (z)− p0]− ρzP (z)

⇒ 1

z
[P (z)− (ρz + 1)p0] = (ρ+ 1)[P (z)− p0]− ρzP (z), (using p1 = ρp0)

⇒ P (z) =
p0

1− ρz

• We need to find p0. Observe that P (1) =
∞∑
n=0

pn1
n =

∞∑
n=0

pn = 1. Therefore, we have

P (1) = 1 =
p0

1− ρ
, =⇒ p0 = 1− ρ.

Since {pn} is a probability distribution, P (z) > 0 when z is real and z > 0. Therefore P (1) > 0 and this
implies that P (1) = p0

1−ρ > 0. This means that ρ < 1. In summary,

P (z) =
1− ρ

1− ρz
, ρ < 1, |z| ≤ 1

= (1− ρ)
∞∑
n=0

ρnzn. (using the geometric series sum)

Since pn is the coefficient of zn, we have

pn = (1− ρ)ρn, n ≥ 0, ρ =
λ

µ
< 1.

So, this is the PGF approach or the generating function approach. Some observations based upon this algebraic
form of this for this model can be given, which is maybe relevant. I mean, it is very simple here, but you know the
similar idea is what is going to be prevalent elsewhere when you have a more complex situation.
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• Some observations based on the algebraic form of P (z) as given above for this model:

P (z) =
1− ρ

1− ρz
, ρ < 1, |z| ≤ 1.

▶ This expression is a rational function, being quotient of two polynomials.
The numerator is a constant and the denominator is a linear form 1− ρz.
The denominator has a single zero 1/ρ, which is the reciprocal of the traffic intensity and its value is greater than 1.

So, you will be looking for a root of that nature if we have multiple roots and if the polynomial here is not
linear, but quadratic of order anything, then you will look for rows which are of having this property, this zero
of denominators which is value is greater than 1 is what then will give you the required quantities. So, this is
a rational function; the rational function is what is easier, whether it is Laplace transform or z transform; the
rational functions are easier to deal with it because then you can make partial fraction expansions for these
rational functions, and you can write down nicely. You can try to get the corresponding series expansion so that
you can get the quantities there that are a nicer form that you would expect to have.

▶ For some models, it may easy to find an expression for P (z) but it may be difficult to find its series expansion
to obtain pn’s.
But P (z) still provides useful information. For example, we can obtain

L = E(N) =

∞∑
n=0

npn =
dP (z)

dz

∣∣∣∣
z=1

= P
′
(1).

Later on, you will see when we deal with a little more complex models like, at whatever stages we will be using this
kind of idea. So, the L can be obtained from here even though you do not have the explicitly what is this pn. So, from
P , I can differentiate with respect to z, and I can obtain its mean of mean number in the system. So, this is some
observation that you are making with respect to PGFs that ideally, like the algebraic form rational functions is what
we want, and that will give us the ideas of how one can handle these PGFs and how we will get these zeros for the
denominator for which will serve our purpose and even if you are not able to obtain explicit expression or not able
to get from the PGF the pn’s you can still obtain some useful information. So, this is the second method that we are using.

The third method is using operators; this is much similar to the differential equation that you might be aware
of because that is also an operator; this differential operator, this is a generic operator, which is what the difference
operator; basically, you can say here.

• We use the theory of linear difference equations to solve for {pn}, starting from the main equation in our flow
balance equations:

pn+1 = (ρ+ 1)pn − ρpn−1, n ≥ 1

• Define a linear operator D on {a0, a1, a2, . . . } by

Dan = an+1, ∀n =⇒ Dman = an+m, ∀n,m
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• A general linear difference equation with constant coefficients

Cnan + Cn+1an+1 + · · ·+ Cn+kan+k = 0

can be written as
Cnan + Cn+1Dan + · · ·+ Cn+kD

kan = 0

How to solve, we will take a simpler second-order case. So, what do we have as a second-order?

Example. (Solving a second-order linear difference equation)

• A second-order difference equation of the form C2an+2 + C1an+1 + C0an = 0

can be written as (
C2D

2 + C1D + C0

)
an = 0

The corresponding characteristic equation is

C2r
2 + C1r + C0 = 0

The roots of this equation determine the form of the solution for {an}.

• Suppose that r1 and r2 are two distinct real roots of the characteristic equation. Then we know rn1 is a solution to
this difference equations, and any constant times of that would also be a solution to that.

an = d1r
n
1 and an = d2r

n
2 , d1, d2 are constants

are both solutions of the second order linear difference equation.

• an = d1r
n
1 + d2r

n
2 is the most general solution.

• Note the similarity with the theory of solving linear differential equations!

Now, this idea is what is the difference equations and how one can solve them.

• For our M/M/1 model, the main equation in the balance equations can be written as

µpn+2 − (λ+ µ)pn+1 + λpn = 0, n ≥ 0.

Then {pn} are the solution to
[
µD2 − (λ+ µ)D + λ

]
pn = 0 subject to the boundary conditions p1 =

λ

µ
p0 = ρp0

and
∞∑
n=0

pn = 1.

The characteristic equation µr2 − (λ+ µ)r + λ = 0 yields two roots given by 1 and λ/µ and hence the general
solution is given by

pn = d1(1)
n + d2

(
λ

µ

)n

= d1 + d2ρ
n

Now,
∞∑
n=0

pn = 1 =⇒ d1 = 0 (otherwise
∑∞

n=0 pn would be infinite).

And p1 = ρp0 =⇒ d2 = p0 (since p1 = d2ρ from the above).
Thus, pn = p0ρ

n and p0 is found to be p0 = 1− ρ for ρ < 1, giving us the required result.
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So, these are three different methods of solving this particular M/M/1 system.

• For M/M/1 queue, the steady state system size probabilities are given by a geometric distribution.

• pn depends on λ and µ only through ρ = λ/µ.

• The steady state solution for the M/M/1 system exists under the condition that ρ < 1, or equivalently λ < µ, or

equivalently
1

µ
<

1

λ
(intuitive!).

Q: Why no equilibrium solution when λ = µ?

We can see that when λ = µ also, exactly, it would match, but exactly it would match provided this is there is no
randomness here; because of this randomness, there may be patches at which the system will be empty. And that
will not be able to serve because the mean service rate is exactly equal to the mean arrival rate. So, it will not be
able to serve completely, and then the queue will start building up so that the stability is lost.

• ρ < 1 is the condition for ergodicity of the process and the stability condition for the M/M/1 system.

• The steady state probability distribution for the system size pn = P{N = n} = (1− ρ)ρn, n = 0, 1, 2, . . . , ρ =
λ
µ < 1 allows us to calculate various equilibrium performance measures of the system.

So, we will stop here at this point after having obtained the equilibrium system size distributions for an M/M/1

queue. So, we will continue with performance measures in the next lecture.
Thank you. Bye.
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