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Stationary and Limiting Distributions of CTMC, Balance Equations, Birth-Death

Processes

Hi and hello, everyone; let us continue our discussion of Continuous-Time Markov Chains that we have seen in the
previous lecture. Recall

• The transition probabilities Pij(t) of a CTMC satisfy the systems of differential equations

dPij(t)

dt
=
∑
k∈S

Pik(t)qkj and
dPij(t)

dt
=
∑
k∈S

qikPkj(t).

These are called the Kolmogorov forward and backward equations.
In matrix notations, P ′(t) = P (t)Q and P ′(t) = QP (t) (with P (0) = I).

• The transition probability matrices can be expressed in terms of the generator by P (t) = eQt =
∞∑
n=0

tn

n!
Qn, for

all t ≥ 0, with Qn denoting the nth power of Q.
▶ Q uniquely determines all transition matrices.

• A CTMC is completely determined (i.e., FDDs are detemined) by the transition matrices and the initial distribu-
tion.

• Define pi(t) = P{Yt = i} for i ∈ S as the probability that the CTMC is in state i at time t. Denote p(t) as the
vector with entries pi(t) (state probabilities).

• We can characterize the state probabilities via systems of differential equations which are also forms of forward
and backward Kolmogorov equations

p′(t) = p(t)Q and p′(t) = Qp(t).

▶ Given Q and p(0), we can solve for p(t) from the above.

Now, as an example, what we consider was a BD Birth-Death process.
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Example. (Birth-Death Process (BDP))
A birth-death process (BDP) is a CTMC {Yt} with S = {0, 1, 2, . . . } in which state transitions either increase the sys-
tem state by 1 (a birth) or decrease the system state by 1 (a death). The generator matrix (or rate matrix) for a BDP is

Q =


−λ0 λ0 0 0 . . .

µ1 −(λ1 + µ1) λ1 0 . . .

0 µ2 −(λ2 + µ2) λ2 . . .
...

...
...

...
. . .

 .

When the system is in state i, births occur with rate λi (for i ≥ 0) and deaths occur with rate µi (for i ≥ 1). In other words,
q01 = λ0 = −q00, and for i ≥ 1, qi,i+1 = λi, qi,i−1 = µi and qii = −(λi + µi). Also, qij = 0 for |i− j| > 1.

Transition rate diagram of BDP:

0 1 2 3

λ0

µ1

λ1

µ2

λ2

µ3

λ3

µ4

The system of differential-difference equations (forward Kolmogorov equations) for the system state probabilities for a BDP
are given by

p′0(t) = −λ0p0(t) + µ1p1(t)

p′i(t) = λi−1pi−1(t)− (λi + µi)pi(t) + µi+1pi+1(t), i ≥ 1.

So,

p′0(t) = −λ0p0(t) + µ1p1(t)

p′i(t) = λi−1pi−1(t)− (λi + µi)pi(t) + µi+1pi+1(t), i ≥ 1.

is the most important system of equations in the analysis of the birth-death model. If you can obtain a solution to
this, it is that is what ideally you would look for; then you can talk about the system or the process, the birth-death
process or the which is a continuous-time Markov chain, being in a particular state at a particular time, you can always
get these probabilities. So, that is what it is. So, that is what it would mean; this system of equations, the solution to
this, is what you ideally look for. Now, whether it is always possible to obtain and if so, how complex is it whether it
makes sense that even you are looking for it, that solution is all the question that you ask with respect to the BDP.

Example. (BDP (contd. . . ))
Many queueing systems (where customers arrive/depart one at a time) can be represented as BDPs, where the system
state Yt denotes the number of customers in the system at time t.
▶ An M/M/1 queue can be modelled by a BDP with λi = λ and µi = µ for all i.

A BDP is a pure-birth process if µi = 0 for all i. And, a BDP is a pure-death process if λi = 0 for all i.

A Poisson process is also a special case of a BDP with λi = λ and µi = 0. Recall that we derived the forward
Kolmogorov equations for the system state probabilities from basic principles. It can alternatively be derived from the
forward Kolmogorov equations of CTMC by noting that that qii = −λ, qi,i+1 = λ (for i ≥ 0), and qij = 0 elsewhere
(or equivalently from the forward Kolmogorov equations of the BDP).
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So, this is what one would ideally want to do to obtain p(t), whether it is a transition matrix or the state probabilities
if one is possible. Just like in the DTMC case, our interest is, what happens in the long run, the long-run behaviour
of the continuous-time Markov chain; that is what we are also interested in here as well. So, basically, what you are
looking at, much like the DTMC case or the Markov chain case, you are looking at pij(t), as t → ∞, this is transition
probabilities as time tends to ∞ or pi(t), the state probabilities as t → ∞ is what the quantities that are of interest for
you. What you are looking at is limiting probabilities, which is how one can obtain them. This whole idea is exactly
similar to what we have done in discrete time.

• As in DTMC, for “nice” CTMCs, a unique stationary distribution exists and equal to the limiting distribution.

• We shall assume the technical assumption inf{λi, i ∈ S} > 0.

So, λi = 0 case, which is basically the absorbing case, which we are excluding here by this inf{λi, i ∈ S} > 0

assumption. Already you know that λi is bounded we have made it. Now, we want to assume that inf{λi, i ∈ S}
is also strictly greater than 0.

• A CTMC is called irreducible, transient, recurrent or positive recurrent if the defining Markov chain is.

So, whatever the DTMC that we are using to define the CTMC, whatever the properties that DTMC has, it
carries over to that CTMC as well. If the DTMC is irreducible, the CTMC would also be irreducible. Whatever
the Markov chain or simply Markov chain or discrete-time Markov chain, if that is positive recurrent, then the
corresponding CTMC is also positive recurrent and so on.

• Let {Yt} be a CTMC with transition matrix P (t) and state space S = {0, 1, 2, . . .}. A probability distribution p

on S, i.e, a vector p = [p0, p1, p2, . . .], where pi ∈ [0, 1] and
∑

i∈S pi = 1 is said to be a stationary distribution
for {Yt} if p = pP (t), for all t ≥ 0.

So, in case of discrete also like you have a something similar things that you know, here we want to require
that this is for all t ≥ 0, p = pP (t) be true, and a p which is of p = pP (t) form is what will be called as the
Stationary distribution.

• The probability distribution p = [p0, p1, p2, . . .] is called the limiting distribution of the CTMC {Yt} if

pj = lim
t→∞

P{Yt = j|Y0 = i} for all i, j ∈ S, and we have
∑
j∈S

pj = 1.

The limiting probabilities may exist, but the limiting distribution may not much like the DTMC case; that is also
the same thing here.

So, this is what, ideally, one would want. We basically want to know the long-term behaviour, which is pj . But
again, the interpretation for pj is like in the Markov chain case; what is the probability that you would see the system
being in state j a long-time from now. Whereas stationary distribution, meaning the long time proportion of time that
you would find the system to be in a particular state, the same interpretation which we had for the Markov chain. Now,
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for example, if you look at the Two-state continuous-time Markov chain, which we have seen.

Example. (Two-state (CTMC))
Recall the transition matrix, for any t ≥ 0,

P (t) =

[
1
2 + 1

2e
−2λt 1

2 − 1
2e

−2λt

1
2 − 1

2e
−2λt 1

2 + 1
2e

−2λt

]
.

With p = [p0, p1], the equations p = pP (t), p0 + p1 = 1 gives p0 = p1 = 1/2 as the stationary distribution. This is
also the limiting distribution.

A “nice” chain with a unique stationary distribution that equals the limiting distribution!

But here, one thing which you will notice with respect to the discrete-time Markov chain and continuous-time
Markov chain, here what is that. In discrete-time Markov chain, what is the defining Markov chain here. The defining
Markov chain here is

P =

[
0 1

1 0

]
that is what is the defining Markov chain. If I go back and if I look here, this is the defining Markov chain that we had
for the two-state Markov CTMC case, and

P (t) =

[
1
2 + 1

2e
−2λt 1

2 − 1
2e

−2λt

1
2 − 1

2e
−2λt 1

2 + 1
2e

−2λt

]
.

that we obtained earlier. So, P =

[
0 1

1 0

]
and in the DTMC case, what was the stationary distribution, what was

the limiting distribution idea. If you recall, for P =

[
0 1

1 0

]
we said that there is no limiting distribution in the way

that we have defined. Because it is never becoming independent of the initial state, but it has a stationary distribution
which was (1/2, 1/2). It has a stationary distribution, but it was not having any limiting distribution. But here, the
corresponding continuous-time Markov chain has a limiting distribution which is the same as the stationary distribution.
So, what was the difference?

What was the property that we had there, which was not guaranteeing as in the case of discrete-time Markov chain,
the existence of limiting distribution was the periodicity property, that aperiodicity property. But here, in continuous
time, periodicity does not play a role. That is why this happens, and this is a now becomes a nice chain, when in
the continuous-time case, this becomes a nice chain with the unique stationary distribution that equals the limiting
distribution.

• In theory, we can find the stationary (and limiting) distribution by solving pP (t) = p, or by finding lim
t→∞

P (t).

• In practice, finding P (t) itself is usually very difficult. Hence, direct determination of the steady-state solution
is more difficult.
▶ We need to find alternative ways!
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And that is what this theorem gives us. What this says is the following:

Theorem.
For a CTMC, if the embedded DTMC is irreducible and positive recurrent, then there is a unique stationary distribution
given by the solution to the stationary equations

0 = pQ and
∑
i∈S

pi = 1.

Further, under our assumption that the mean holding times in all states are bounded, the chain has a limiting distribution
equal to the stationary distribution.

So, if that is the case, you do not have an absorbing chain; that is what it would effectively mean; that is
what it would mean, an irreducible thing. So, already like, we are imposing this condition. So, in that case, the
chain has a limiting distribution that equals the stationary distribution. So, now, if you want to get that distribution
which is what we call either stationary distribution or limiting distribution, then you do not need to look for solving
pP (t) = p after getting P (t) or taking the limit t → ∞ after getting P (t). What you can do you can simply solve
0 = pQ and

∑
i∈S pi = 1.. Now, you know what Q is; there is no t dependency here; it is a single matrix; you

solve 0 = pQ with
∑

i∈S pi = 1 this. And if the chain has this property, irreducible and positive recurrence and mean
holding times are all bounded, which means that it stays only a finite amount of time in a particular state and it makes a
move to the other state; that is what it would mean. Then, 0 = pQ and

∑
i∈S pi = 1. is what you are looking for.

As the quantity of interest for you to know about the long-term behaviour of this continuous-time Markov chain.

• Now you can see that a CTMC is said to be regular it it satisfies the conditions given in the above theorem.
▶ For a regular CTMC, the limit lim

t→∞
Pij(t) = pj holds for all i, j ∈ S and is independent of i.

• Compared to DTMCs, aperiodicity is not required for the limiting distribution to exist in a CTMC (as the times
between transitions vary continuously). Even if the embedded MC is periodic, the continuous transition times
wash out any periodicity that may come from the embedded process.
We have already seen an example. So, the aperiodicity is not required in this case because there is nothing like a
period for a continuous time because time is continuous.

So, that periodicity is getting washed out. So, there is no periodicity concept as such for a continuous-time
Markov chain. You can take it that way. So, we are not looking at that. So, basically, that is why irreducibility and
positive recurrence is what is; in the discrete-time case, the stationary equations were different. But the solution of
that was possible if this (irreducible and positive recurrent) was the case. And in the case of the aperiodic Markov
chain, we said that the limiting distribution exists and then equals the stationary distribution. But here, we do not
need that aperiodicity condition is what is the difference that you would see with respect to the Ergodic theorem
for the continuous-time Markov chain, which is what this result is all about, I mean much like the similar case
for the discrete-time Markov chain case. So, if we are looking for long-term behaviour, limiting distribution, or
the stationary distribution, they will be then, under such a situation, irreducible and positive recurrence and this
boundedness. So, they will be given by the solution of 0 = pQ and

∑
i∈S pi = 1., which is an alternative

way and which is a very simple one to do now; just like in the discrete-time Markov chain case, you have to find
Pn to get the limiting probabilities and then let n → ∞. Instead of that, you solved it through π = πP , and then
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you obtained that same quantity. Here, this is 0 = pQ is; what is the equation that you need to solve to get the
distribution. If you get these pi’s, if it forms a distribution, then that is the stationary distribution, and that is what
the limiting distribution in this under the conditions given in this Ergodic theorem, and that is what you want to look at it.

Then, this p’s whatever you obtained, so obtain as a solution to 0 = pQ and
∑

i∈S pi = 1, is what will give
you the probabilities of finding the continuous-time Markov chain to be in a particular state a long time from now; the
interpretation is by a limiting distribution or in the long-run fraction of time, you find the process in a particular state,
this is basically from the stationary distribution point of view. So, you can have both interpretations for these p’s that
we have here.

Now, 0 = pQ equation, if I look at it, because now, I need to worry about only solving this set of equations,
because this is what will give me the equilibrium behaviour or the steady-state behaviour or the stationary behaviour or
the limiting behaviour of the continuous-time Markov chain. All these words are used interchangeably in different
contexts; you be aware of that.

• The equation 0 = pQ is equivalent to an equation system∑
i ̸=j

piqij = −pjqjj ⇔
∑
i ̸=j

piqij = pj
∑
i ̸=j

qji for all j ∈ S.

▶ On LHS, piqij is the rate of transitions from i to j (or stochastic flow from i to j in equilibrium).
So, pi is basically the probability of finding the system or the process or the chain in state i, and qij is the rate at
which it is moving from i to j. So, the total product piqij is the rate of transitions from i to j because you are
finding it in i, and then it moves from i to j. So, that product piqij will give you the rate of transition from i to j

or the stochastic flow from i to j.
Summing over i gives the overall rate of transitions into state j.

▶ The RHS is the rate of transitions out of state j.

▶ Thus, 0 = pQ means that the rate of transitions out of a state equals the rate of transition into the state, in
equilibrium (or in steady-state). These are called the (global) balance equations.

Example. (Poisson Process)
pQ = 0 gives p0λ = 0 and piλ = pi−1λ for all i ≥ 1.

This implies that pi = 0 for all i ∈ S and there is no stationary distribution.

Example. [Two-state CTMC]

We have Q =

[
−λ λ

λ −λ

]
. Then, pQ = 0 gives p0 = p1, and p0 + p1 = 1 would then implies that p0 = p1 = 1/2.

Now, let us come back to a Birth-Death Process, the most important one that we are going to use next.

• Recall: A CTMC {Yt, t ≥ 0} on S = {0, 1, 2, . . . } with the transition rates qi,i+1 = λi for i ≥ 0, qi,i−1 = µi

for i ≥ 1 and qij = 0 for |i− j| > 1 is called a Birth-Death Process (BDP).

▶ We assume that λi > 0 for i ≥ 0 and µi > 0 for i ≥ 1 (and are finite).
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• Transition rate diagram of BDP:

0 1 2 3

λ0

µ1

λ1

µ2

λ2

µ3

λ3

µ4

• Balance Equations (for the state probabilities):

λ0p0 = µ1p1

(λi + µi)pi = λi−1pi−1 + µi+1pi+1, i ≥ 1.

Let us take the case of state 2 here. Now, what is the rate of flow out of state? So, this the rate of flow out
of state is either it can go move to 3 with rate λ2 or to 1 with rate µ2. So, the rate of flow out of state 2 is
basically (λ2 + µ2)p2; that is what you will get on the left-hand side here, which is the rate of flow out of state
2. And, what is the rate of flow into state 2, that it can be in state 1 and with λ1, it can come to state 2, or it
can be in state 3, and with rate µ3, it can come to state 2. So, λ1p1 + µ3p3 is what you will get for i = 2 here.
λ1p1 + µ3p3 is the rate of flow into state i, (λ2 + µ2)p2 is the rate of flow out of state i, and in equilibrium,
(λ2 + µ2)p2 = λ1p1 + µ3p3. So, this is what is the flow balance equation.

Now, this one you can also obtain you have the Q already, and then you can look pQ = 0, you will give you this
or from this diagram you can immediately write it down, what is the flow balance equations, in which must be
satisfied in equilibrium.

• The BDP is irreducible. If it is also positive recurrent, then we will have a unique solution to the above equations
and it is called as stationary distribution or limiting distribution or equilibrium distribution or steady-state
distribution for the BDP.

Again, you look at the theorem and how we are using it, recall the theorem irreducible positive recurrent implies
there is a unique solution to this 0 = pQ and

∑
i∈S

pi = 1, set of equations.

Now, we ensured irreducibility; we have ensured the boundedness; we do not know whether it is positive recurrent
or not or under what condition this will be positive recurrent. So, we now look at the solution to 0 = pQ and

∑
i∈S

pi = 1.

Now, when under the what condition this system has a unique solution and that is the condition for positive recurrent
that is how you now we will interpret. So, if it is positive recurrent, then we will have a unique solution to the above
equations. And it is then called a stationary distribution or limiting distribution because we know all of them are these
two things is what is the main quantities they are one and the same. And whenever one and the same, the additional
words terminologies that are used to describe are also called equilibrium distribution or steady-state distribution for the
BDPs.

• We now address the existence of steady-state probability distribution.

• Define two sums:

S1 =
∞∑
k=0

k−1∏
i=0

λi

µi+1
and S2 =

∞∑
k=0

(
1

/(
λk

k−1∏
i=0

λi

µi+1

))
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Case-1: BDP is positive recurrent if and only if S1 < ∞ and S2 = ∞.
Case-2: BDP is null recurrent if and only if S1 = ∞ and S2 = ∞.
Case-3: BDP is transient if and only if S1 = ∞ and S2 < ∞.

So, if I want only the recurrence or transience of this, then I can take it only through S2. Because if S2 < ∞,
then it is transient; if S2 = ∞, it is recurrent. Now, within this recurrence, if I want the positive or null recurrence
to be separated, then I have to look at essentially this S1, which is what is the most crucial one here. If S1 = ∞,
then it is null recurrent, and if S1 < ∞, then it is, positive recurrent. So, mainly, our interest is whether the chain
is positive recurrent or not. If that is the scenario, I can look at only S1 will be finite; S2 is infinite; obviously,
you have to verify. But you know, we will be mostly concerned or will be without saying explicitly we will be
concerned with S1, if S1 being finite or not, if S1 is infinite, then I know that it could be one of these cases, but
S2 needs to be checked, but it will satisfy most of the case anyway. So, we will not worry too much about this
part. So, this becomes the major or the main one which will contribute to our positive recurrence of this chain.

• It is Case-1 that gives rise to equilibrium probabilities and this is of interest to our studies.

Where both S1 and S2 though is needed, we will not say explicitly about S2, which you can verify by yourself,
but it will be in terms of S1 we will talk.
▶ Note that the corresponding condition is met whenever the sequence {λn/µn} remains below unity from some
n onwards.

• An irreducible BDP on a finite state space S = {0, 1, 2, . . . , N} is said to be a finite-state BDP or finite BDP
and is always positive recurrent.

So, this is what is the BDP theory, and then we will come back to this BDP once more when we start the next
lectures, which is on the basic queueing models. But this is what we may have; we may not have everything, but this is
what you will have;

λ0p0 = µ1p1

(λi + µi)pi = λi−1pi−1 + µi+1pi+1, i ≥ 1.

is what is called the global balance equation, and a solution to the global balance equation is what you are obtaining. So,
this can also be obtained from that the stationary equation pQ = 0, like this also gives you these flow-balance equations.

So, we will stop here and about our discussion on this continuous-time Markov chain; what we will do next lecture
is we will start the discussion of our basic queueing models, which will be based on this BDP. So, again we will revisit
BDP once more when we start the queueing models. So, this is all our basically; our idea is what is a continuous-time
Markov chain, what is required to describe a continuous-time Markov chain, and how you will obtain this long-term
behaviour. So, the long-term behaviour, the equilibrium behaviour is what we are looking at it for most of the queueing
models that we will do, but we will also highlight at one point of time for the simplest of the model, what is the
transient solution, which is basically obtaining P (t) the state probabilities at time t explicitly. And you can see, then
the complexity of obtaining that P (t) in that particular case, that is what we will be doing, but for all these things, this
is what is the main thing that we will be using it. So, this Ergodic theory theorem for this CTMC is what is the main
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backbone on which the model’s solutions are all obtained for various queueing models. Fine, we will talk about that
when we start this queueing model. So, we will end here.
Thank you. Bye.
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