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Hi and hello, everyone. What we will do next is the ”Continuous-Time Markov Chains” and the basic properties
and the basic ideas that we need from this particular concept because this is what is ultimately we need when we start
our queueing analysis, like whatever we did in discrete-time Markov chain and Poisson process both of them like will
lead to this particular thing that we are doing here is continuous-time Markov chain. And this is what directly like we
are going to use as a model for all our queueing systems because things that we are going to deal with are going to be
in a continuous-time and state is discrete. So, what we are having here is the continuous-time Markov chain is what
then practically will be applied in our queueing analysis. So, that is what we are coming. So, whatever we did in the
discrete-time Markov chain, we will see that we are now transferring those results to the continuous-time version of
them.
So, what is a continuous-time Markov chain? Here the state space is discrete, whereas the parameter space now
becomes continuous. So, we will transfer the results from discrete-time, which is basically DTMC or simply MC
Markov chain, to CTMC. Now first, let us define what we mean by continuous-time Markov chain.

Definition.
Define S0 = 0 and let {Sn, n ≥ 1} denote a sequence of RVs such that Sn > Sn−1 for all n ≥ 1 and Sn → ∞ as
n → ∞. Further, let {Xn, n ≥ 0} be a sequence of RVs taking values in a countable state space S. A stochastic
process {Yt, t ≥ 0} with Yt = Xn for Sn ≤ t < Sn+1 is said to be a pure jump process. The variable Tn = Sn+1−Sn

(resp. Xn) is called the nth holding time (resp. the nth state) of the process {Yt}.

If, further, {Xn, n ≥ 0} is a Markov chain with (stationary) transition probability matrix P = ((pij)) and the
variables Tn are independent and distributed exponentially with parameter λXn only depending on the state Xn, then
{Yt, t ≥ 0} is called a (time-homogeneous) continuous-time Markov chain (CTMC). The chain {Xn, n ≥ 0} is called
the embedded Markov chain of the CTMC.

So, we will always assume that this sup{λi, i ∈ S} is bounded. Because you remember that Tn are all exponential
and λXn is the parameter; if this parameter is ∞, if it is not finite, then you know what it means, or you could talk about
the parameter λ, mean is 1/λ and what happens in that particular case. So, to avoid that, we will always assume that
this is the maximum of all these λi’s one for each state of the process; they are all finite. So, the sup{λi, i ∈ S} < ∞,
which means each one of them is finite, which is what you are assuming. So, there are all some finite values that we
are assuming to avoid any of the trivial cases that we might encounter in this particular case. So, this is what is a
continuous-time Markov chain.
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• Now, a CTMC moves from state to state just like a DTMC, but the time spent in each state is now an exponential
random variable; it is not; otherwise, it is an exponential random variable what then we are making it here.

• Note that if i is not an absorbing state, we can assume that the single-step transition from state i back to itself is
not allowed (i.e., pii = 0).
If i is an absorbing state, then pii = 1 and, in this case, we have λi = 0 because it is not going to go out of the
state. So, that is what it would mean. So, it would be in that particular state forever. So, for an absorbing state,
λi = 0.

• The process {Yt, t ≥ 0} satisfy the Markov property. That is,

P
{
Yt = j|Ytn = i, Ytn−1 = in−1, . . . , Yt0 = i0

}
= P {Yt = j|Ytn = i}

for all states i0, i1, . . . , in−1, i and j in S, for all n ≥ 1, and for all t0, t1, . . . , tn, t such that 0 ≤ t0 < t1 <

· · · < tn < t.
Of course, one can define the Markov process straight away as if satisfying this, but for us, it is defining through
an embedded Markov chain idea taking DTMC to move to CTMC is more useful from our viewpoint. So, we
have taken that route; otherwise, one can define directly as a process satisfying the Markov property is what
would be a Markov process in general. So, this is a discrete state continuous time. So, this is a continuous-time
Markov chain that then one would define.

So, {Yt, t ≥ 0} satisfies this Markov property which in this particular case is

P
{
Yt = j|Ytn = i, Ytn−1 = in−1, . . . , Yt0 = i0

}
= P {Yt = j|Ytn = i}

.
Now, P {Yt = j|Ytn = i} is now the transition probabilities of moving from i to j from time tn to t.

• So, in general, for any s < t, define the the transition probability matrix P (s, t) from time s to t by its entries
Pij(s, t) = P{Yt = j|Ys = i}. And, they satisfy Pij(s, t) = Pij(0, t− s) and we can restrict our attention to
P (t) where P (t) = P (0, t).

• With the above notation, the Markov property yields the Chapman-Kolmogorov equations P (s+t) = P (s)P (t)

for s, t ≥ 0.

• Note: P (0) = I and the rows of P (t) sum to 1 much like the DTMC case.

One thing that you need to remember here is this part the continuous-time Markov chain and the embedded Markov
chain. Embedded Markov chain is a discrete-time Markov chain that we extract out of this continuous-time Markov
chain at the times of transitions; is what you would get this embedded Markov chain which is what Xn’s are; that is
what you need to remember. Now, let us take a couple of examples.

Example. [Poisson Process]
Define Xn = n for n = 0, 1, 2, . . . . Then {Xn, n ≥ 0} is a Markov chain with state space S = {0, 1, 2, . . . } and
transition probabilities pn,n+1 = 1 for all n ≥ 0. Let the holding times Tn be IID exponential with parameter λ > 0.

The stochastic process {Yt, t ≥ 0} with Yt = Xn for Sn ≤ t < Sn+1 is a CTMC with state space S and is known
as Poisson process with rate (or intensity or parameter) λ.
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Example. [Two-state CTMC]
Consider a CTMC with two states S = {0, 1} and assume the holding time parameters are given by λ0 = λ1 = λ > 0.

Since none of the states are absorbing (as λi > 0), and we do not allow self-transitions, the TPM of the embedded

MC is P =

[
0 1

1 0

]
.

We will now determine P (t), starting with P00(t). Assuming Y0 = 0, Yt will be in 0 if and only if we have an
even number of transitions in the time interval [0, t]. The time between each transition is an Exp(λ) RV and thus the
transitions occur according to a Poisson process with parameter λ. We have

P00(t) = P{even number of transitions in[0, t]} =
∞∑
n=0

e−λt(λt)2n

(2n)!
=

1

2
+

1

2
e−2λt.

By symmetry, P11(t) = P00(t). We thus have

P (t) =

[
1
2 + 1

2e
−2λt 1

2 − 1
2e

−2λt

1
2 − 1

2e
−2λt 1

2 + 1
2e

−2λt

]
.

Observe: lim
t→∞

P (t) =

[
1
2

1
2

1
2

1
2

]

• A CTMC can be parameterized by the quantities {λi} and {pij}. Alternatively, a CTMC can be parameterized
by a matrix Q = ((qij)), called generator matrix or infinitesimal generator or rate matrix, and is defined as

qij =

−λi, i = j

λipij , i ̸= j
for all i, j ∈ S.

• If Y0 = i, the chain will move to the next state at time T1 ∼ Exp(λi). For small ∆t > 0, P (T1 < ∆t) ≈ λi∆t,
i.e., the probability of leaving state i in a short interval of length ∆t is approximately λi∆t. For this reason, λi is
often called the transition rate out of state i (the expected number of transitions per unit of time). Formally, we

can write λi = lim
∆t→0+

[
P{Y∆t ̸= i|Y0 = i}

∆t

]
.

• Since the chain moves from state i to state j with probability pij , we call the quantity qij = λipij , the transition
rate from state i to state j. This is the (i, j)th entry of Q, for i ̸= j.

• The diagonal elements (i.e, qii) of Q are such that the rows of Q sum to 0. That is, qii = −
∑
j ̸=i

qij = −λi

∑
j ̸=i

pij = −λi

holds for all i ∈ S.
▶ If λi = 0, then λi

∑
j ̸=i pij = λi = 0.

▶ If λi > 0, then pii = 0 and so
∑

j ̸=i pij = 1.

• For small ∆t > 0, based on earlier approximation for λi, we can obtain Pii(∆t) ≈ 1 + qii∆t for i ∈ S and
Pij(∆t) ≈ qij∆t for i ̸= j.

More precisely, we can state Q = lim
∆t→0+

[
P (∆t)− I

∆t

]
.

• Q plays a similar role for CTMCs as P − I plays for DTMCs (e.g., stationary equations).
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• Q was determined from {λi} and {pij}. Alternatively, {λi} and {pij} can be determined from {qij} via
λi =

∑
j ̸=i

qij , basically the off-diagonal, I mean leaving out the diagonal entries the remaining entries, if you

sum you will get λi =
∑
j ̸=i

qij , these quantities are all nonnegative that is what you will see then pij =
qij∑

j ̸=i

qij
.

So, this Q is what then you can determine if you know {λi}, {pij} you can decide what is Q if you know {qij}’s
then you can determine what is λi and pij using λi =

∑
j ̸=i

qij , pij =
qij∑

j ̸=i

qij
.. Why do we need these? Because, most

of the time, we would specify in terms of {qij}. If you want the corresponding holding times at a particular state or
the embedded Markov chains transition probabilities, then you simply have to use these particular expressions. So,
λi =

∑
j ̸=i

qij , pij =
qij∑
j ̸=i qij

. is important. So, you have to remember that you should know exactly how one can

move from qij to λi because we will be interested in getting to know what is the embedded Markov chain transition
probabilities. So, what do you have to do? You have to simply calculate pij =

qij∑
j ̸=i qij

., and the holding times in a

particular state would be λi =
∑

j ̸=i qij because λi is what is coming out here in the denominator of pij =
qij∑
j ̸=i qij

when you are computing this transition probability.

So, how can we represent.

• Much like in the discrete-time case the (i, j)th entry of Q is called the infinitesimal transition rate from state i

to j. A state transition rate diagram (or simply rate diagram) for a CTMC is a directed graph where the nodes
represent the states and the edges represent the transition rates qij . The values of qii are not shown because they
are implied by the other values. As in DTMC, very useful tool here too and we will use extensively.

Example. [Poisson Process]

Q =


−λ λ 0 0 . . .

0 −λ λ 0 . . .

0 0 −λ λ . . .
...

...
...

...
. . .


0 1 2

λ λ

Example. [Two-state CTMC]

Q =

[
−λ λ

λ −λ

]
0 1

λ

λ

So, for Q =

[
−λ λ

λ −λ

]
what are the embedded Markov chain transition probabilities? We have already written

down P =

[
0 1

1 0

]
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Corresponding to Q =


−λ λ 0 0 . . .

0 −λ λ 0 . . .

0 0 −λ λ . . .
...

...
...

...
. . .

,

it is basically the transition the embedded Markov chains TPM would be P =


0 1 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .


Now, these transition probabilities we need to determine Pij)t or P (t), and how do they determine?

• The transition probabilities Pij(t) of a CTMC satisfy the systems of differential equations

dPij(t)

dt
=

∑
k∈S

Pik(t)qkj and
dPij(t)

dt
=

∑
k∈S

qikPkj(t).

These are called the Kolmogorov forward and backward equations.
In matrix notations, P ′(t) = P (t)Q and P ′(t) = QP (t) (with P (0) = I).

• The transition probability matrices can be expressed in terms of the generator by P (t) = eQt =
∞∑
n=0

tn

n!
Qn, for

all t ≥ 0, with Qn denoting the nth power of Q.

So, this is called matrix exponential now like there is a whole lot of theory of how to compute a matrix exponential
for the particular case, but whatever it is in our case, the theory tells that P (t) is given eQt. Now, remember what
we wanted to compute; we want to compute P (t) for a Markov chain; if you want to know completely about
the Markov chain, then you want to know about P (t). Now, P (t) as supposed to get it for every t you have to
compute it; the computation can be done if you know Q in terms of this. If you know Q, then you take P = eQt

to get the P (t); that is what is the advantage of using with Q. ▶ So Q uniquely determines all transition matrices.

So, you can describe in terms of P (t) or equivalently in terms of Q without any time dependency there.

• A CTMC is completely determined (i.e., FDDs are detemined) by the transition matrices and the initial distribu-
tion.

• Define pi(t) = P{Yt = i} for i ∈ S as the probability that the CTMC is in state i at time t. Denote p(t) as the
vector with entries pi(t) (state probabilities).

• We can characterize the state probabilities via systems of differential equations which are also forms of forward
and backward Kolmogorov equations

p′(t) = p(t)Q and p′(t) = Qp(t).

▶ Given Q and p(0), we can solve for p(t) from the above.

Now quickly, we will go through this example which we call a birth-death process.
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Example. (Birth-Death Process (BDP))
A birth-death process (BDP) is a CTMC {Yt} with S = {0, 1, 2, . . . } in which state transitions either increase the
system state by 1 (a birth) or decrease the system state by 1 (a death). The generator matrix (or rate matrix) for a BDP is

Q =


−λ0 λ0 0 0 . . .

µ1 −(λ1 + µ1) λ1 0 . . .

0 µ2 −(λ2 + µ2) λ2 . . .
...

...
...

...
. . .

 .

When the system is in state i, births occur with rate λi (for i ≥ 0) and deaths occur with rate µi (for i ≥ 1). In other
words, q01 = λ0 = −q00, and for i ≥ 1, qi,i+1 = λi, qi,i−1 = µi and qii = −(λi + µi). Also, qij = 0 for |i− j| > 1.

Transition rate diagram of BDP:

0 1 2 3

λ0

µ1

λ1

µ2

λ2

µ3

λ3

µ4

The system of differential-difference equations (forward Kolmogorov equations) for the system state probabilities
for a BDP are given by

p′0(t) = −λ0p0(t) + µ1p1(t)

p′i(t) = λi−1pi−1(t)− (λi + µi)pi(t) + µi+1pi+1(t), i ≥ 1.

Example. (BDP (contd. . . ))
Many queueing systems (where customers arrive/depart one at a time) can be represented as BDPs, where the system
state Yt denotes the number of customers in the system at time t.
▶ An M/M/1 queue can be modelled by a BDP with λi = λ and µi = µ for all i.

A BDP is a pure-birth process if µi = 0 for all i. And, a BDP is a pure-death process if λi = 0 for all i.

A Poisson process is also a special case of a BDP with λi = λ and µi = 0. Recall that we derived the forward
Kolmogorov equations for the system state probabilities from basic principles. It can alternatively be derived from the
forward Kolmogorov equations of CTMC by noting that that qii = −λ, qi,i+1 = λ (for i ≥ 0), and qij = 0 elsewhere
(or equivalently from the forward Kolmogorov equations of the BDP).

Anyway, we will continue more in the next lecture. So, let me stop here at this point of time.
Thank you, bye.
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