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Hello everyone, welcome to the 28th lecture of the course Discrete Time Markov chains and
Poisson processes. So, today we will start with Poisson processes. So, in last three lectures,
we completed all the prerequisites for the Poisson processes, and today we will finally start
with it. So, let us begin.

So, before going to the Poisson process first we need to know what is a counting process?
So, a stochastic process V; is said to be a counting process, if N; represents the total number
of events that occur by time t or in other words, the number of events that occurred within
the time [0,¢]. And like events like you, when you see example, you see it can be various
kinds of events. So, a stochastic process NV, is said to be a counting process, if N; represents
the total number of events that occur by time t.

So, it is basically counting the number of events that has happened up to time t or in the
interval or in [0,¢]. Now, from this definition, few things are clear. So, a counting process
possesses the following properties first of all, N, is a continuous-time stochastic process that
is, because you see here, here the parameter t varies over ¢t > 0.

Like we saw in discrete time Markov chain that was a discrete time stochastic process, be-
cause it was indexed by N or we were looking at the process at discrete time points, but
for a counting process, it is a continuous-time stochastic process, because we are looking
at the process or observing the process for all time greater than or equal to 0. So, we are
continuously observing the process. Now N, is greater than or equal to 0 for all t again, that
is obvious, because why?

It is counting the number of events. It represents the total number of events and so, number
of events cannot be less than 0. So, obviously, N, is greater than or equal to 0. So, it is not
just greater than or equal to 0, it is integer-valued. Why? Because it is counting and when
you are counting, it is like 1 2 3 4, so in the when you count the now it is you count integers.
So, V; is non negative integer valued, because it is counting something.

It is counting the total number of events that has occurred by time t, so it is integer value.
Now, if s < t, then Ny < N,. Again, that is very simple to see. So, suppose s is here and
t is here, the number of events that has happened up to time s will obviously be less than
the number of events, that has happened up to time t. So, the number of events which has
happened over a longer time duration will be greater than the number of events that has
happened on a shorter time duration.

So, this, again, it is possible that within s to t, there are no events, so that is why you have
equality, it is not that Ny < N, but at least N; should be greater than or equal to N,. So,
the number of events that happens on the time interval [0, ¢] will be greater than or equal
to the number of events that has happened on [0, s], if s is strictly less than t. Again, a very



intuitive property.

And finally, so for s < t if you look at N, — Ny, that equals the number of events that occur
in the time interval, (s,?] because N is counting the number of events on the closed interval
[0,s]. And Nt is counting it on [0,¢]. So, when you subtract, you get (s,t]. So, Ny — Nj
equals the number of events that occur in the time interval (s, t] or that occur after time s
and up to time, capital up to time t. So, these properties are very easy or very intuitive to
see just from the definition of counting process.

Moving on to some examples. So, if N; is the number of persons who enter a particular
store say a shop or a departmental store up to time t then that is easily a counting process.
Because it is so, here what is the number what is events? Events is arrival of a person. So,
it is counting the number of persons who are or a entry of a person is the events, is the event
that this process is counting. So, the number of persons who enter a particular store up to
time t.

Another example, total number of people who are born up to time t. Again, so, here what
is the event? Event, what is the event here? So, event here is birth of a person. So, N, is
counting the total number of people who are born up to time t. So, again it is easy to see
that it is a counting process. Now, if I say V; is the number of persons in a store at time t.
So, a given a time t how many people are there in a particular store or in a particular shop,
then that is not a counting process.

Why? Because, again it so, first one important property for counting process is, it should be
like if s < t then N, should be less than or equal to And then. But see, the number of people
can, it is or in other words, so, a counting process should be what is called non-decreasing.
But, if you are looking at the number of people in a store at a particular time T so, now say
at 10am there can be 100 people, but at say 11am there can be 90 people.

So, the number of people at a given time that can go up as well as can go down. So, it is
not a counting process, because one important property of counting process is this property
four which says that if s < ¢ then N, < N,. So, it is what is called a non decreasing process.
But, if you are counting the number of persons in a store at a particular time t, it is not the
number of people.

So, like for example, if you look at the first example, it is number of persons who enter a
particular store. So, you are just keeping a, you are counting it cumulatively. But if you are
counting the number of persons in a store at a particular time t then that number can go up
as well as down. So, this is not a counting process. Another example say N;, the number of
phone calls to have arrived at a call, call center up to time t that is again a counting process.
So, here event is arrival of phone call. So, this, this and this are counting processes, but
this is not a counting process. One simple way to see that, that this example 49 is not a
counting process is that it can, it is not a non decreasing process. So, the number of persons
in a store at a particular time t so, if you are looking at a time ¢; and time t5, where t; < o,
so, it is very much possible that N;, > N,.

So, the number of, persons in a store at time ¢; can be greater than the number of persons at
time o, even if t; < t5. So, this example 49 is not a counting process. But all the remaining



are counting processes.

Now, again two more definitions, a counting process NN, is said to have independent incre-
ments, if the number of events that occur in disjoint time intervals are independent. What
is the meaning of that? That means for any n = 2,3, ... or for any n > 2 and if you take any
n time pOiIltS t1,la,t3 where 0 < t; <ty < ts.

Then, if you look at these random variables N;, — Ny, Ny, — Ny, Ny, — N, _, these are
independent. So, what does it mean? Say, suppose this is your ¢; this is your t; this is your
t; and so on. Say, this is your tn then what is it saying? Like if I look at on this interval on
this interval, the number of events that happen in this interval, the number of events that
happen in this interval are independent.

So, if you look at two disjoint intervals, time intervals, and then the number of events that
happen in this interval, and the number of events happen in this interval, this should be
independent. And this is not just true for two intervals. So, for example, if you take n
number of disjoint intervals, then the number of events happening in each of those intervals
are independent. And this is true for any n greater than or equal to 2.

So, events happening in disjoint intervals are independent. That means, say for example, if
I tell you the number of people who arrived in a store between 10am and 1lam is, say 5,
and I asked you, number of people who will arrive in the store, say between 1pm and 2pm,
then this first information will not give you any additional information about the number of
arrivals between 1pm and 2pm.

So, the number of arrivals between 10am and 11lam does not give you any information about
the number of arrivals between 1pm and 2pm. So, the number of arrivals in two disjoint
time intervals are independent. That means, information about one does not give you any
information, extra information about the other. That is in like very roughly what indepen-
dence means, you know what the mathematical definition of independence is.

But in words what independence is x and y are independent, if information about x does
not give you any additional information about y. So, that is independent increments. Now,
the second definition is, a counting process [V, is said to have a stationary increment, if the
distribution of Ny, — N; depends only on s for all t greater than or equal to 0. That means,
the number of events that happen in a particular time interval depends only on the length
of the interval and not on where that interval is situated.

So, the number of arrivals between 10am and 1lam. And the number of arrivals between
lam and 2pm, that will be, so these two distributions will be same. So, when I say so the
distribution of N4, it is not that [ am saying the number of arrivals will be exactly same.
But see the number of arrivals say between 10am and 1lam, and 1pm, and 2pm, these are
two random variables.

What this stationary implement says, increment property says is that the distribution of
these two random variables are same. So, the distribution of the number of arrivals in a
particular time interval depends only on the length of the interval and not exactly where it
is situated. So, Nio — Njg, will have the same distribution as, say N5 — N13. Because here,
the length of the interval is 12 minus 10 equal to 2, here also, it is 15 minus 3 equal to 2.



So, you see this, it basically depends on the length of the interval, because here, the length
of the interval is s, and not where the interval is actually situated on the timeline. So, that
is what is stationary incremental. So, the independent property of independent increments,
tells you that if you are looking at two disjoint time intervals, then the number of events
happening in these does, again, it is not necessary for just two.

if you take, say, in disjoint intervals, then the number of events happening in this N disjoint
intervals, these are independent, that is independent increments. And stationary increments
tells you that , the number of events happening in an interval depends on the length of the
interval and not exactly where that interval is situated on the timeline. So, the length of the
interval is important.

So, the number of arrivals between 10am and 11am and the number of arrivals between 1pm
and 2pm, they will be, the distribution will be same. I am not saying they will be equal, but
distribution will so, will be equal. So, these are two random variables, their distribution is
same. So, the probability say that the number of arrivals between 10am and 11am will be k
equal to k will be same as the number the probability that number of arrivals between 1pm
and 2pm equal to k.

So, the distribution is same. The distribution of the number of events in a particular interval
depends only on the length of the interval, and not exactly where the interval is situated on
the timeline. That is stationary increments.

Now, finally, we come to the definition of Poisson process. A counting process N, is said to
be a Poisson process with rate A > 0. So first of all, Poisson process is a counting process.
So, it counts the number of events up to, sorry within the interval [0,¢]. And that is what
N, counts. But it is not just any counting process, it is it has some further properties. First
of all, Ny equal to 0 with probability 1. So, when you start you have 0 events.

Now, it has independent increments, that means number of events in disjoint intervals are
independent. It has stationary increments, which means the number of events in a particular
interval depends only on the length of the interval, and not exactly where it is situated. And
finally, remember, what is N;? N; counts the number of events on the time interval 0 to t,
or the number of events up to time t. Now, so that is a random variable.

Now, what this property four is saying is that /V; has poison A distribution. So, the, it is a
discrete random. So, you already know since it is a counting process, it will be a non negative
integer valued random variable or in other words, it will be a discrete random variable. And
the probability mass function of that discrete random variable is given by this.

So, probability N, equal to k is equal ﬂﬂ, so, for k positive integers. So, and this is
precisely the of a poisson At distribution. So, you know what upon you, again you must
be familiar with from your basic course in probability you must be familiar with poisson
distribution what its probability mass function is.

Then you can easily recognize that this is the probability mass function of a Poisson At
distribution. So, the number of events that happen, that occur up to time t that has poisson
At distribution that is why you call it a Poisson process. So, this Poisson process that name
comes from this fact that N; has Poisson distribution and the parameter is given by At. So,



this A is basically the rate \.

So, that is the definition of a Poisson process. So, a Poisson process is a counting process,
which starts from 0 has stationary and independent increments. And the number of events
on between [0, t] or on the closed interval [0, ] has poisson distribution and the parameter of
Poisson distribution is At. In that case, you say that the continuous-time stochastic process
is a Poisson process.

Now, some remark, so, when you give this definition, so, the definition fixes all finite-
dimensional distributions of the stochastic process, what do I mean by that? Let me explain
that via this example. So, suppose you take 2 time points ¢; and t, where ¢; < t5 and you
take these two non negative integers k; < ko. Let us say if you ask what is probability that
Ny, is equal to k; and Ny, is equal to ks.

So, you can see why I am taking k; < ko, because t; < t5. So, you know, since this is a
counting process, so, Ny, < N.,. So, if you take some other. So, if you take say k; > ko then
this probability is actually 0, because that is not possible. Because this is a counting process
and t; < ts. SO7 Nt1 < NtQ.

So, this probability will be nonzero only when k; < ky. So, what is probability? Ny, is equal
to k1 N Ny, is equal to ko, that means, what is the probability that up to time ¢; there has
been ki events and up to time ¢, there has been ky events where t; <ty and k; < ky. Now,
how do I calculate that from the definition?

So, this is same as probability Ny, is equal to k; and Ny, — Ny, is equal to ks — k1. So, these
are these are same. So, if Ny, is equal to ky and Ny, — Ny, is equal to ky — kq, but as soon
as I write it in this way, so, now, ¢; is here, ¢y is here. So, when you look at this Ny, — NV,
is looking at the number of arrivals in this interval or the number of events in this interval.
And Ny, — Ny, looks at the number of events in this interval. So, these two are disjoint inter-
vals a poisson process has independent increments. So, the probability of this intersection
will be the product of the probabilities. So, it will become probability Ny, equal to k; and
since N; has Poisson At distribution, so, it will be this and then probability N;, — Ny, equal
to this.

So, you will get the other term will be probability N;, — V;, is equal to ky — ki, but the
Poisson processes, a Poisson process also has stationary increments. So, Ny, — Ny, , so, this
has same distribution as in ¢y —t;. Because this N, — V;, what is the length of this interval?
The length of this interval is to —t;. So, the number of arrivals between the ¢, and ¢; is same
as the number of arrivals on the interval , minus on the interval of length t, — ;.

So, probability Ny, — N, is equal to ks — ky is same as this is probability, this is equal

to ko — k1. Now, again you know that NN; has poisson At distribution. So, this becomes
e~ 2t2=11) (\(to—tq))(k2—F1)

(kz—k1)! ) L ) . :
We have used independent increments to break this intersection, the probability of inter-

section into product probabilities. We used these stationary increments to claim that this
probability of N,, — NV, is equal to ky — k; is same as probability of NV, — IV;, is equal to
ko — k1. And these probabilities we have written down using the fact that IV, has poisson At
distribution.

. S0, you see we have used all the properties here.



So, you see using this property so, here I am just I have just done it for two time points,
you can do it for any n time points for any n > 2. Provided like you if the time points are
increasing then this k;,ks should also be non decreasing otherwise the probability will be 0
that is because a counting process is non decreasing. So, you see from the definition you can
answer questions about all such probabilities.

Now, another remark now fix any 7" > 0. Now, define a new process in superscript T sub-
script t by so, Nyy; — Ny And then. Then NI is again a Poisson process with rate A. Thus
a Poisson process probabilistically restarts itself at any point of time. So, what is basically
this N1?

So, suppose this is your T. So, now, what this NJ? this N/ is counting is basically counting
the number of events from this time T onwards. So, when that is what you get by this
definition. So, Np.; — Nr so, you subtract this so, that you are now counting the number
of events from T onwards.

Now, what this remark is telling you that this new process which is counting the number of
events from capital T onwards is again a Poisson process with the same rate A if the original
process was a Poisson process with rate A. So, what does that mean that? Means, they see
if you look at the process from any time T then what you can do is you can forget what has
happened up to time t.

Now, if I ask you, so, say after t amount of time how many arrivals will happen, then you
can just assume that the process starts from T. So, If I says, so, you do not know when the
process actually started, you go and start observing the process. Now, if you have to say
something saying then next t units of time, what is the probability that there will be no
arrival? For that, you can simply assume that when you just started observing the process,
the process has started from that point itself.

So again, you see, you see what is a, you see a memoryless property or Markov property. So
that is why this property is called Markov property. Now, a Poisson process is one of the
simplest example of a class of stochastic processes, which is called continuous-time Markov
chains. So, you have learned what Discrete Time Markov chains is. So, there it is, it is a
process or that, where the time parameter is discrete.

And there also if you know, the current state, then you can predict the future evolution,
you do not need to know how it arrived at that current state or given the present, the past
and the future independent that was Discrete Time Markov chains. So, you see, even for
a Poisson process, say, if you go and start observing the process from T onwards, then you
can say, like, answer any question for about the future by assuming that the process has just
started there.

So, for example, if I asked, in the next 100 units of time, what is the probability that there
will be two arrivals, so it is just the probability that the Poisson process will have two arrivals
in 100 units of time, that is the answer. So, that is, again, that is the meaning of that at
each time, the process probabilistically restarts itself. So, you do not need to know about
the past as as long as you know, the present you can predict or you can make probabilistic
statements about the future.



So that is, so this memoryless property is what we call as Markov property. So, this prop-
erty of poisson process is called the Markov property that it probabilistically restarts itself.
Again, this is just a word what it means is that if you look at this process in T+t — T, so
you do this subtraction, so that you start from 0. Then that is again a Poisson process with
rate A, that is the meaning of probabilistically restarts itself at any point of time.

So, the from the time you start observing the process, you can very well assume that the
process has just started from that time point. It does not matter when it actually started. If
you have to answer questions about the future it is enough to assume or it is fine to assume
that the process has just started from that time point, this is what is called Markov property.
And then, so keep this statement in mind.

So, in future if you do a course or if you study some continuous-time Markov chains, then
you will see that this Poisson process is one of the simplest example of this class of stochas-
tic processes, which is continuous-time stochastic Markov chains. So, this continuous time
Markov chains is continuous-time analogue of discrete time Markov chains. So, there the
time parameter is continuous.

And this Poisson process is one of the first examples and probably the most simplest example
of continuous time Markov chain. Anyway, so you do not need to bother too much about
what continuous-time Markov chain is. So, just keep this remark in mind that this Poisson
process is a specific example of a much larger class of continuous-time stochastic processes,
namely continuous-time Markov chains.

Now, how do we prove it? We will have to prove the full properties of Poisson process.
Again, it is easy to see that this is a counting process. And what is NJ that is just simply
N7 — Np. So, that is equal to 0 with probability 1. Now, if you take ¢ > s and if I look at
say, NI — NI that by definition will be this. So, you see, so, this is basically the number of
arrivals for this new process within the time interval s to t.

That is the same as the number of arrivals of the original process on this time interval 7"+t
or so, let me draw a picture. So, if you are looking at, so here is T. So, if you are looking at
T + s to T +t then the number, so, what is thisN;/ — N7 that is looking at the number of
arrivals in this interval. But this is just the number of arrivals of the original process in the
interval T'+ s to T' + t.

Now, you know that, so, now, you know the original, so, you see the number of arrivals
of this new process is just the number of arrivals of the original process, but on a shifted
interval. So, once you have that observation, then the stationary independent increments
follow from that of the original process. So, if you take two disjoint intervals of this mod,
modified process that will be two disjoint intervals of the original process, but it will be
shifted by T.

But since the original process has these independent increments properties, this modified
process will also be have the independent increments property. Again, if you look at an
interval, since, of the modified process, that is again an interval of the original process, but
shifted. So, the number of arrivals in that interval will only depend on the length of that
interval, because the original process has that property.



So, the main thing is, if if you look at an interval for this modified process, that is again
an interval for the original process, but the interval is shifted by T. So, what, the properties
which the original process had this new process will also have the same properties namely the
properties of stationary and independent increments. And finally, so, if I look at probability
NI equal to k that is just by definition this.

But now, you know that the original process NV; is a Poisson process that has stationary
increment property. So, this has the same distribution as N;. Because again, the number of
arrivals in a, in an interval of a particular length depends only on the interval of the length
and not exactly where it is situated. Again, when I the distribution is really same. So,
probability that N — Nr equal to k that is just simply probability N; equal to k which is
equal to this.

So, you see, the fourth property of Poisson process is also satisfied by this modified process
NI Hence, this is we have shown that this is again a Poisson process with rate A. So, the
proof is not very difficult, but it is a very important property that a Poisson process proba-
bilistically restarts itself at every point of time. So, the from the point you start observing
the process, you can assume that the process has started from that point onward.

You do not actually need to bother from which point the process actually started. The point,
the time from when you start observing the process, you can pretend that that is the start of
the process. And if you do that, everything will be fine. That is what this remark is saying.
Now, we come to another topic which is inter-arrival times. Now, let t; denote the time of
occurrence of the first event. Now, for n > 2, let T,, denote the time elapsed between the
(n — 1)th and nth event, then if you look at this sequence of random variables T,,, this is
called the sequence of inter-arrival times. So, the picture should help in understanding what
this definition is about.

So, T is this first interval and in general what is 7,,7 T, is the time between the nth event
and the (n — 1)th, n minus first event. So, for example, T5, so, this is the first occurrence,
this is the second occurrence. So, this is basically T, sorry, so, this should be T3 not T5. So,
now, this is the third occurrence and the second occurrence. So, this difference is T3. So, in
general T), is the time between the occurrence of the nth event and (n — 1)th event.

So, that is called the inter-arrival times. Now the terminology inter-arrival because generally
you see like the counting process you basically model arrival of certain things, arrival of calls,
arrival of people. So, that is why this terminology inter-arrival. So, it is basically, it looks at
time between two successive arrivals. So, what is the nth inter-arrival time? So, that is the
time between the arrival of the nth event and the (n — 1)th event. So, that is inter-arrival
time. So, this picture should explain things clearly. So, you can see it should not be 75 but
rather T3. So, that is inter-arrival times.

Now, again, these are random variables. So, what is the distribution of these Ts, so, that,
this theorem answers that, so, for n equal to 1 2 3 and so, on T},’s are iid that means, they
are independent and identically distributed exponential A random variables. So, if your N,
is a Poisson process with rate A, then the inter-arrival times are independent and identically
distributed random variables and has distribution exponential .



So, you see exponential random variable making its appearance in the context of Poisson
processes. So, that is why we studied all those properties of exponential distributions as
a prerequisite for Poisson processes. So, you will see again not maybe not in this lecture,
but in the coming lectures, all those properties coming in handful, when you try to analyze
Poisson processes. So, the inter-arrival times are iid and they have distribution exponential
lambda.

Now, proof so, first let us try to find the distribution of 77. Now, for 7' > 0, P(7} > t) what
is the meaning of that? That the first arrival has happened again, let us go back to this
picture. So, you, (7} > t) that means, so, say this is T that means, in this interval there is
0 arrival or the first arrival has happened after time t. So, what is the probability of that?
So, the first arrival has happened after time t.

So, this is 0 this is T this is say the time of first arrival 7;. Remember this 7} is a random
variable. So, (T} > t) means in this time interval which is 0 to t, there has been no arrivals.
So, that is so, P(T} > t) is same as probability N; equal to 0. And similarly, if you know
that there has been no arrival up to time t. That means, the time of first arrival is greater
than t.

So, probability of P(77 > t) is same as probability N; equal to 0, but as soon as you write it
in terms of V; , you know that NV; has Poisson At distribution. So, probability N, equal to 0
is just simply e~*. But that tells so, that means, 1 — Fr, (¢) is equal e~ that tells you that
Fr,(t) is 1 — e, which is precisely the cumulative distribution function of an exponential
distribution with parameter \.

So, thus you get that 77 has exponential A distribution. So, you see the proof is very simple
because (717 > t) if and only if there has been no arrival up to time t. Now, suppose we want
to find what is the probability that (75 > ¢)? Now, we use this conditional formula so, that
is same as integration 0 to infinity probability (75 > t) given that (77 = t;).

So, the first arrival has happened at time ¢; and then you multiply by the density and then
integrate. But now, let us try to find this what is probability (73 > t) given that (7} = t;).
Now, if (77 = t;) that is just, that tells you that up to time ¢; there has been one arrival.
Because, so, again let us see the timeline. So, this is T} so, there is an arrival at time ;.
So, if I look at this interval [0,¢;] there has been exactly one arrival. So, the number of
arrivals or the number of events up to time ¢; is 1. And again if you know that, so, this is
same as T} equal to this, but now, what is this? So, if N, equal to again, Ny, if now,
there has been an arrival at time t;. And the second arrival has taken, has not happened up
to time t. That means what? In this time period there has been 0 arrivals. So, actually see
here you do not need to write this, you write it as T} equal to ;.

But now, see, you are saying that the reason arrival at time 7} and there is no arrival in
this interval from T} to T sorry. So, let me repeat this again. So, it is not, why it is t; + t7
That is because you are saying T5 is greater than t which means, the time between the first
arrival and the second arrival is greater than t. So, this is actually ¢ + ¢;.

So, the probability that probability (T > t) given that (7} = t¢;) is same as probability
Nivy, — Ny, equal to 0 given (Ty = t1). Now, why I am saying that? Because it is just saying



that (7, > t) and there has been an arrival at time ;. So, there has been no arrival in this
interval ¢, to ¢; +¢. Now, this thing is talking about something in this interval and (T} = t;),
(T} = ty) is talking about something in this interval correct.

But that means that so, but these are two disjoint intervals Poisson process has the property
of independent increments. So, this conditional probability is just same as this unconditional
probability. But now again this has the same distribution as N;, why? Because of stationary
increments, because of stationary increment. So, this is same as probability N; equal to 0,
which is e .

So, you see that (1» > t) given 717 the first arrival happened at t; is basically independent
of T1. So, you see this this final answer does not depend on ¢;. So, when you are doing this
integration, so, it will be just e=*. But now, this does not depend on Tj, so, it will come
out of the integration and it will be just the integration of this density, but if you integrate
a density you just get 1.

So, the final answer is this is equal to this. But also says this conditional probability does
not depend on 77 that also tells you that T3 is independent of T}. So, now, by repeating this
argument we can complete this proof. So, what we have got here is that these inter-arrival
times are iid exponential A are iid having exponential A distribution. So, the inter-arrival
times are exponentially distributed.

So, now, you see from where this Markov property or the memoryless property of Poisson
distribution or Poisson process coming in. Because we saw in the previous remark that the
Poisson process has this memoryless property or Markov property. Now, you know that this
exponential distribution actually has these memoryless property.

So, you see everything is connected that, it is actually the fact is that this memoryless prop-
erty or Markov property of Poisson distribution comes from the fact that the inter-arrival
times are exponentially distributed. And you know, that exponential distribution has these
memoryless property. So, all these things are connected.

Moving forward, now, if S,, denotes the time of the nth event. So, when the nth event hap-
pened then what is S,7 S, = > | T;. Because say time of first event is 77, time of second
event is what? So, first event 77 and then time between first and second event is T5. So,
what is the time of second event? It is T} + T5. So, in general S, =" | T;.

Now, each T; from the previous slide, you know are iid with exponential A distribution and
we have seen that if you have n exponential n iid exponential random variables with the
same parameter A then if you look at their sum, then it has ['(n, \) distribution. So, this is
the first instance where we are using the property of exponential distribution that we learned
previously.

So, you see the time of in order to find the distribution of the nth arrival or time of nth event
of a Poisson process, you need to use this property of exponential distribution which says
that if some of the independent and identically distributed exponential random variables
having the same parameter is gamma, has gamma distribution. So, from that you get this
as a corollary that S,, which is the time of the nth event as gamma n, A distribution.

And you already know what I'(n, \) distribution is, it is a continuous random variable having



a certain probability density function. So, again this should be not 75 but 73. So, you see
this is a S;. So, this is the time when the second event happens. So, this thing is Ss, this is
when the third event happens, this is S3. So, again pictorially things should be very clear.
So, the time of nth arrival is having I'(n, \) distribution. And that is because of the fact
that the inter-arrival times are iid exponential .

So, we will end today’s lecture with an example. So, suppose that people immigrate into a
territory according to a, according to some Poisson process, we rate A equal to 1 per day. So,
the time unit that we are looking here is day. So, this is again important. So, in problems
you will see the time unit will be given. So, you will have to keep track of that time unit.
So, here for example, the time unit is day.

So, if I ask you something about a week, you should keep that in mind a week is seven days.
So, the time unit is important. So, suppose that people immigrate into a territory according
to the Poisson process with rate A equal to 1 per day. Now, there are two questions what is
the expected time until the 10th immigrant arrives? So, that means, what is the expectation
of the time of occurrence of the 10th event?

And what is the probability that the elapsed time between the 10th and the 11th arrival
exceeds 2 days or in other words, the 11th inter-arrival time is greater than 2 days. So, first
thing we need to find expectation of S15. Because, you are asked expected time until the
10th immigrant arrived. So, that is the time of the 10th event which is denoted by Sig. So,
expectation of Sjg is the expectation of Zgl T; but you know the expectation is linear.

So, expectation of sum is sum of expectations. Now, since the rate A is 1, so, T; has distri-
bution, E, sorry, has distribution exp 1 so, expectation of T; is equal to %, which is equal to
1. So, if you sum me up, you get 10 days. So, the expected time until the 10th immigrant
arrives is 10 days. And the what is the second question? The second question is the proba-
bility that the elapsed time between the 10th and the 11th arrival.

So, the time between the 11th event, occurrence of 11th event and 10th event. So, that is
precisely the 11th inter-arrival time. So, probability T;; > 2 we know that 77; has expo-
nential 1 distribution. So, probability that (7}; > 2), you know what, what is the cdf of
exponential distributions from that you get that this is e~2.

So, you see answering this once you have learned about what the distribution of inter-arrival
time is, what is the distribution of the again, so here, you basically did not need the distri-
bution of the nth event or time of occurrence of the nth event. So, here, you just needed
expectations. So, you did not need the actual distribution, but you will see in future you
will need the distribution in some other problem, you will need the distribution of time of
occurrence of nth event. So, that has I'(n, A) distribution and inter-arrival times have expo-
nential lambda distribution.

So, here, A was 1. So, the expected time of occurrence of the 10th event is just the expec-
tation of Sy, which is just 10 days, because of the given data and the probability that the
time between 10th immigration, 10th arrival and 11th arrival is greater than 2 that is just
simply probability that an exponential random variable with, exponential random variable
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with parameter 1 will take value greater than 2 and that is just e™*. So, again, this was a

very simple problem. So, we will stop here today. Thank you.



