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Hello everyone, welcome to the 19th lecture of the course Discrete-Time Markov Chains
and Poisson Processes. So, in the last lecture we saw the statement of this theorem which says
that if {Xn}n≥0 is an irreducible Markov Chain then the following statements are equivalent.
That means these statements are if one only if. So, what are the statements? The statement
one is every state is positive recurrent. Statement 2 is, some state i is positive recurrent and
statement 3 is the Markov Chain has a stationary distribution π. Moreover when 3 holds π
i equal to 1

mi
for all i ∈ S. So, this theorem basically says that if you have an irreducible

Markov Chain, then if it has a stationary distribution then it is unique and it is given by 1
mi

,
1
mi

where mi = Ei(Ti) and also if it has a stationary distribution then all states are positive
recurrent. Now there are various implications of this theorem. So, the first is, so if you are given
an irreducible Markov Chain and you are told that, all states are positive recurrent, then you
know that Markov Chain has a unique stationary distribution and the stationary distribution
is given by πi = 1

mi
or 1

Ei(Ti)
. That is one way of interpreting this theorem. Now for finite

state Markov Chains, you know that there always exist at least one stationary distribution. We
have already seen this result. So, if you are given a finite state irreducible Markov chain, now
since it is a reducible and finite state. So, you know that there exists at least one stationary
distribution. That is because just it is a finite state Markov Chain, now since it is irreducible
by this theorem you know that the stationary distribution is unique and also it tells you that
all states are positive recurrent and the stationary distribution is given by 1

Ei(Ti)
. So, if you are

given a finite state irreducible Markov Chain, then all states are positive recurrent. Remember
again, we saw is another result that if you have a finite state Markov Chain, then it has at least
one recurrent state. So, if it is irreducible that tells you that all states should be recurrent. If it
is a finite state Markov Chain, we saw the result that it should have at least one recurrent state.
It is not possible that all states are transient. Now if in addition you are also told that the
finite state Markov Chain is irreducible since this transience, recurrence are class properties, so
that will tell you that if you have an irreducible finite state Markov Chain then all states are
recurrent. But now via this theorem we get something more stronger, we get that if you have an
irreducible finite state Markov Chain then all states should be positive recurrent but remember
finite state is important because when finite state you know that there exists at least one
stationary distribution and then you can use this theorem. So, if you are given an irreducible
finite state Markov Chain, then all states are positive recurrent and it has a unique stationary
distribution given by 1

Ei(Ti)
. And if it is not finite state, if it is any irreducible Markov Chain

then you are the existence of a stationary distribution is not guaranteed but if it exists then it
has to be unique and all states has to be positive recurrent. So, these are various implications
of this theorem, so it is a very very important theorem. Now we will move on to proof of
this theorem. Now so in order to show that all these statements are equivalent what we will
show is 1 implies 2, 2 implies 3, 3 implies 1. So, that will complete the cycle and hence all the
statements will be equivalent. So, we first start with 1 implies 2 but that is obvious. Because
1 says every state i is positive recurrent and 2 says some state i is positive recurrence. So, 2 is
a much weaker statement. So, if every state is positive recurrent then obviously some state is
positive recurrent. So, 1 implies 2 is obvious because 2 is a weaker statement as compared to
1. So, 1 implies 2 is obvious.
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Now 2 implies 3, so what we start with? We start with that some state i is positive recurrent,
now if i is positive recurrent then it is definitely recurrent. So, positive recurrent means it is
recurrent plus, so it is have something more that Ei(Ti) is also finite. So, positive recurrence
if a state has to be positive recurrent it has to be first recurrent. So, also you are given that
the chain is irreducible so that tells you that the chain is recurrent or in other words every
state in this Markov Chain is recurrent. Now you we have seen this theorem in the beginning
of this start of this module on stationary distribution that if you have an irreducible recurrent
Markov Chain this γi which was defined in terms of the expected number of visits is an invariant
measure. So, we saw this as a theorem. But now what is γi, now recall just the definition of γi

so what was γi? So, what was γij, it was sum over k is running from 0 to Ti−1, Ei(δj(Xk)). So,
this is basically the expected number of visits to state j between until the first passage time to
state i. Now if I sum it over all j, now if I sum this overall j then in between the chain must
be in some state. So, it is what so basically what I am doing is, I am doing it sum over all j.
When I am doing it sum overall j and then if I do k running from 0 to Ti−1 this thing Ei then
now see, in between so it is when you are doing γij you are looking at the number of visits to
state j between 0 to Ti − 1 but now when you sum overall j in the state space that means this
sum should be what, because see this δ, each Xk will be equal to some j in the state space. So,
when you sum over all j, this sum will be basically equal to, so like this δj(Xk) will be equal to
1 for some j.And you are summing over all j, so finally this sum will be nothing but just Ei(Ti)
which is just equal to mi. So, if you sum γij over all j that is equal to mi. That is just from the
definition and since you know that i is positive recurrent you know that Ei(Ti) is finite, so mi

is finite. Now, so again remember what the difference between invariant measure and invariant
distribution? So, invariant measure so the difference is, in case of an invariant distribution,
the sum of the entries should be equal to 1. So, now for an invariant measure if I know that
the sum of the entries is finite, then if I just divide by that sum if I divide each entry by the
sum now that will become a distribution because now the sum will become 1 because what I
am doing? I am taking an invariant distribution for which I know that the sum of the entries
is finite. Now if I divide by the sum that means what is basically called normalization. So,
if I divide by the sum, now if I look at this new invariant measure, it is actually an invariant
distribution because I have divided each entry by the sum. So, if I look at this new πj which is
γij over mi where mi is the sum, then this gives an invariant distribution. So, starting with a
positive recurrent state, we have shown the existence of an invariant distribution which we get
in this way so since it is invariant sorry, since this is irreducible and recurrent, we know that
this gamma and i is positive recurrent, so we know that this γi is an invariant measure now
since i is further not just recurrent. So, if it is just recurrent and irreducible then we know that
γi is a stationary measure, but we know something more here that i is not just recurrent but
positive recurrent. So, we now know that the sum of the entries of this invariant measure is
finite, so we divide by that sum and make it an invariant distribution and thus we have shown
the existence of an invariant distribution.

So, we have shown that 2 implies 3. Now we will show 3 implies 1. If the Markov Chain
has a stationary distribution π, then every state is positive recurrent. So, we are now trying
to show 3 implies 1. So, consider any state k we need to show that k is positive recurrent.
Now we are assuming that the Markov Chain has a stationary distribution π, so since this is
a stationary distribution the sum of the entries is equal to 1. Now if the sum of the entries
is equal to 1, there exists an i such that πi > 0. Because if the sum has to be 1 everything
cannot be 0. So, πi is strictly greater than for there exist an i such that πi > 0. Now also
recall, although we do not need it here but recall that we have shown that if it is an irreducible
Markov Chain then if one state is and if you have a stationary measure, so that in that case
either the stationary measure will have all the entries 0 or all the entries positive. You will see,
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the similar kind of argument we will use here, since this sum is 1 there should exist at least
one i such that πi > 0. Now by irreducibility there exists an n such that p

(n)
ik > 0. Remember,

so we have started with some k and why this is true? Because this is irreducible, so you can
go from i to k in finite number of steps with positive probability which means there exists an
n such that p

(n)
ik > 0. But now if I take πk, πk again is, you know this property of πk that

πk sum over j ∈ S, πjp
(n)
jk . So, this is not exactly the property in the definition but what we

get that πP n = π. So, this is also true if π is a stationary measure or so here is a stationary
distribution and stationary distribution is obviously a stationary measure so this thing is true
but now you know, this obviously, this sum will be strictly greater than 0 why, that is because
one of the terms here is πiP . So, one of the terms here is πip

(n)
ik correct. But now that since

πi > 0, p
(n)
ik > 0 so we get that this is greater than 0 so if one term is strictly greater than 0

and these are all non-negative things. So, the sum is strictly greater than 0. So, what we got
is πk > 0. So, this is basically the same argument which we used to show that, if the Markov
Chain is irreducible, then if you are given a stationary distribution which is not 0 that means
not all entries are 0 then all entries should be positive.

So, if you have a reducible Markov Chain and if you are given a stationary measure either
all the entries will be 0 or all the entries will be positive. So, but here since we are looking at a
stationary distribution. So, it is not possible that all the entries are 0 because if all the entries
are 0 it will not sum up to 1. So, now that tells you that all the entries should be positive. So,
this is the same proof which we saw earlier as well. So, what we get is πk > 0. Now we define
λi to be πi over πk. Now why am I doing this? Now then λ is, because see, π was a stationary
distribution so in particular it is a stationary measure and if you multiply a stationary measure
with a constant, it remains a stationary measure. This I have already told you before, so if π is
a stationary measure then if you multiply with some c real number, some constant then that is
also a stationary measure. Now this λi so since we are multiplying with so πi was a stationary
measure it was something more. It was a stationary distribution but never mind so πi over πk
is again an invariant measure or a stationary measure whatever, one and the same thing but
when I am doing this πi over πk then λk = 1, because what is λk? λk will be πk over πk which
is equal to 1, but now what we have this is an irreducible Markov Chain and λ is an invariant
measure or it is a stationary measure with λk = 1. So, now we saw in the previous theorem
that in that case λ should be greater than or equal to γk, where γk is that stationary measure
defined in terms of those expected number of visits. So, we saw this in a previous theorem. If it
is irreducible and if you have an invariant measure with this property that the k-th component
is equal to 1 then λ ≥ γk that means λi ≥ γki for all i ∈ S. So, this follows from previous
theorem that we saw. So, what we are getting here, so remember we are trying to show that
every state is positive recurrent. So, we need to show that, actually once we show that, this so
this πk > 0 now this λ ≥ γk.

Now, if I now do this mk, what is mk? mk is γki . Now this we have already seen, why? So,
this is basically the same thing that we saw here that if I sum over all the entries of γji then
it is mi but in this case we are looking at k, so mk is equal to this that is just because of the
definition of γki but this γki but what we saw here that this λ ≥ γk and λ is defined in this
way so using this what we get that this is less than or equal to this now since each γki ≤ πi

πk
so

this sum should be less than or equal to this sum. But now what is this sum remember π is
a stationary distribution, so this is sum over i so this k will actually come out of the sum so
this is just basically sum over 1

πk

∑
i∈S πi, but since this is a stationary distribution, this sum

is actually equal to 1 so you get that this is equal to 1
πk
<∞. Why? Because you have already

shown that this πk > 0. So, mk remember what was mk? mk by definition is Ek(Tk). So, in
order to show that k is positive recurrent we need to show that Ek(Tk) is finite and that is
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precisely what we have shown that is because this in the previous slide we already showed that
πk is strictly greater than 0. So, mk which is by definition the sum of these

∑
i∈S γ

k
i but now

this γki ≤ λi which we defined in the previous slide. So, this sum is less than or equal to this
sum but this sum is nothing but 1

πk
using the fact that this πi is a stationary distribution so

its sum is equal to 1, so we get that and since πk > 0 we get that mk <∞.
So, thus k is positive recurrent. So, that is what we wanted to show that, if the Markov

Chain has a stationary distribution then every state is positive recurrence, so k was a generic
state we started with any state k and we showed that k is positive recurrent. Now remember,
so that completes the equivalence of these statements but we still need to show this uniqueness
of stationary distribution but that is very simple. Why? Now we have already shown that
every state is positive recurrent, so in particular that means every state is recurrent. So, now
again go back to that same theorem from where we got this so it was if it was just irreducible,
we got this greater than or equal to but in the state if you recall the statement of the theorem
it said that if actually it is not just irreducible but also recurrent then this stationary measure
whose kth component is equal to 1 is actually equal toγk. So, now we know that this chain
is reducible as well as recurrent so this λ is not greater than or equal to but actually equal
to γk. Hence now this thing where so here what we got inequality here will get an equality
and finally we get that mk is equal to 1

πk
which is precisely what we wanted to show. So, that

completes the proof of this theorem. So, never mind the proof but the theorem is very very
important because it gives us so many implications. But before going to the example, just
let me repeat the situation again. So, if you have an irreducible Markov Chain, then if it is
finite state then it has a unique stationary distribution. All states are positive recurrent and
the stationary distribution πi is given by 1

Ei(Ti)
. But if it is not finite state, if it is an it is

reducible but an infinite state Markov Chain then existence of stationary distribution is not
guaranteed. But if the stationary distribution exist then it is unique and all states are positive
recurrent. So, for a finite state irreducible Markov Chain you already know that there exists
a unique stationary distribution but if it is an infinite state Markov Chain, then one way of
showing, so there are these two ways so if you can actually show that there exists a stationary
distribution then you know that okay all states are positive recurrent. But if you also can show
that all states are positive recurrent then also you can claim that it has a unique stationary
distribution which is given by 1

Ei(Ti)
. So, the situation is much simpler in for a finite state

Markov Chain, so if it is irreducible then there exists a unique stationary distribution but if it
is an infinite state Markov Chain there may or may not exist a stationary distribution but if
it exists it is unique and all states are positive recurrent. Similarly, if you can show that for
an irreducible infinite state Markov Chain all states are positive recurrent then also you can
just claim that the Markov Chain has a unique stationary distribution. So, for an infinite state
Markov Chain, if you have to just claim the existence of a stationary distribution then either
you need to show by like straight from the definition of invariant distribution or stationary
distribution that you can find a solution to those set of equations or if you can show that every
state is positive recurrent. Again, you do not need to show every state with positive recurrent
because it is irreducible if you can show one state is positive recurrent then you know that
every state is positive recurrent also. Again, that follows from the previous theorem. So, you
know if you are given an irreducible infinite state Markov Chain and if you can show that at
least one state is positive recurrent, then all states are positive recurrent and it has a unique
stationary distribution given by 1

Ei(Ti)
. Now, till now for we have not given any example of

an infinite state irreducible mark of chain where a stationary distribution exists. Remember
the example we have given are all like where stationary distribution does not exist. So, we
have given examples where stationary distribution does not exist. Now we are going to see an
example where of an irreducible infinite state Markov Chain where stationary distribution do
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exist.
Now let us look at that example, so what is that so again this is the Markov Chain with

state space S = {0, 1, 2, . . .} and transition probabilities. So, you can go from 0 to 1 with
probability 1 and then for all i ≥ 1 you go from i to i+ 1 with probability 1

2
or you just return

to 0. So, how is the chain? So, the states are 0, 1, 2, so 0, 1, 2, 3, 4, so from 0 to 1 you
go with probability 1. Now from 1 you either go to 2 with probability 1

2
or you go to 0 with

probability 1
2
. Similarly, from 2 you either go to 3 with probability 1

2
or you actually return

to 0 with probability 1
2
. So, that is how the Markov Chain is, so it is an infinite state Markov

Chain and again it is easy to see that it is irreducible you can go from any state to any state.
So, you go from 0 to 1 with probability 1 and for any i ≥ 1 with probability 1

2
either you move

to the right so you go from i to i plus 1 or with probability 1
2

you return back to 0. That is the
transition mechanism of the Markov Chain. Now, again as I said, it is easy to see if you just
look at the transition diagram. It is easy to see that this is an irreducible Markov Chain but
it is an infinite state Markov Chain. Now let π be a stationary distribution. Then first of all,
now again remember, so I said like how do you write the equations for stationary distribution.
So, in the expression for πi the sum, so what is basically πj? πj is sum over i, πipij. So, the
sum is over all those states from where you can go to j because if you cannot go from i to
j then this πj will be 0 and hence it will not contribute to the sum. So, the sum is over all
those states from where you can go to j. Now if I look at π0, you can go to 0 from any state,
not from any state from 1, 2 because from each state you go to 0 with probability half. So,
the equation for π0 is this. Now, if you look at π1 you can go to π1 only from 0 and that is
with probability 1. So, you go from 0 to 1 with probability 1 so for π1 the equation looks like
this. Now π2, from π2 you can go from 1 only, you go from 1 to 2 with probability half. So,
π2 = π1

2
, there is no other state from where you can go to 2. So, π2 = π1

2
but π1 = π0 so this

becomes π2 = π0
2

. Similarly, π3 you can only go from π in state 3 you can only go from state
2, so π3 = π2

2
but π2 = π0

2
so you get π3 = π0

22
. So, in this way if you proceed you will actually

get that πn = π0
2n−1 , for n ≥ 1. Now, since it is a stationary distribution, we need that this sum

should be equal to 1. So, now if I sum it over so π0 now π1 is π 0, π2 is π0
2

, π3 is π0
22

now this
should be 1 but now I take this first π0 out. Now if I look at this part of the sum then this is
nothing but a geometric series which will add up to 2 so you get π0(1 + 2) = 1 or which tells
you that π0 = 1

3
. Now once you have this you know, you now get the state again since this

is an irreducible Markov Chain, then obviously it has a unique stationary distribution and so
the unique stationary distribution is now given by this because now you know what π0 is and
remaining you know in terms of π0, π1 is π0, π2 is π0

2
, π3 is π0

22
, similarly πn = π0

2n−1 , so you
get this as the unique stationary distribution. Now, if we use that theorem we also can tell
that each state of this Markov Chain is positive recurrent. And also you can say for example,
if I ask you what is Ei or say E0(T0) so starting from 0 what is the expected time to return
to 0 then that should be equal to 1, that should be equal to 3. Why? Because π0 is equal to
1 over, sorry, let me write this little clearly. So, π0 = 1

E0(T0)
and that π0 = 1

3
, that tells you

E0(T0) = 3. Similarly, you can find for other i,Ei(Ti). So, this stationary distribution also give
you those information that say if you consider the set 0, what is the expected time to return
to 0 it is equal to 3. So, you get all those information from the stationary distribution using
the theorem which we proved today, in today’s lecture. So, this is an example of an irreducible
infinite state Markov Chain which has an unique stationary distribution and we have explicitly
calculated what that unique stationary distribution is. So, till now we have seen now all kinds
of examples, we have seen example of a finite state Markov Chain which has a unique stationary
distribution. We have seen example of a finite state Markov Chain which has infinitely many
stationary distributions in that case it was not an irreducible Markov Chain, you can go back
to that example and check because remember the matrix there was, it was the identity matrix
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[
1 0
0 1

]
. So, basically it had two states and both states are absorbing states so it had two classes.

So, it is not irreducible. And then we saw examples of infinite irreducible infinite state Markov
Chains which does not have a stationary distribution and then finally we saw here an example
of an irreducible infinite state Markov Chain which has a unique stationary distribution. So,
if it is irreducible for finite it has a unique stationary distribution. If it is infinite state either
it will have no stationary distribution like we saw for say simple symmetric random walk or it
will have a unique stationary distribution like we saw for this particular example. So, we will
stop here today. Thank you all.
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