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Welcome to the 13th lecture of the course Discrete-Time Markov Chains and Poisson

Processes. Just recall that the in the previous lecture, we have talked about strong Markov

property. Strong Markov property basically tells us that if I know that at some stopping

time the state is i, then Markov chain actually starts afresh from there, the only thing

is that, the initial distribution is δi and the transition probability matrix is same as the

previous transition probability matrix and not only that, the two part of the Markov chain

becomes independent. We have seen this property in the last lecture and then we have seen

how this can be used to solve or find out probability of some random variables concerning

the Markov chain. Today, we are going to see what is called classification of states that

basically means that we will going to define two kinds of states and each states will be

either one or the other kind. So, it is kind of an exclusive that in the sense that I mean

exhaustive and exclusive in the sense that one state i will be either transient or recurrent

these two states we are going to see, one is transient state and other is recurrent state. Let

us start with.

The idea behind these transient or recurrent states are as follows that suppose suppose I

have a state i and I start from the state i and the question is that whether I will come back

to the same state the ith state again in a finite time or not. If I come back in finite time, we

call that corresponding state is a recurrent state and if we do not come back to that state

in a finite time or rather there is a possibility that we will not come back to the state in a

finite time, then that particular state is called transient state. So, if I come back in finite

time for sure then it is called a recurrent state if I do not come back for sure, then basically

it is called a transient state. The thing is something similar to think about your hometown.

You may be because of your college or because of your job, you may be outside of your

hometown, but in finite time you actually come back to hometown to see your relatives,

your parents, maybe your family, my other family members and all members there. So, it

is some kind of that, but that is basically the hometown is something close to our recurrent

state. And then suppose that we have a third city maybe we went there for some visit



maybe I went to Darjeeling to visit it or maybe I went to Koshani to visit since I like the

hill station. So, I go into the spaces, but I may not come back again to that place I may

come back I may not go back to that those spaces for sure. So, this kind of places which

is not my hometown may work as an example or something close to transient state. This

is the intuition, now come to the mathematical definition of this thing. So, to define this

thing, we have to start with something which is called the first passage time. What is first

passage time, the first pass is time for a state i of a Markov chain Xn is defined by Ti and

Ti is a random variable and it is defined by this particular expression, what is this?. This

is nothing but Ti is the infimum of the set. I am taking the collection of all possible n such

that n is greater than equals to 1 such that Xn is i i.e., Ti := inf{n ≥ 1 : Xn = i}. So, this

Ti is called the first passage system. Let us try to understand what does this mean. See,

we have seen something very similar to this, which we call the hitting time and we define

the hitting time T i or in general TA as infimum of the set n greater than equals to 0 such

that Xn belongs to A i.e., TA := inf{n ≥ 0 : Xn ∈ A} or when A is singleton i, we define T i

which is equals to infimum of {n ≥ 0} such that Xn ∈ A and here A is a singleton set so, I

can write Xn = i. So, the only change between hitting time and that first passage time is

that in this kth, I have taken n is greater than equals to 0 and in this kth, I have taken n is

greater than equals to 1 and the difference that makes is that if I start from i then T i = 0,

but if I start from i that Ti 6= 0, the reason being that 0 is not in the set and so, infimum

cannot be 0, n ≥ 1. So, infimum cannot be 0. So, this is the main difference. Now, let us

try to understand these in word. So, what happens is that a Markov chain actually starts

from 0 and maybe that it just proceed like that, and maybe this is the state i. Now, what

happens it starts from somewhere and then maybe this is the time 1, time 2, time 3, so on

so forth, maybe this is the time 5. At the time 5, it actually comes to the state i for first

time. And so, this set if you see 5 will be there in this set. And then maybe some more

than 5 values some n greater than 5 values will be there. But when I am talking about

the infimum of the state that turns out to be 5, because 5 is the minimum value in this

particular set along with some n is there which are greater than 5 which are basically these

points when we visit the state i because Xn = i. So, that means that difference between

these two basically can be written in this way that Ti is basically the first time the chain

visits state i after time 0, 0 excluded. But in case of T i this is basically the same thing the

first time the Markov chain enters state i after 0; here 0 included. So, this is the difference

between the hitting time and the first passage time in case of hitting time 0 is included.

So, if I start from i in 0 time I will be nice, hitting time will be 0. But in case of the first

passage time, it is basically once I see i, then after how many times I will again come back

to i that is the important in case of the first passage time. So, the 0 is not included. That is



why the changes that both of them is after 0, but in one case that 0 is included in the other

case that 0 is excluded. So, this is basically the first passage time and now using the first

passage time, we are going to define what is called recurrent and what is called transient?.

The transient state is defined as follows. A state i is called transient, if Pi(Ti <∞) = 1

recall that this Ti just let me let me draw the picture. I start here from i, the state is i

and the time is 0, then in the finite time if Ti is basically nothing but from i again I come

back to i and in between there is no i. So, that means that I start from i and I come back

to i in the at the time Ti and that the state i is recurrent, if I come back in finite time

starting from i if I come back for sure in finite time, we say that the state is recurrent. So,

Pi(Ti < ∞) = 1 that basically mean that starting from i, I come back to i in a finite time

for sure. And on the other hand, the transient state means that a state i is called transient

if this probability is strictly less than 1 that means that there is a positive probability that

means that Pi(Ti =∞) > 0 and that says that there is the positive probability that starting

from i, I will not come back to i again. So, there is a chance that I will not come back to i

starting for i, if such thing happens for a state i we call that corresponding state as transient

state, if for sure we come back we call such kind of states as the recurrent state. Now, let

us see this remark, the remark is important in the sense that gives us some intuition about

recurrent state such kind of statement, we will see later about the transient state, let us first

talk about the recurrent state. It says that the state i is recurrent, if and only if this thing

happens, what does this mean?. This basically means that if I start from i, that Xn = i for

infinitely many n this probability is 1. Conditioning on the fact that I am starting from i, I

will come back to i for infinitely many n that probability of that event to happen is 1. So,

for sure, I will come back to i again and again. So, this basically means that these infinitely

many n, Xn = 0 that the state i is visited again and again. So, this remark basically tells

us that if i is a transient state, then starting from i this chain will visit the state i again and

again. So, it will be visited for infinitely many times that Xn = i for infinitely many n that

is going to happen with probability 1 if the chain started from state i. How we can prove

that?. The proof is simple using the strong Markov property. What happens suppose at

the time 0 the state is i because I am trying to find out the probability under the condition

that X0 = i. Now, after some time it will come back to state i for the first time which

is the time Ti according to our definition. Now, let us take T equals to this and this T is

basically now, we are actually talk about this is a stopping time, we can show this as a

stopping time there is no difficulty in showing then the proof is just the same as showing

that hitting time is a stopping time. That is first passage time is a stopping time showing

this one is almost similar to that of showing hitting time is a stopping time. So, just check

that whether you can able to show that or not. So, this is a stopping time. Now in the



strong Markov property, I take this Ti as the time with respect to which I am conditioning

because I know at Ti the state is also i. Now condition on two facts, one is Ti < ∞ and

XTi = i that is true. That is always true because this is the first passage time. So, that is

always true at the time point Ti the state is i. There is no concern about that, but I am

conditioning on Ti < ∞. So, what happens?. The strong Markov property says that this

part actually again starts from a fresh. This part is a fresh Markov chain which is basically

starting from i. So, it is a fresh Markov chain, but the it is the initial distribution is δi, it

is starting from i. So, this part and this part are independent that is the strong Markov

property tells us. Now, use this thing. If I use this thing, then the Markov chain is starting

from here a fresh and it has no effect of the previous thing. So, if I rescale this time to 0,

then after some time again the ith state will be visited. So, that means that I come back

to i again. Again starting from here, here the state is i again come back to the state i after

some time. So, the state i will come back again and again using the strong Markov property

with probability 1. And that actually shows that one part that if i recurrent, then it shows

that this condition holds true and the other side is trivial that if this quantity holds true,

that means that starting from i the state i is visited again and again that basically means

that starting from i at least once I am coming back to i for sure in finite time for sure and

that is exactly the definition of the recurrent state. Let us go through this argument once

again. Let us remove this part and let us write these things very clearly that so, basically,

I start with the fact that suppose i is recurrent.

Now I use the strong Markov property. What the strong Markov property tells?. That

well if I start from here basically, I am talking about I am starting from i at the time 0

and there is a time Ti when I again come back to i for the first time, then this one is a

stopping time. Now, strong Markov property says that this part Markov chain is a fresh

Markov chain and starts a fresh and there is no effect of this side on this part. And now,

I use the strong Markov property again and again, i is recurrent. So, I will come back to

here for sure that Ti < ∞ for sure. Now, starting from i, again I come back in the state i

the reason being that is that Markov chain starts from here. Now, if I rescale this time to

0, then it is basically I can just forget about this part, this is basically again a new Markov

chain having the same transition probability matrix. That means that starting from here

and here the state is i, I again come back to i in finite time. Next, starting from this i again

I will come back to i in finite time. So, this will keep on happening. And this is exactly the

statement says that starting from i, I will come back to i again and again infinitely many

times with probability 1 and it is exactly saying that using the strong using the strong

Markov property, I will come back to i again I come back to i again I come back to i in



some time and it is just repeating again and again, again and again. Now, what about the

reverse that if I am given with now, suppose that this statement is hold true,

let us call this a star, suppose that star is true, if star is true, what does this mean?.

This basically means that starting from i, I will the state i for infinitely many times. Now,

if starting from i, I again, come back to i for sure if these have a keep on happening. That

means starting from i, in a finite time, I will come back to i at least once. Because if I

am here, I come back to here that was in finite time I have come back and for finite time I

have come back, come back for sure. So, that is why this condition holds true. That is why

this implies that Pi(Ti < ∞) = 1 and this implies that i is recurrent. And that actually

completes this proof. So, this remark is important in the sense that the definition tells us

starting from i, I will come back to i in finite time for sure. For recurrent, i is recurrent

if starting from i, I come back to i for sure in finite time, with probability 1 that is the

recurrent state. And this remark basically tells us that starting from i, the chain will visit

the state i, again and again, again and again, again, and again, for sure with probability

1 and infinitely many times if the chain starts with state i. So, starting with state i is

important when we are talking about recurrent or transient state. Let us talk about that

we will start with i, then whether we will come back to i again and again or whether we

will come back to i in finite time for sure or not, if it is sure then we say that it is that it is

the recurrent state. If it is not sure, we call that it is a transient state. Keep on my keep in

mind that for this transient state, I may come back in infinite time, but I may not be also

come back in finite time.

Let us proceed now, let us now talk about what is called the passage time, kth passage

time. In the previous slide, we have talked about the first passage time. So, now, we are

going to take the talk about kth passage time and then we are going to talk about what

is called an excursion and the length of excursion. Let us talk about first the kth passage

time, what is kth passage time?. The kth passage time is defined by this expression. This is

look quite complicated. Let us try to understand this one step by step. First thing that the

Zeroth Passage time is by default defined by 0. So, T
(0)
i = 0 by definition. Now, for k ≥ 0,

that definition is given by it is T
(k+1)
i is defined by inf{n : n > T

(k)
i , Xn = i} if T

(k)
i < ∞

and it is infinity otherwise. Let us see what this means, that when k = 0, T0 := 0 there is

no problem about that. Now, let us talk about k = 1 case. So, T
(1)
i , that by definition is

that it is infimum of the set, let us first talk about the first case, infimum of the set such

that n > T
(0)
i and T

(0)
i = 0 in this case and Xn = i i.e., T

(1)
i = inf{n : n > 0, Xn = i}

because T
(0)
i = 0 that when I am talking about T

(1)
i it will come into this framework. Now

basically that means that it is nothing but same as what we have defined as Ti. So, this is

the first passage if I take k = 0 here, actually I am taking 0 so k = 0 here I get T
(k+1)
1 , so 0



plus 1 is same as that n is strictly greater than 0 because T
(0)
i = 0, Ti = 0 and then Xn = i

this is the first passage time. So, T
(0)
i is by default is that 0, then T

(1)
i is the first time when

I visit the state i after the time 0, 0 is excluded here. Now look into k = 1 so I am now

having T
(2)
i what is T

(2)
i ?. By definition it is inf{n : n > T

(1)
i , Xn = i}. If T

(1)
i <∞. That

means that if this one is less than infinity this one is finite that means that after T
(1)
i again

when I come back to this one, so, I am taking the all possible values of n after the time T
(1)
i .

So, it starts from this point onwards and then I am taking only those points where Xn = i.

So, I am taking this point, in this point and then if another I happen see at that point I

will take all these points and then I take the infimum that means, this gives me this point.

So, that means, T
(2)
i is basically nothing but after T

(1)
i at the time when again we come

back to the state i after the first visit to the state i when we come back again in the state i

that is basically T
(2)
i . So, T

(2)
i is nothing but the second time I visit the state i after time

0, 0 excluded, second time I visit the state i that time is denoted by T
(2)
i . Now, why this

infinity otherwise infinity part is given, that is given because if T
(1)
i = ∞ that means T

(2)
i

will not be visited. If T
(1)
i = ∞ that means, I will not visit the state i again so, T

(2)
i has

to be infinity or a second time visiting is also infinity that time visiting is also infinity and

so on so forth. So, that is the why that otherwise if it is not true that means if T
(k)
i =∞,

then the next visit time has to be infinite there is no question about that. That means T
(2)
i

is the second time I visit. Similarly, T
(3)
i is the third time the state i is visited, T

(4)
i is the

fourth time the state i is visited and so on so forth. So, the kth passage time is nothing but

the time of the kth visit of the state i. Now, let us now proceed and see that remark, that

remark tells that if i is recurrent, then for all k ≥ 0, starting from i, I visit the state i for

the kth time in finite time for sure, I will visit the state i for the kth time in the finite time

is for sure that is basically the statement. And the proof of the statement again using the

strong Markov property the similar argument I mean the same argument we have given for

this one that if i is recurrent, I will visit the state again and again. So, if I visit the state

again and again that means that the time to visit the ith state for the kth passage time is

finite, I visit the state again and again, again and again if I use recurrent and that implies

that the kth passage time that is which is basically nothing but the time at which we visit

the state i for the kth time that has to be finite because I keep on visiting the state. So,

that has to be finite with probability 1 if I start from i.

Let us proceed and now let us see what is called the length of the kth excursion. The

length of the kth excursion actually defined by this it is nothing but the time difference

between two consecutive visits to the state i. In the figure it can be given in this way that

I have visited the state i for the first time here. So, S
(1)
i , which is basically nothing but

T
(1)
i − T (0)

i , and we know that T
(0)
i = 0. So, that it is basically S

(1)
i is basically T

(1)
i , which



is basically the time difference here go from 0 to the first time. Then T
(2)
i , which is basically

nothing but T
(2)
i −T

(1)
i the S

(2)
i is nothing but T

(2)
i −T

(1)
i so, which is nothing but the time

difference here. Similarly, this one is T
(3)
i −T

(2)
i and this is the time difference here. Again,

this is only defined when I have the this Si only defined if this quantity is finite, and this

one is defined if this quantity is finite in this particular manner, otherwise we see it is 0.

So, if this time is finite, then this time this difference we take as 0 and if this one is finite,

but this one is infinite, then the length is infinite. So, the length of the kth excursion is

nothing but the time difference between two constitutive visit only little bit difference in the

definition of S
(1)
i which is basically T

(1)
i , the rest of the thing is the time difference between

two consecutive visits. So, we define the kth passage time, we define the length of the kth

excursion, the question is that what is the excursion?. Excursion is basically nothing but

the path of the Markov chain between two consecutive visit of state i and here basically

length of the kth excursion to state i that is basically nothing but the time length between

two consecutive visit to the state i and of course, the S
(1)
i is different a little bit different

way it is T
(1)
i for rest of them is basically the time difference between two consecutive visits.

Now, let us talk about the distribution of these. Note that this S
(k)
i

′s
, are random

variable because T
(k)
i

′s
are random variable. So, S

(k)
i

′s
are also random variables. Now,

let us talk about the definition of this thing. Distribution goes like that for k = 2, 3, · · · ,
conditional on T

(k−1)
i < ∞, S

(k)
i is independent of this thing, what is this thing?. I will

explain and the probability that S
(k)
i = n given this one this quantity is finite is same as

Ti = n starting from i. So, let us first try to understand this theorem using the graph.

What is says suppose, let us take k = 2 here. If I take k = 2 these theorems tells that

conditioning on T
(1)
1 < ∞ recall that T

(1)
1 is same as T1 or rather I just write the general

one i. So, T
(1)
i is same as Ti notice conditioning on T

(1)
i < ∞. So, this point this time is

less than infinity S
(k)
i is independent of this what is this?. This is I am taking the collection

all {Xm : m ≤ T (k−1)
i }. So, when I take a k = 2, I am basically talking about Xm such that

m ≤ T (1)
i . So, it says that S

(2)
i this one is independent of all Markov chain in this part and

and that S
(2)
i are independent. S

(k)
i is independent of the previous part. Similarly, when

I talk about S
(3)
i , these actually consider the Markov chain in this part when I talk about

S
(3)
i . So, S

(3)
i is independent of the random variables in this part. So, the random variables

in this part is independent of S
(3)
i that is the independent part says. Now, come to the next

part, next part tells that again if I talk about S
(2)
i , then the distribution of probability that

S
(2)
i = n given T

(1)
i < ∞ is same as probability starting from i, T

(1)
i or Ti = n, what does

this mean?. This means that well, if I know this one is finite, then the distribution of these

one is same as if I am because here the state is i as even now, I am starting from i and

the for the first time I am visiting the state i. Note that from here to here, if I just forget



about this part, the Markov chain actually start here from refresh using the strong Markov

property. Now from here I visit the state i here again. So, from here, the first time visit

is here, starting from here the first time visit to the state i is here. And this basically tells

that that the distribution of S
(2)
i is same as if I am starting from i and then I visit the state

i again for the first time, so that these theorems actually quite helpful theorem to find out

the distribution of S
(k)
i , it basically says that S

(k)
i is independent of the previous part of

the Markov chain. And not only that, the distribution of S
(k)
i conditioning on the previous

time is finite is same as, as if I am starting from i and I am visiting the state i for the first

time for the first time the distribution of that time is same as the distribution of S
(k)
i .

The proof actually, the intuition I have given using this graph, now, let us write down

those things clearly. As I mentioned, the proof can be done with the help of the strong

Markov property where the stopping time can be used as the (k − 1)th passage time, when

I talk about these passage time, as the stopping time in the strong Markov property. Now,

of course, in this case, Ti, XT is i, because this is the passage time and at this time, the

state is i, provided that the T <∞. If T =∞, then XT does not make any sense provided

T < ∞ that this quantity makes sense and then at that XT at the time T , which is same

as this the state is i. Now, conditioning on this fact that T < ∞ that means this time is

less than infinity, which is exactly this condition, this is basically T <∞, because we take

that T is this one. So, conditioning on these, this part is a Markov chain with the same

transition probability matrix and initial distribution δi that the same thing that if I start

from 0, I come at T
(k−1)
i at this time the state is i. So, Markov chain starts a fresh here

using the strong Markov property conditioning on that this quantity is finite. That means

that this is a Markov chain in this part of the Markov chain, which is again having the

same transition probability matrix, but the initial distribution is δi, it is starting from i and

this part is independent of this part, these two parts are independent. This is the strong

Markov property tells us. Now, they look into the definition of this. The definition of this

was that Xk was basically the time difference if this time is T
(k−1)
i if this time is T

(k)
i , then

this is the time difference, is basically S
(k)
i . Now, if I look into the next part, if I start from

here on this side, then this time difference can be written as after this point when I again

visit state i, so, this is nothing but n ≥ 1 such that XT+n = i, take the collection of all

such chains and I take the infimum. After this again I see state so, this is basically this

one. Notice that this T is same as this quantity, so, this is basically my T here, so, T + n

is basically means that after this time when again I see these state i. That means this is

after this what is the first passage time after this what is the first passage time?. So, S
(k)
i

the first passage time of this Markov chain. If S
(k)
i is the first passage time of this Markov

chain and the strong Markov property says that this is a Markov chain having the same



transition probability matrix starting from i and this Markov chain now is independent of

X0 to XT which is basically this part of the original Markov chain. So, this shows that

this first quantity holds true because S
(k)
i is the function of this part of the Markov chain

only. And the previous part this part is basically this quantity. So, clearly S
(k)
i has to be

independent of the previous part. And then, the next part is basically given by the fact that

once I come here then everything start afresh. So, from here it is basically again when I

first time visit this one such from state i this is basically nothing but when I again visit the

state i. So, this is basically the proof. The takeaway from today’s lecture is that we have

defined what is called that passage time and using the first passage time we have defined

what is called the recurrent state and transient state. Recurrent state basically means that

starting from the state i, I will come back to the state i in finite time for sure and transient

state means that starting from i there is a positive probability that I will not come back

to i in a finite time. Now, the intuition of the recurrent state is that starting from i, I will

come back to the state i again and again, again and again for sure. And then we talk about

the distribution of the kth passage time and we pointed out the fact that the kth passage

time is independent of the previous part of the Markov chain and that conditioning on the

fact that that T
(k−1)
i <∞, the distribution of the kth passage time is same as distribution

of the first passage time starting from i. With that, I stopped in the lecture. Thank you

for listening.


