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Hello viewers! Welcome to this next lecture on the MOOC course on Mathematical Portfolio Theory. I
would recall that in the last two classes we have been focusing on mostly talking about financial markets,
and we talked about derivatives. And in the previous class we mostly looked at the two main kinds of assets,
one was the risky asset and example of which was bond, and the other was a risk free asset and which was
a stock. So, what we are going to do now is basically that we are now going to consider some asset pricing
model. And for that purpose we are talking about the risky assets, and in particular we will look at two
models namely the Binomial model and the geometry Brownian motion model which are respectively the
discrete and continuous models for asset pricing that are most commonly in use. So, we begin this lecture by
first talking about the binomial asset pricing model, for which we will make use of the binomial distribution.
And then we will talk about the geometric Brownian motion, which will be driven by the normal distribution
which justifies the introduction of these two distributions in one of our earlier classes.

(Refer Slide Time: 01:44)

So, we start this lecture, the topic of this lecture is Binomial and geometric Brownian motion or gBm
asset pricing model. So, let us first begin with the binomial model. So, we consider this important model for
modeling the stock price movement. Now, note that this model while being mathematically tractable and
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simple is still able to capture many aspects of markets in the real world. So, we first consider the model in
the paradigm of one step and define it through the following conditions. So, before I start with the condition
let me just say that we are basically we will look at some time point 0, 1, 2 and so on. So, these are just the
index for the different time points.

(Refer Slide Time: 04:26)

So, we start looking at the first condition. So, the one step return Kn on a stock are. So, what do you
mean by return? So, just to illustrate it through a simple example suppose that you invest in amount of
100 today and then at the end of 1 year it becomes 110. So, this means that you have made an additional
amount of 10 in 1 year upon your original investment of 100. So, basically this will be given by 110 minus
100 divided by 100. So, Kn here basically will mean that it is going to be the difference in the stock price
between two subsequent, two consecutive stock prices at two different times, and divided by the price at the
previous time. So, I suppose we take some time point n and n + 1, then the return in this particular time
interval will be given by the stock price at time n + 1 minus the stock price at time n divided by the stock
price at time n. So, then this particular return is going to be a random variable. So, this stock these are i i
d random variable. So, this return Kn these are all random variables such that Kn is going to be equal to
u with probability p and d with probability 1 minus p. So, this means that if the stock price to today is say
S of n this means that tomorrow the stock price can be S of n multiplied by 1 + u with probability p, or it
could become S(n)(1 + d) with probability 1− p. So, this essentially what it does is that between any two
time intervals or any two time points the change in the stock price can only happen in two possible ways.
One when it is changes by a factor of 1 + u and 1 when it changes by a factor of 1 + d and since this is a
random variable. So, we take the corresponding probabilities to be p and 1 − p respectively. So, now, this
is this will happen at each time step n, where I need to put this condition. So, one of the condition would
be a 1 < d < u, all right and the second is 0 < p < 1. So, we take the condition −1 < d < u the reason
being that that I want first of all that 1 + d > 0. So, that the stock price and also I then I need; obviously,
1 + u > 0; so, that the stock price at the next time point when it is obtained by either multiplying by 1 + u
and 1 + d will still end up giving you the price of the stock to be positive. And I need 0 < p < 1 and the
reason I cannot allow p = 0 or 1 because, if either p = 0 or p = 1; that means, the returned K(n) is no
longer going to be a random variable and then it will become a certain return and then it will start acting
like a bond. So, next this implies that the stock price. So, just to sum up whatever I have said this implies
that the stock price Sn can move up or down by factor 1 + u or 1 + d respectively at each time step. So,
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here typically u is what is known as the up factor and d is what is known as the down factor. So, typically
we say that the stock price from the current time of Sn, in that in the next time point it can either go up to
S(n)(1 + u) with probability p or it can come down to S(n)(1 + d) with probability of 1− p. So, then note
that the condition so, as I had mentioned before this condition of −1 < d < u guarantees that, if you start
off with a positive stock price; then S(n) will also be positive for all n. Now, further we let r be the risk
free rate for a single time step. So, r being the risk free rate basically means that if you invest an amount of
S(0) in a bond today. And r is the interest rate that is prevailing for a single time period, then at the end of
that time period you will receive an amount of S(0)(1 + r).

(Refer Slide Time: 10:30)

We now come to the second condition and this condition will be in terms of this r that we have just
introduced. So, the second condition is involves the assumption is that r is the same at each time step so;
that means, r remains constant as long as you are considering the model of the asset and d < r < u. So, if
we consider the times say 0 and 1 and the respective stock prices S(0) and S(1), then by definition. What
will we get? We will get so, by definition K(1) = S(1)−S(0)

S(0)
and this implies is that S(1) = S(0)(1+K(1)).

So, the random variable now remember that K(n) and in particular K(1) can take two values. So, the
random variable S(1), then can take the values S(1) = S(0)(1 + u) and S(0)(1 + d) with probability p
and with probability 1 − p. So, here I would like to just make one more observation, that we had this
condition that −1 < d < u and then I put in r in between. So, the reason why this is very crucial; so, I have
already explained why we must have > −1, because we need 1 + d > 0 resulting in the stock price at our
subsequent points being positive if we start off with a positive stock price. And by the same logic I need
1 + d = 1 + u > 0. So, that the stock price remains positive along subsequent points. Now, the third point
that we have just introduced in the second condition, where basically r lies between d and u, the reason for
this is that suppose that r < d < u. So, this means that the return in that so, the stock price in any single
time interval can either go up by a factor of 1 + u or come down by a factor of 1 + d. Now, if myr is less
than both d and you this means that if I invest in the stock in the worst case scenario, I will end up with
S(0)(1 + d), but as in comparison to that if I invest in a risk free asset that is a bond, then ill end up with
S(0)(1 + r). So, they should mean that S(0)(1 + r) < S(0)(1 + d) < S(0)(1 + u). So, this means that in
the worst case scenario the stock price will still be higher, at the end of the time period as compared to an
investment in a bond which cannot happen, because the stock is a risky asset. And also we need my r < u,
because if r > u, this means that your return on a risk free investment is always going to be more than the
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best case scenario that is S(0)(1+ u) in case of a risky asset, which leaves no incentive for anyone to invest
in the risky asset. Because, an investment in a risk free asset at a return of r obviously, is always going to
be higher. So, with these two cases ruled out you basically then need that your r must lie between d and
u in both the cases, ok. So, now what you do is that I have just looked at the kin scenario, when I look at
some time point index by 0 and 1. And now, let us look at some n time process suppose that we are looking
at a stock price say over at prime interval. And suppose you are looking at time 0.0123 this could be days
first day second day and so on. So, suppose we consider a general scenario and try to see what is going to
be if you start off with a stock price of S(0) which is deterministic. So, in this case your S(0) is known it is
deterministic its only S(1) that is random because setting at time t = 0, you do not know for certainty with
what S(1) is going to be. So, likewise instead of just considering the time point 0 and 1 we consider some
generic time point n. And look at what the stock price is likely to be or what are the possible stock prices
that we can have at the time and that is what are the possible candidates for S(n) if we start off with the
initial stock price namely S(0).

(Refer Slide Time: 16:06)

So, accordingly in case of an n step tree of stock prices, we consider the scenario of i upward there is i
number of 1+u and n−i downward movement. So, this produces the same stock price S(0)(1+u)i(1+d)n−i

at time n. So, this means that say you have this time interval 0, 1, 2, · · · , n, and I say that as we move
from 0 to n while reaching there you will basically have i number of cases of 1 + u, and you will have
consequently n − i number of cases of 1 + d movements. And so, consequently the stock price is then be
going to be as S(0)(1+u)i(1+dn−i), where your I can be 0, 1, 2, · · · , n. So, this means that you could have
if i = 0; that means, that right from the beginning to the end. There is no going to be no upward movement
and is going to be all downward movement. If i = 1; that means, in this from 0 to n you will have only
one upward movement at some test single time step and for the remaining time steps you will just have all
downward movements and so on. So, generically if we have if you are looking at n steps and if start off with
S(0) and you want to see what is the stock price is going to be at the end of n steps, where between 0 to n
you have a i number of up movements and n − i number of down movements. This is what you are going
to end up with S(0)(1+ u)i(1+ d)n−i. So, accordingly now there are n choose one such scenarios. So, this
means that between in the n time intervals that are between 0 to n, you can have i number of ups in many
different ways. It could be that at the first i movements from step 0 to i you have all up movements it could
be that the last i step it could be that there are alternative type step. So, there are different and a sequence
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in which you can have i number of upward movements, and that number of such possible combinations is
going to out of this n is going to be

(
n
i

)
. And since there are

(
n
i

)
such scenarios of i upward movement

and n − i downward movement. So, this means that so this means that it will have the probability of each
scenario being. So, remember that the movement from one time step to another time step, where there is an
upward or downward movement they are all independent of each other. So, this means that the probability
of i upward movement is going to be given by pi, and the consequent n − i downward movement will be
given by (1 − p)n−i. So that means, that there are n such scenarios with the probability of this scenario
being pi(1 − p)n−i. So, now we have both the identifiers as far as the stock price S(n) is concerned, we
know what is going to be the stock price and we also know what is going to the corresponding probability.
So, this means that I can write S(n) = S(0)(1 + u)i(1 + d)n−i with probability pi(1 − p)n−i and this can
happen in

(
n
i

)
number of ways. And this can hold for i = 0, 1, 2, · · · , n.

(Refer Slide Time: 21:00)

So, therefore, the stock price S(n) is; obviously, a discrete random variable with n+ 1 different values.
So, I just conclude the discussion with a graphical representation for n = 2. So, suppose that you start off
with S(0). So, according to the binomial model, we can go up to S(0)(1+u) with probability p or go down
to S(0)(1+d), with probability 1−p. Now, again from here I can go up to S(0)(1+u)(1+u) = S(0)(1+u)2.
And this probability is going to be p or I can go down to S(0)(1 + u) which is the existing price multiplied
by 1+t. Similarly, here when I start off with the existing price S(0)(1+d), I can go up to S(0)(1+d)(1+u)
and note that these are both equal. And so, the probability here is going to be 1− p, this is p and here with
probability 1− p, I can go down from S(0)(1+ d)2. So, that is how we generically end up with our formula
for S(0)(1 + u)i(1 + d)n−i. So, here n = 2 so, for i = 0 we have this so, this is when n = 2 and i = 0, this
is the scenario when n = 2 and i = 1. And this is the scenario when n = 2 and i = 2, ok. So, this concludes
the discussion on the binomial model. So, next we look at the other model which is the geometric Brownian
motion gBm asset pricing model, ok.

(Refer Slide Time: 23:35)
So, let me first of all start with a motivation for this, in from the point of view of it being extended

from the binomial model. So, the primary motivation is that the discrete time pricing models clearly have
the disadvantage of being restrictive in terms of the range of asset price movement. As well as the time
intervals, at which the asset price movement can take place. So, let me explain this two points in a slight
amount of detail. So, the first disadvantage I said that it is restrictive in terms of range of asset price
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movement. So, it is easily sort of observable from the previous discussion regarding that, if you start off
with an amount of S(0) at time 0. And then you want to look at the asset price S(n), and we saw that this is
going to be S(0)(1 + u)i(1 + d)n−i. So, this means that after if you are looking at a n point n time interval
discrete model, then you end up with only n + 1 possible values of the stock price which are the random
variables at time n. So, this means that you only have a limited number of possible stock price, which is not
consistent with what actually happens in the real world. And secondly, you are talking about the time points
at which the stock prices can change. So, we are talking about some time point 0, 1, 2 perhaps on a daily
basis, but given the way stocks are traded now, this is more of a continuous process. And what this binomial
model does is that it actually restricts the time point at which the stock prices can change. So, in order to
address these two key shortcomings of the binomial model, a natural way is to move on to the continuous
time model. So, this can take place ok. So, accordingly we will now consider the continuous time limit of
the binomial model. So, what do you do is that we consider a sequence of binomial tree models, each with
time step being tau is equal to 1

N
and then take the continuous time limit by letting N → ∞. So, what this

means is that we basically look at some time length of 1 and we divide it into n number of subintervals. So,
the length of each of those sub intervals is going to be one over N . So, suppose we take our time interval of
1 year and you want to look at the asset price movement over 1 year, and you take N = 2. So that means,
τ is going to be equal to half a year which is 6 months, then we take say N = 12; that means, τ is going to
be 1 month if we take N = 365, then τ = 1 day. So, what do you do is that we basically look at various
different scenarios of such binomial models with different values of N . And as we increase N we observe
that the time interval between any 2 consecutive asset price movement, which is given by τ that becomes
smaller and smaller. And as yourN →∞, your τ → 0 so; that means, that the asset price movement model,
now is effectively a continuous time model, because the time interval between any two prices movement it
tends to 0. So, what you are going to do is that we will look at a binomial model for asset pricing with N .
And, then you make n smaller and smaller and let N tends to infinity, and that would give us a continuous
approximation of the binomial model which in turn is going to result in the geometry Brownian motion for
asset pricing, ok. So, now what you do is that we make a note that we will have to make a simplifying
assumptions. So, that the proof is accessible.

(Refer Slide Time: 29:45)
So, for the approximating sequence we will make the assumption that the probability of the upward and

the downward movement of the asset price are equal to half each. That means, we take p is equal to half
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and 1 − p equal to half, ok. So, now we recall that so, recall the notation k(n) which denoted the return
at the nth time step. Now, for the sake of convenience and we will later on see why this needs to be done,
we introduce what is known as the logarithmic return. So, logarithm return is nothing, but the natural log
remember a in finance log always miss natural log that is busy. So, ln(1 + k(n)), I will define this to be
the logarithmic return which is k(n). And this will be nothing, but this can take the value ln(1 + u) and
ln(1 + d), and remember here we took the probabilities to be identical. So, k(n) can have probability half
and half in the two scenarios. So, for now from now on will primarily be using the logarithmic return. Now,
another aspect so, I will make another observation here. So, the another aspect to be taken into account is
that we consider the continuous compounding convention. So, to see this in more detail we suppose that we
start off with an amount S(0), which we invest at the risk free rate or the rate of the bonds are per annum
for say T number of years and with the compounding happening m times a year.

(Refer Slide Time: 33:06)
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So, this means that I have this interval [0, T ] and this is 1 year 2 year and so on. And in each year I
compute the interest m number of times. So, this means that if I start off with an amount of S(0), then how
will you do the compounding. So, for each period we will do the compounding so, if r is the annual interest
rate then the per period interest rate is r

m
. So that means, for the whole year it is going to be r(1 + r

m
)m.

So, this is the amount of money that I am going to get starting off with an amount of S naught. So, slight
correction I start off with S(0). So, this is the amount of money that I will get at the end of 1 year. So, at
the end of T years I will get the power to be mT . So, then I can write so, then I can make the statement that
at time T , we accumulate an amount given by S(T ) = S(0)(1 + r

m
)mT . Now, if I want to do continuous

compounding this means that you are basically having the interest is being calculated on a continuous basis.
So, this means that I will take as m tends to infinity for continuous compounding what do you get, then
what is going to be S(T ) if you start off with S(0). So, this is going to be S(0) limm→∞(1 +

r
m
)mT . And

this can be written as limm→∞[(1 + r
m
)
m
r ]rT . And this limit you know is the exponent. So, this is going

to be erT . Now, here I took T to be some fixed number of years, but it is 2e in general for any other time
point. So that means, that if your r is the interest rate, then at any and you start off with an amount of S(0),
then you can see that at time t your S(T ) = S(0)ert, ok. So, let us now come back to our main discussion
on the gBm. So, accordingly we take the return over a time interval remember, we took the time interval
notation to be τ = 1/n. So, we take a time interval of length tau as erτ , ok. So, let m and sigma denote the
expectation. So, I move on to the next step and I will introduce two variables. So, denote the expectation
and standard deviation respectively and these are yet to be determined remember the so, here at this point
we do not know what m and sigma. So, these are the expectation standard division respectively of what
random variable k(1)+ k(2)+ · · ·+ k(n). So, this is basically the sum of the log returns of each individual
intervals.

(Refer Slide Time: 36:59)

And this is over a unit time window of [0, 1]. So, just recall that you had N time steps and so, that is we
had τ that is each time interval to be 1/N . Now, since your original return k(1), k(2), · · · , k(N), they were
remember that they were i.i.d, because they were modeled through the binomial model. And so, they were
independent and so they are identically distributed and of course, they are independent because, we assume
that the change in the asset price between any two consecutive time steps, they are all independent of each
other and they of course, follow the identical binomial distribution. So, from for capital k(1), · · · , k(N)
which is the original variable for the distribution. So, I can since these are i.i.d’s so, consequently I can
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say that so, the variables k(1). So, the random variables k(1), that is the log return through k(N) are also
independent and identically distributed ok. Now, let us go back to this I said that m is the expectation of
this random variable so; that means, I can write this as m is equal to expected value of k(1), · · · , k(N). And
this by the linearity property I of expectation; so, this is where we use the linearity property of expectation
that we discussed earlier. And now, since these are all independent and identically distributed they are ba-
sically going to have the identical mean of say E(k(n)) of some generic k(N). And there are n number
of such variables so, this will be NE(k(n)). Similarly sigma square is what? It is basically variance of
k(1), · · · , k(N). And this is going to be nothing, but variance now again these are since these are indepen-
dent so, the covariance terms will not show up. So, this is going to be simply nothing, but NV ar(k(n)). So
therefore, variance of k(N) from this relation will become equal to σ2/N and remember N = 1/τ so, this
becomes σ2τ . So, therefore, the standard deviation of k(n) this is going to be nothing but the square root
of this term which is σ

√
τ . And please remember that these two these are these will all hold for each n, ok.

Now, here we will essentially look at a slightly simplifying assumption.
(Refer Slide Time: 40:34)

So, here what you do is that so, we have seen that the expected value of k(N) = mτ so, here I just
forgot to add this here. So, this will imply that so therefore, expected value of k(N) = m/n = mτ . Ok.
So, now, here the two possible values of each k(N) are so, I make a total obvious choice. So, I want to
figure out what my random variable k n is going to be in terms of this m and σ. So, two possible values
of each k(N) are so, this is good to be ln(1 + u). So, this is going to be mτ + σ

√
τ . And ln(1 + d) =

mτ − σ
√
τ . So, you can actually verify that here the expectation, what is this going to be? This is going

to be 1
2
(mτ + σ

√
τ) + 1

2
(mτ − σ

√
τ) and this is just mτ . So, basically that the expectation is going to be

mτ for each of the k(n). And we want to show that the standard deviation is σ
√
τ . So, that also you can

calculate easily so, again just I use the definition. So, for this I will have variance of the random variable
mτ +σ

√
τ−E(mτ 2+ 1

2
). Again I will have mτ the other random variable mτ−σ

√
τ−E(mτ 2). So, these

cancels out, this cancels out. So, this just simply becomes σ2τ . So, I have taken basically two particular
cases that is mτ + σ

√
τ and m term minus σ

√
τ , ok. So, now we observe this two and this motivates us to

introduce a sequence of independent random variables, call them ξ(n) as what is ξ(n)? ξ(n) I will define
this to be +

√
τ with probability 1/2. So, this is motivated by the fact that this term and this term the only

difference is that of a sign. And this will be −
√
τ with probability 1/2. Now once I have this definition of

ξ(n) so, I can actually combine these two possible values. And so, then k(n) can be written as k(n) = mτ
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and then I have the σ term. So, the only place where these are distinguished is +
√
τ and −

√
τ so, I can

write this as mτ + ξ(n)σ. So, you can easily see that k(n) takes the value of mτ +
√
τσ probability 1/2

and mτ −
√
τζ and with probability 1/2. So, this is ζ .

(Refer Slide Time: 44:28)

Next we introduce a sequence of random variables say W (n), this is what is known as a symmetric
random walk, such that how do I define this? It is going to be nothing, but some of this ξ(1) + · · · + ξ(n)
with W (0) = 0. So, this is actually ξ I have been calling it zeta so, please note that this is ξ. So, here
W (0) = 0 and ξ(n) = W (n) − W (n − 1). So, now, I have found an equivalent representation of this
random variable ξ(n) and we I am calling this to be my difference between W (n) − W (n − 1), ok. So
consequently so now, what you do is that we first of all make a slight change of notation. So, we now use
the notation t = nτ for n = 1, 2, so on. And consequently my stock price S(n) and W (n) that we have
here and I have defined here this will be written as S(t) and W (t) respectively. So, I will use w here. So,
please note that this is the small w. Now, what is k(n) let us go back to k and

k(n) = ln(1 +K(n)) = ln

(
1 +

S(nτ)− S((n− 1)τ)

S((n− 1)τ)

)
= ln

(
1 +

S(nτ)

S((n− 1)τ)
− 1

)
.

(Refer Slide Time: 47:24)
So, this will give me that

S(nτ)

S((n− 1)τ)
= ek(n).

So, which implies that
S(nτ) = S((n− 1)τ)ek(n).

So, accordingly so recursively we will get

S(t) = S(nτ) = S((n− 1)τ)ek(n) = S((n− 2)τ)ek(n)+k(n−1)

and I will keep doing this. Until I reach S(0)ek(1)+k(2)+···+k(m). Now, remember that my representation of
k(1) through k(n), what did I take I have taken my random variable k(n) to be written in this form. So,
I will make use of that so, its mτ + ξ(nσ). So, this is going to be simply emnτ ; that means, there are n
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number of mτ ’s plus we have a τ . And then for k(1) I have ξ(1), · · · , ξ(n) and remember. What is this?
What is nτ? nτ is t so, this becomes emt plus this. So, this is actually a στ so, plus σ and remember this
is ξ(1), · · · , ξ(n) and this is defined as W (n) and so, this becomes now σW (t). Ok. So, now, we will make
our Taylor series approximation. So, using the Taylor series expansion what do I get? I will get that

S((n+ 1)τ)

S(nτ)
= ek(n+1) ≈ 1 + k(n+ 1) +

1

2
(k(n+ 1))2.

We neglect the higher order terms here.
(Refer Slide Time: 50:18)

So, this is going to give me. Now, what I need to take care of is a we need to look at this term first. So,
now, k(n+1)2, what is k(n+1)? k(n+1) = [mτ +σξ(n+1)]2. Now, if we expand this say you will have
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an m2τ 2 term here. So, that is order of τ 2 and here you will have σ
√
τ , because by definition of ξ(n + 1).

So, this will give you σ2τ and the cross term. So, there will be tau here so, the 2mτσ
√
τ that will give τ

3
2 .

So, I ignored the as the square term and 32 term and retain only the sigma2ξn2 term which is τ , because
ξ(n + 1) is of the order of

√
τ , ok. So let me now come back to this. So, therefore, I have S((n+1)τ)

S(nτ)
, this is

approximately going to be 1+ k(n+1), which I will now substitute as mτ + σξ(n+1)+ 1
2

and this term I
will replace with σ2τ . And, this I can rewrite it as 1+(m+ 1

2
σ2)τ +σξ(n+1). But, recall that by definition

ξ(n+ 1) = w((n+ 1)τ)− w(nτ). So, therefore, from here we get

S(t+ τ)

S(t)
= 1 + (m+

1

2
σ2)τ + σ(w(t+ τ)− w(t)).

This implies

S(t+ τ)− S(t) = (m+
1

2
σ2)S(t)τ + σ(w(t+ τ)− w(t)).

(Refer Slide Time: 53:11)

Now, one can make use of the Central Limit Theorem, which we had mentioned in one of the earlier
classes, we can show that that as N → ∞, that is tN → t or equivalently NtN → ∞. The following holds
that WN(tN)→ W (t) and here this W (t), this is known as the Wiener process. So, what are the properties
of Wiener process?

(Refer Slide Time: 54:00)
So, the properties of Wiener process the first property is W (0) = 0. Secondly, W (t) the it follows a

normal distribution with mean 0 and variance of t. And thirdly the increments say W (t3) − W (t2) and
W (t2) − W (t1) are independent for 0 ≤ t1 ≤ t2 ≤ t3. So, this means that W (0) = 0 and W (t) is a
random variable which is a normal random variable. So, you see that is why we had to make use of that we
define the normal distribution earlier. And the mean of this is 0 and the variance is t, and the last one it says
that if we consider two non overlapping intervals (t1, t2) and t2, t3). Then the corresponding increments of
W (t2) −W (t1) and W (t3) −W (t) to these corresponding increments are independent of each other. So,
once we have this definition then we can now go back and look at this. So, what I am going to do is I am
going to rewrite this. So, I will call this so, I take the small interval and this can be rewritten as dS(t). So,
remember that this is the change in the interval. So, instead of S(t+ τ)− S(t) as N →∞ your τ = 0. So,
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accordingly this is going to be dS(t) = (m + 1
2
σ2)S(t)dt. So, I will now replace τ by some small interval

dt. So, then S(t+ τ)−S(t), this will become dS(t) and w(t+ τ)−W (t), this becomes dW (t), because of
the central limit theorem that I have just mentioned. . So, this becomes m + (1/2)σ2S(t)dt. So, from this
term and plus σdW (t). So, plus σS(t)dW (t). And this S(t) which shows up on both sides is because, you
have S(t) that was in the denominator. So, we had S(t+τ)−S(τ)

S(t)
, so, that has come to the top part. Now, we

recall that S(t) = S(0)e(mt+σW (t)). So, what do you do now is so, this is what we had done earlier and this
is what we now follows as a limiting case of the binomial distribution.

(Refer Slide Time: 57:38)

So, alternatively thus it is customary to write. So, let me call this equation 1. So, to write 1 as

dS(t) = µS(t) + σS(t)dW (t).
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. So, basically I will replace mu with you I will use µ to replace m+ (1/2)σ2. So, this is lot of times this is
called drift and this is called the volatility of the asset. So, once you choose µ = m+ (1/2)σ2. So, then the
second relation accordingly becomes so, this has the solution S(t). What is m? m is equal to µ− (1/2)σ2.
So, this is

e(µ−(1/2)σ
2)t+σW (t).

And this is what is known as a this is an example of what is known as the stochastic differential equation.
So, if you had only these two terms this would be an ordinary differential equation, but now that you have
added this term which as the Wiener process which is a random variable. So, accordingly this becomes
what is known as a stochastic differential equation. And if solution under some conditions is going to be
given by

S(t) = S(0)e(µ−
1
2
σ2)t+σw(t).

So, just to do a recap what we are done today is we looked at the binding binomial model. And then we
looked at a couple of shortcomings of the binomial model. And, then we moved on to the asset pricing
model, in the continuous time driven by Wiener process. And this is also what is known as the geometric
Brownian motion and this exercise today of discussing these things also highlights. The background on
probability theory that we have used namely we looked at the binomial distribution, we have made use
of the normal distribution, we mentioned about the central limit theorem and the properties of mean and
variance. So, this brings us to the end of our discussion on markets and the asset pricing models that we
discussed today. From the next class we will start our discussion on the main topic for the course, and we
will begin with the modern portfolio theory due to Markowitz.

Thank you for watching.
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