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Welcome back, to the next topic that we are going to discuss and this is lies at the heart of the con-
tinuous time finance theory, which is what is called as stochastic calculus. So, basically what we would
define, we would define what is called as an Ito integral and analyse their properties that leads to the
famous formula called as Ito formula that lies at the heart of all the calculations that you do in stochastic
calculus and then you know we will talk about, little bit about other things about its applications, and the
calculus is basically based on the Ito’s formula which is, know you can make analogy with the ordinary
calculus formulas.

So, anyway let us start, so basically what we want to do first is basically, what we call as Ito’s integral
and first what we will consider is basically Ito’s integral for simple integrands. Later we will generalise
to a more general integrands under certain assumptions. So basically what we want to see is we want to
make sense of quantity of something like this as I said ∆t and this similarly for the Wt .

So, the basic ingredients here are, you know you have Brownian motion process, along with a
filtration for the Brownian motion and we say filtration motion for Brownian then you know what it
means exactly as per the definition. and you have a process ∆t which is adapted, which is adapted to this
filtration. Again since this is Brownian motion, ∆t is adopted to Ft and Ft is a filtration for the Brownian
motion, so we mean that by time t you know the value of ∆t should be determinable, I mean when you
go forward you would see this would be similar are this all represents among other things, on of the
quantities that you know, which will denote our positions in the underlying stocks, which are all will be
adapted process as we said earlier.

And since this is the Brownian motion for Ft is filtration for the Brownian motion. Even this ∆t

should give no clue about what is going to be your Wt. That is what you know we will keep that in



mind, you may recall that you know this integral is something like in the ordinary calculus that you
might counter and you may see that as a digress. Suppose if you look at some integral of some function
of T and dg(t), say I will write it here in this form so this also I will write it in this form.

And if g is differentiable, this is equal to∫ T

0
∆tdg(t) =

∫ T

0
∆tg′(t)dt

, and the right hand side is nothing but your ordinary lebesgue integral or Riemann integral when both
are exist then Riemann at the same, so this is what would mean. but here look at this function Wt , is
non-differentiable function, that is why the problem comes that this cannot be defined in this manner as
you does in the ordinary calculus theory and hence we need to have a different way to you know give a
meaning to this quantity, which is what will keep occurring in stochastic calculus. where you know the
integral, where this function g in the ordinary calculus that you look for, so this will be taken by this W
but the paths of this Brownian motion nowhere differentiable .

(Refer Slide Time: 05:43)

So, that is where the things will come. Now let us look at the construction, how we can con-
struct. such an integral construction of the integral. so what we have this construction is what was
done by Ito, who devised a way to give meaning to such an integral in the following way around the
non-differentiability of the Brownian paths .

So, we first define as we said for the simple integrands, then we consider and extended to non simple
integrands, as a limit integral of simple integrands, so enhance the understanding that we require and in
understanding the basic integral, in terms of the simple integrands is crucial and hence I would suggest
you know, you spend some time in understanding, so that meaning is clear what exactly we mean. So let
us take you know as usual, you know we have an [0,T ] and you take your partition of this interval say
Π = {t0, t1, ..., tn}, such that 0 = t0 ≤ t1 ≤ t2...≤ tn = T and so on or all the other points in the partition
and we also assume, ∆t is constant with respect to t on each sub interval, which is tj to tj plus 1. You
know such a process is what we call it as simple process.

So, if I look at how this will look like, so if I take this, now what this is, so this is along with, x axis
you have the time and along the y axis you have your ∆t , which might be your this. So what this says is
that you know at time 0 which is t0 here, this is 0 and this is say t1, this t2 and this is t3, suppose if this
is the case and 1 more thing, so this is t4, so what this says is that ∆t is constant in each sub interval so
between 0, which is what is my t0 and t1, this is constant.

So, you take the position starting at t and hold it until upto to t1 but not t1, just before t1 want until
that. So which is what this position would be, then a t1, you know may change your position to here and
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then until t2 you may hold it and the t2, you know, it could be you know any position. So even it can take
negative value so at t2 you have this and until upto t3 and the t4, you hold you know, take this values and
then until up to t4 and then from t4 this is starting.

So it is, if you look at simple without looking at the bringing the stochastisity in mind, this is the
step function that you talk about, so which means, which has this specific property, you know this ∆t is
constant in each sub interval Ft close right open interval of this sub intervals that you are considering.
So which means that it will be up this form, just prior to t1, this will take this value which is on the lower
1 and at t1 it will take higher value, which is what is meant to this.

So, this is what will look like simple path. So, this path again you know, where the randomness
comes in because this path would depend on the omega that you pick, so you, this would depend on for
each omega you have 1 such path and hence you know you have this as a simple process otherwise it
is called simple function but this is simple process because for each of this omega, observation you can
also make that this first part will remain the same as long as you know t1 remain the same along any path
because it is ∆0 ,so that is what you would will observe. So, this is what a simple process means. Now,
let us look at the interplay, we think of the interplay between the ∆t and wt in the following way.

(Refer Slide Time: 11:01)

Now, what we do is that, just regard, you know it is regard this Wt as the price per share of some
asset at time t, this is to give meaning to this otherwise you know it is just a mathematical construction
but you just regard so that you know we can associate a meaning to such a quantity that we are talking
about here. And you know like this will not be true in reality because Wt by definition is a normal
random variable, which can take in any value between minus infinity to plus infinity and associating
these with the, the price of a particular share is not going to be a meaningful quantity. Because it cannot
take negative value Wt whereas in reality, the price is non negative quantity that is what you would see.
So this is just for our understanding purpose, so regard this and ∆t in a similar way and this 1, this time
points like t0, t1, t2 and so on, these are all you regard this as a trading dates which means these are the
dates or the time points at which you know you do make trade and think of ∆t0 , ∆t1 and so on ∆tn . As
the positions, we mean the number of shares that you hold positions taken at each trading date at each
trading date. Then, if you regard the gain from trading, what is this quantity if you regard? suppose if,
I call this is as It, this will be simply because my position at the beginning at ∆t0 , t0 equal to 0, it is ∆0,
then Wt−W0, which is nothing but ∆0Wt , this is true for all t ≤ t1, because I start holding the position of
∆0 at time 0 and I buy the asset at the price W0, which is 0 here and by time t this W0 would have grown
to this Wt and my position is this.

So, this difference is what the difference or the appreciation that you gain by holding each of this
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share and you are holding ∆0 number of shares, so the total gain is ∆0Wt . this is for t lies between this.
Now suppose if I take my t lies between say t1and t2 then what would be this quantity? This quantity
would be ∆0Wt1 until that the gain from 0 to t1 is this plus at t1 I change my position to ∆t 1 and the
difference in the price of the underlying asset between t1and t for t lies between t1 and t2 would be given
by this.

So, this is what the gain, so this is the total gain, delta0 1W t1 a is the gain that I have from 0 to
t1, this is from t1 the second term is from t1 to t, similarly if my t2 less than or equal to t 3, then this is
∆0Wt1 +∆t1(Wt2−Wt1) then again I change my position at t2 to ∆t2 Wt −Wt2 .

So, this way you can see that you can extend for each of the intervals if my t lies between this and
this, then this is what is It, which is basically the gain from the trading that, this quantity and if t lies
between say t2 and t 3 and you know you can extend in this way the, you can define for all t between 0
to any value that you are thinking.

(Refer Slide Time: 16:29)

So, in general let us write a general expression, if my tk ≤ t ≤ tk+1 then my It which is you know you
can also remember that this could also be written as I(t). So this is same as this so but we as we said for
simplicity we are writing in this form (see the above pic).

Will be interested to keep in mind as It . So this is what we call the Ito integral of the simple process
∆t .

So, this is what we write it as It =
∫ t

0 ∆udWu is what and this is what we call the Ito integral of the
simple, so what is the you know, meaning of this. So the meaning when we write, this quantity the
meaning for delta u simple process is essentially given by this summation, that is what it is, this is for
the simple integral, that is what we define.

Now, we wanted to make sense of
∫ T

0 ∆udWu but we not just for 1 particular capital T we had defined,
we had defined for all t which lies between 0 and t what is the meaning of is and that is what given by
this expression and if you think of this upper limit of this integral as variable then you would get this is
as a process which is what we call it as this Ito integral process.

(Refer Slide Time: 20:04)
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So, when we look at this is as a process then we can look at its properties now, some of this simple
properties you know, we can you look at from, the simple integrand case, now you already know the W
being Brownian motion is a Martingale. Now you are trading in a in martingale asset, Brownian motion
which is a martingale so you are trading in a martingale asset.

Now, since martingales has no tendency so either rise or fall, if you trade in a martingale asset, what
do you expect the gain, the gain also should be in such a way that it neither rise nor fall. And that is what
the first fact, that we will give that the Ito integral, the definition is here given above that the Ito integral,
is essentially defined by star, is a martingale. So, you keep this summation in mind, this is what the
meaning of this Ito integral for any t that we have. So this is what we keep repeating and hence say this
is what important you need to remember. Now let us look at, how do you prove this, let us do the simple
proves later you know we will going to take the research for granted for unique general Ito integral but
at least the meaning should be clear from the simple cases.

Now, we will assume that s and t, so, they are in different sub intervals otherwise what will happen
the following prove that we make will become simpler, that is the only thing. So which means that what,
(so you know there is this) so which means that there exist tl and tk such that tl ≤ tk and so these 2 are
such that my in s ∈ [tl, tl +1] and t ∈ [tk, tk+1].

Now my It , I can write it in the given form. So this is what the term. There is first, second, third,
fourth term here. So, let us call this as term 1, 2, 3, and four. Now, look at one by one what happens in
this case, so what we have to show,

E[It |Fs] = Is

, this is what we need to show. Now let us look at these four terms that we have here and look at one by
one. We have Fs, and my s belongs to the interval tl to tl+1 and the all the terms which are there inside
the first term, the inside quantities which is there in the first term, there all you would see measurable
with respect to fs, because all of them are time before, time tl and tl is less than or equal to s, so all of
them are Fs measurable.

(Refer Slide Time: 25:59)
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So basically, what we have, so all the qualities we want, this is fs measurable, so, which means when
I take this conditional expectation that is what you are observing. Now for 2, if I take the conditional
expectation, so this is basically we have to take these 2 quantities, so we will take the conditional
expectation so fs is measurable, so basically now if I take the conditional expectation of the terms 1
given fs would turn out to be the complete terms 1, so that is what you know we have here.

The 1 that we have that is, whatever you do like with regard to the conditional expectation of that
given fs because this 1 is fs measurable, so whatever you have it will come to, as for the second term is
concerned, you can see that. Now you can see out of this terms your Wtl is Fs measurable, so you can
take that out. And you can take the expectation inside and you see Wtl is again Fs measurable whereas
this quantity is not Fs measurable so it will remain as it is, E(Wtl+1 |Fs)−Wtl so this is what we have.
Finally we get ∆t(Ws−Wts)

(Refer Slide Time: 28:37)

Now, you can easily observe that from this 1 and 2 terms, we see that immediately this E[It |Fs] = Is.
Now, you can immediately see this is true, so will then have this as the result which is what we wanted
but this would be true only if the other two terms that we have here, if they are 0 when you take E[It |Fs]
the third term and fourth term must be 0 then only this is true. So let us see how third term and fourth
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term are 0. Now for 3, for the third term, what you can do, you can just pick up one of the terms and
take the conditional expectation and since when you take conditional expectation of the sum the sum of
the conditional expectation by linearity property, so the sum would follow.

Now, for the third term consider the 1 term, which is ∆t j(Wt j+1 −Wt j), given Fs, this is one of the
term, remember here we have, my t j ≥ t j+1 ≥ s, so that you need to remember.

So this is basically what we are using we are using the tower property of the conditional expectation
or the iterate conditioning property of the conditional expectation, where Ft j would be greater than or
larger sigma field then fs, so this is what we are having. Now if I, if I take the inner quantity alone, ∆t j is
Ft j measurable I can take that out and I can apply the previous idea that how exactly we used it, so this
will be ∆t j and this quantity would be finally E[∆t j(Wt j −Wt j)|Fs] = 0.

(Refer Slide Time: 32:35)

So, this implies 3 for 3 the expectation of the terms 3 given Fs would be 0 and similarly for 4 exactly
the same argument you know you would see 4 given Fs would also be equal to 0 and hence the proof
that It is a martingale.

This is the first result, because now we know that this is a martingale andI0 = 0 implies E(It) =
0 ∀t ≥ 0. Then variants of this process It, you would then nothing but this quantity. so, what is this
quantity equal to, is what then we are going to see next.

Which is called as ITO isometric property, so what we have here, exp

E[I2
t ] = E

∫ t

0
δ

2
u du

So, this is what the second result, which is giving exactly the variants of this Ito integral process. Since
mean is 0 and this is variance. This is what then we are looking at it that we have. Now again, this
idea of the proof will be along similar line as the earlier 1 to simplify you know proof notations to the
simplify the notations we will use

D j =Wt j+1−Wt j

Dk =Wt −Wtk

(Refer Slide Time: 35:32)
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So that, what we can write

It =
t

∑
j=0

∆t j D j

We can write now what is this I2
t . Now, what we want to compute the expectation of this, so expectation

of this is what we wanted and the expectation of this one, so these terms are going to be 0. You can
easily see, note, that expectation of ∆t i, ∆t j DiD j if I look at it, so out of this ∆ti , ∆t j Di are Ft j measurable
and while the Brownian motion increment D j is independent of Ft j . So that gives us that this is equal to
essentially ∆ti∆t j Di times E(D j) is going to be 0. So this is 0, so (all the you know) this complete (this
whole) term will be equal to 0.

Now we get

EI2
t = E

∫ t

0
δ

2
u du

(Refer Slide Time: 40:51)

So, we now turn to the third result, which is important also is that the quadratic variation of accu-
mulated up to t by the Ito integral but the Ito integral is given by this I of t again this is a process we will
just write it in this manner

∫ t
0 δ 2

u du.
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Now finally you see that see in case of simple Brownian motion you saw the quadratic variation is
also t and variance also t but here you see the difference that you know the variance is expectation of
this quantity variance co-integration is this because it is vary from path to path, so this quantity also will
vary from path to path. like if you take a larger position ∆u along one particular path this quantity will be
larger, if you take smaller values of ∆u along another sample path then this quantity going to be smaller
whereas our variance is an expected measure, which is going to be a constant.

So, here really you see that this is what happening. So, this again we can compute the quadratic
variation accumulated. So this proof-idea, I mean we just give an idea about the proof. So basically take
you know t j an interval sub interval [t j, t j+1] on which my ∆u is constant , in that it is a constant. Now
you choose a partition point a t j = s0 < s1 < ...,sm = t j+1. Now consider this some, i s i plus 1 minus i s
i and then it is square, which will turn out to be the constant, which is written above (see the pic).

Now as the usual limiting process which means as the norm of this partition of this sub interval
tending to 0 that means as m infinity and the norm of this partition tending to 0 this quantity, so specially
as for example if you look at this quantity, this converges to as norm of this partition tending to 0. That
is m times infinity and the norm of partition to 0, this quadratic converges to the quadratic variation of
this W in this interval which is again (t j+1− t j). This is what you would see.

(Refer Slide Time: 44:48)

So, what we see is that the quadratic variation in the sub interval, is essentially quadratic variation in
the sub interval is ∆2

t (t j+1− t j), which you can write it as
∫ t j+1

t j ∆2
udu. Now for full [0,T ], you get it sum

these quantities.
So, that is the idea how the proof that you know you will get, so for once you find this for the sub

interval then you will get, so where the overall quadratic equation which proves the result. So finally
what you have seen is that the three basic properties of the Ito interval which is martingale property, Ito
isometric property and the quadratic ration property of what you have seen.

(Refer Slide Time: 45:55)
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So now, recall that earlier the bread and butter expressions for the quadratic variation, informal way
of writing is this. So this is what we write informally to mean this. Remember this is informal way,
this is our square bracket formal way of writing this. Now, the Ito integral, which is this ∆udWu can be
written as informal way as

dIt = ∆tdWt

Now, what we write for the quadratic variation of I we can take this quantity which is essentially

dItdIt = ∆
2
t dWtdWt = ∆

2
t dt

This is what the meaning that you know Ito integral accumulates quadratic variation at the rate ∆t square
per unit of time. So, the data of accumulation is what it is, this what is the previous result you would
have you know in the pen and paper calculation to easily understand and see what is this quantity, you
can also look at in this manner. now for the notation which you know we will be using this pen and paper
calculation, this kind of differential formula then the integral form, so we can see that this notation as
we wrote earlier this is It =

∫ t
0 ∆udWu and dIt = ∆tdWt .

They mean almost the same thing but the first has a precise meaning, the second one does not have
a precise meaning it is just that, but second one is more intuitive what is happening to I, which means
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the change in I can be given in terms of ∆t times the change in W, so it has that informal meaning of
what happens whereas it says definition is given by as in the first one, that is what and second one has
an imprecise meaning as we just described.

It also has a precise meaning, which one obtains by integrating this differential over you know both
side over and integral and put an integral put in a constant, so it is basically It = I0 +

∫ t
0 ∆udWu ,so this is

basically is the differential form and this will be called as the integral form. The difference between the
first one and the third one is that you know you have a constant I0 generally constant here and then here
it is I0 is assumed to be 0.

So, you can write the differential form in this means with the assumption that I0 = 0 then it becomes
the second one but then the second one for any generic one has the meaning, I mean the integral form
is given here, so these are differential form and integral form whenever we have a process we describe
in terms of the differential form we can also we should also understand that the corresponding or the
precise meaning is in terms of the integral form that we have in the third quantity here in to this case. So
this, what is all about the data integral for simple integrand,

(Refer Slide Time: 50:25)

Now, let us define the Ito integral for general integrands. So, what we have, is now a general
integrand but we need to put some condition, so what is the condition that we assume that we will follow
through out, is essentially you know we have a general integrand is adapted. That is clear, adapted to this
Ft just like the simple integrand case and we also assume what we call the square integrability condition.

This is

E[
∫ T

0
∆

2dt]< ∞.

This is what is square integrability condition, in fact one can define it into integral with respect to
you know a condition, which is weaker than this, that is without this expectation but in that case the
expectation is not guaranteed to be a martingale and since in our things we consider only such cases in
our case, all Ito integrals will be martingales so that the required integrability condition be imposed.

So, this is what the square integrability condition of for this process that we have here. Now how do
we (you know) get for a general integrand the Ito integral. So, what we do is that we approximate this
given ∆t by a simple process and then we make this approximation finer and finer at the maximal step
size of the partition approaches 0 the approximated integral will be better approximation in some sense.

So essentially, what we are looking at if I depict graphically in a simple manner, so what I have is
this, the given process could be something like this. so it is coming up to that point and then form here
then again it goes like this. Now this is the general ∆t , now how does this simple process will look like,
suppose the simple process might you know up to this might come.
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So this is my first partition point and at this point it will take this particular value and it will continue
up to certain point and at this point again, suppose if this is my second point t2, at this point it is starting
from here. It will take up to say this value and this is my t3 and this is my t1 and at this point then this
will be equal to this and at this point say this is my t4, it is this value it will be equal to this. This dotted
lines says what is this simple integrand, this straight line is what the general integrand. We will try to
take such approximation and then we take this approximation make bit finer and finer.

(Refer Slide Time: 53:59)

So it is basically, so it is possible in general to choose a sequence {∆n(t)} of simple processes, such
that as n→ ∞ the, these processes (the simple processes) converge to ∆t , in the sense that limit enter in
to

lim
n→∞

E[
∫ T

0
|∆n(t)−∆(t)|2dt] = 0

So, this is what we mean when we say things converge.
Now, since each of this, this are all simple process, for each one of this we can define

∫ t
0 δn(w)dwu,

so this can be defined, so this can be defined as earlier. Now for each simple process this can be defined,
then we define the Ito integral of the general process to be the limit we define the Ito integral to be∫ t

0 δn(w)dwu for each of this simple process δn you can compute the quantity and the limit of that enters
the infinity is what then define to be the Ito integral of the general quantity that we have here.

(Refer Slide Time: 56:45)
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Now, let us look at its properties, the Ito integrals general properties, so we have you know a positive
constant I mean an interval, so 0 to t is what you are looking at it and you have an adapted process.

And you define, you define It as above as a limit of Ito integrals of simple integrands then the
properties are
a) the first one is continuity property which says the following, as a function of the upper limit of
integration t, the paths of It or continuous, essentially meaning that this It has continuous paths,
b) adaptivity which means that for each t It is Ft measurable,
c) Third property is linearity.
d) The martingale property.

Then, this is, in fact you can see with respect to the simple integrand these are also true, then the
properties that we prove for simple integrands and which is inherited by this limiting process, this is a
martingale.

(Refer Slide Time: 60:08)

e) Ito isometry, the Ito isometric property
f) quadratic variation, which is,

[I, I]t =
∫ t

0
∆

2
udu
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So all these are properties of this Ito integral which we will use elsewhere too and this properties of
course now martingale I say isometric quadratic variation property we are going to prove at but this is
what would be the case.

(Refer Slide Time: 60:58)

Let us take a simple example to understand to close the discussion this so what we can do is look
at is

∫ t
0 WtdWt is what then we wanted to do. So what is this quantity is and from where this is coming,

now this you can define or this one, so what is we have to do, how do we have to compute if we have to
apply the basic principles that we have to define this quantity by in terms of limit of integrals of some
simple integrands which approximates Wt .

So what is the approximation, the approximation here (see the pic).
So, if I take this to be the case, this to be the approximating the simple integrands then we can write

this as
∫ t

0 WtdWt . The next steps shown in the pic.
(Refer Slide Time: 65:03)

Now, one can you know by simple algebraic manipulations one can show that the quantity
∫ t

0 WtdWt .
So, what you can do is that you can consider the quantity in the right hand side this summation and

you try to express this in terms of some algebraic manipulation, if you do you can show that this quantity
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is equal to this. Now if you let the limit tends to because this quantity now you have said that this is
equal to this, to the right hand side.

Now, this right hand side quantity, you can see that this tends to (1/2)W 2
T − (1/2)[W,W ]T as n tends

to infinity. This is equal to again (1/2)W 2
T − (1/2)T . So

∫ T
0 WtdWt = (1/2)W 2

T − (1/2)T.
Now, contrast this with your ordinary calculus where this W suppose for some function g which is

differentiable function with g(0) = 0 you will see that this will be only the first term on the right hand
side is what then you would get. And the second term is from where this is coming. it is because of
the positive quadratic variation that the Brownian motion process have and as you see there is (1/2)T is
essentially is coming from the quadratic variation of this W.

(Refer Slide Time: 68:23)

So that is what gives rise to this term, And this is you know true for the case when you have the
integrals defined in the Ito s way, so this is basically due to quadratic variation, if this not the case, the
ordinary calculus where WT , I mean generally if you take to be differentiable function then you will see∫ T

0 g(t)dg(t) = (1/2)g2(t) that is what you would get. But here this minus half term T is essentially this
coming from the quadratic variation term, alright.
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So since this the upper limit can be arbitrary so we can define or we can write this
∫ t

0 WdWu to be
half of (1/2)(W 2

t − t)
So to make this case then you are actually E[W 2

t ] = t and this is what the case, so these is an example
that you can see which comes and this is what the difference between the ordinary calculus and stochastic
calculus that the quadratic variation of the Brownian motion plays a crucial role in determining what is
this quantities are equal whereas this might vanish.

This is true only with the split Ito integral where you know are evaluating the for a function at the
left most point otherwise you know this half minus half times t might not appear, which is not true for in
general for stochastic integral but it is true for an Ito integral that what we have it here. So this is what
all about the Ito integral and its properties and when we the next lecture you know we will talk about the
Ito’s formula. Thank you, bye.
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