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So, before we actually define one can straight away start with defining and then looking at its prop-
erties because that is what we need as we go ahead for you seeing in stochastic calculus as well as, as a
modeling for financial asset prices. So let us see how this browning, why this particular thing Brownian
motion came into Πcture. So this, the intuition behind is what we will try to give and so that is also,
I mean from another angle, if you look at it, it also show that such a stochastic process exists. Now to
give this intuition, let us consider and go back to our binomial asset-pricing model where what we did.
So, we consider a binominal sub pricing model wherein the risky asset follows a sort of a binomial tree
as time progresses. So that is what to be keep in mind, you recall.

We will now see that if you scale that binomial model in a particular way, then you are going to end
up with a model, in which involves the Brownian motion, so and hence we will be able to relate these by
binominal model to the geometric Brownian motion model, which we are going to use it as the model
for the asset prices in continuous time finance.

So, let us see how this comes. Now the case that we consider is basically r = 0 but r > 0 can also be
done in a similar way. For simplicity we just take the case r = 0. And what we do, you Πck an interval,
say 0 to t and choose an integer and construct your binomial model for stock prices that takes n steps
per unit time, so, recall binominal model we set time 0 time 1 time 2. So, now what we are going to do
either between 0 and 1, we are going to have n time points and each of this would now become the new
time points.

As if you look at the original binomial model. And we are going to increase this number of steps
in the to the limit so that you know we are looking at the stock prices at every time point on the time
access rather than it is 0,1 and so on. So how do we make this continuous time analog is that you divide



stop looking at 0 and 1, you look at 0 half and 1, 0 and 0.1. 0.2, 0.3, 0.4 and 1 and then you keep on
increasing the number of points. Then you get to the limit, the continuous time code, so that is way, we
approached any modeling from discrete to continuous when we make a movement.

So, that is precisely what we will do. So now what we could consider, we could consider an up
factor for which we would make it as a dependent on n,

un = 1+(σ/
√

n)

and the down factor
dn = 1− (σ/

√
n)

and r we have already assumed to be 0. So, this satisfies the no arbitrage condition for the binomial
model. Now, once we are given this, then the risk neutral probabilities, p̃ = 1+r−dn

un−dn
= 1/2 So that,

implies, my q̃ = 1− (1/2) = 1/2.
Now, recall the asset price in a binomial model. The asset price time at n is determined in terms of

the initial stock price S0. And the number of up moments and number of down moments in the stocks,
that essentially means the result of first in rn tosses in if it is n period model, now so this n and t, we
also have this additional condition that we Πck nt to be an integer. So, if not anyway there is nothing is
going to be lost but this for convenient that we Πcked in this way.

So, we will take far easy understanding that did the nt to be an integer to be Πck n and t has that
this is true. Now, that has defined few quantities. So let us call so basically if you are looking at t time
unit, 0 to t and each time we need has the n time points, then total number of time units are number of
tosses that you will associate with the such binomial model would be nt number of tosses. So out of
those nt number of tosses, this Hnt defines the number of heads in (nt tosses) nt number of tosses and
equivalently Tnt will be the number of tails. So, what you have

Hnt +Tnt = nt

(Refer Slide Time: 7:13)

This is what the new root end up with this, also let some Mnt to be the differences Hnt−Tnt . One can
also identify the Mnt to be a symmetric random work process. This is you know, observation, which if
you associate with an up moment of unit size one for each of these heads and tails for minus 1, then you
can observe that this is essentially Mnt in general, you can associate a symmetric random work, people
who do not know what this is, it is another simple stochastic process but we do not need that as such,
but we just need this to be some quantity this.

Then, I can see by solving these two equations, I can write my Hnt I can write in terms of nt plus
Mnt and Tnt to be half nt minus Mnt . Now, if I look at the stock price, which we write in general, Snt to
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be s at 0 and un to the power Hnt , dn to the power Tnt . So this is initial price multiplied by the un to
the power number of heads and our up moments and dn the number of down moments multiplied this is
what would be the stock price.

Now un, vn I know Hnt we know, so we can express this as s0 times 1 plus sigma over root n to the
power half nt plus Mnt and 1 minus sigma over root n half nt minus in Mnt . Now the question is, like, if
you want to look at the limiting cases of this stock prices as n terms infinity, we were looking at what is
this quantity is going to be as and n tends to infinity. So, that is what the case here.

Now, for this to look at what is Snt as n tends to infinity, you got the question. Now to get the answer,
so we need a result from probability the theory, which we already said about the n central limit theorem
and CLT for this case with appropriately defined a Mnt that is the following. You fix t now as n tends
to infinity the distribution of 1 over root n, Mnt . So the remember this we are looking at it as if we
are assigning an addition to this process, having 1 for every up moment and minus 1 for every down
moment. Then you are now scaling it to this. That is what we are looking at it.

So, it is called the scaled symmetric random work in this particular case, so the distribution of this,
which is a scaled symmetric random work converges to the normal distribution or Gaussian distribution,
whichever way you go with mean 0 and variance t. So this is what the central limit theorem, a specialized
to this particular sequence of a random variables that we have here a Mnt . So, I mean, you are taking it
that this is what is happening of what appropriately defined Mnt , whichever way you will look at it. So
this is the result that here.

(Refer Slide Time: 12:28)

Now, if you use this result, if you use this result then we have the, the result for questioning that what
happened to this Snt as n tends to infinity is the following. Now as n tends to infinity, so the distribution
of Snt , (Snt as given above,) converges to the distribution of S of t, which is

S(t) = S0exp{σW (t)− (1/2)σ2t}.

where this W (t) is normal random variable with mean 0 and variance t. (So this is what we can show
and this is what is called as the) that means that St is what we say is log normally distributed, so then the
limit, what we get is that the distribution, (this distribution limit) distribution of this convergence to the
distribution of this St .

Now this St is given by this expression, which is in terms of this w where w is normal, so anything
of this form is what is called the log normal. If you want to see generally, so any random variable after
form, some ceX , where c constant and x normal random variable is Log normal which means this y in
this form. So if I take my log of y, that will be, given x, so x is normal. So log of y is normal and hence
y is log normal that is how you know we look at here. So in this particular case, the quantity in the
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exponent, the σW (t)− (1/2)σ2t. This is a normal distribution with mean this and variance as described
above. So will use this notation to denote some random variables, which is distributed as normal. The
first quantity would be mean. The second quantity would be the variance of the normal random variable.

Now, while going forward so we will need some properties because now this normal t as come this
W (t) is the normal and W (t) is what is going to be the Brownian motion component that we have. And
this is what we call it as the xe to the power something. This is what is called as geometric Brownian
motion. So, St is given by a geometry Brownian motion is what our continuous time model would be.
Now while working with that so we need again some note, so what we call this mgf of normal random
variable which convenient in many places in our calculation that we will use. So lets us give it us as an
expression. If x follows normal with mean µ and variance σ2, then the mgf of X , which we call it as the
MX(t), which is equal to E(etX). This is one of the you know, important expectations formulas that we
might use and plus (1/2)σ2t2 for all t and r, is what an mgf may not exist as we know.

And in this particular case, the mgf will exist for all t. So this is what it is. You know, what is the
meaning of mgf that it is if x presents a power series in terms of t square, the coefficient of the I can
obtained the moments of this particular random variable. So this expression, for any random variable X
with normal µ-σ2 square, the E(etX)is equal to this expression. This expression, we may use it multiple
times in many situations. So let us give it as this. So now you see this wt that they are getting as the limit
of this SMt is what basically to be our Brownian motion.

(Refer Slide Time: 18:45)

So, its properties also again from this risk random work place like properties also it inherits and
those properties defined Brownian motion. So now le us precisely define what we call, A Brownian
motion or another name is wiener process, though it is Robert Brown who observed this process and
discovered as stated by Einstein. It was Wiener, who gave or derived the mathematical properties. So
it is also equivalent called as Wiener process or Brownian motion both would mean as we are as far we
are concerned one and the same.

Now, what did this process, so let us precisely define. So like any random process that you have
so you have n underlying probability space on which the random variables are defined how stochastic
process which we call w(t) here with values in r which means the state space is r, is a Brownian motion,
shortly we may call it as in short by bm. If it satisfies these 4 conditions that we are going to list.

a) W (0) = 0 a.s. W at 0 is 0 almost you listens even if you do not write almost you listen, it would
be so fine if you understand what this means. It is also that little bit, probability one this is true.

b) Now the sample paths, which is as a function of t. If I look at this process or continuous, almost
surely again.

c) for any time points that you Πck here, the increments, so, the following are, what we call it as the
increments of the process over the sub interval, which means the state change process, in the sub interval
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points, is what then call the increments. So these are independent. So we know when we say some n
random variables are independent, it is precisely that quantity.

d) last property for any 0 ≤ s ≤ t, The increment, which is W (t)−W (s) has normal distribution
with mean 0 and variance t− s. So this essentially means that if I take increments in this process, the
increments would also be what we call stationary increments, in only it depends at the length of the
interval, not on where you place this in interval s to t.

(Refer Slide Time: 24:11)

Now, (if I look at) actually we talked about sample paths, so if I look at a tyΠcal sample path, so
where in the x axis I have t and then the y axis I have W (t) (so I not yet used so these things). it is w of t
it should start at 0. So, let me start with 0 and it will at each time point it will go up or down, but tyΠcal
process, you know if we look at it, will have these kind of behaviors, is what then you would observe.

So, these oscillations that you know it can be a little bit more into this form also, so this is how it
will look like into the tyΠcal sample path. So, this is what we call the sample path is many as time goes,
what the realization before time t you know it is random but when it comes to time t, then you know
what is the value of the process and hence you have this realization, other sample paths that you have
here.

Now this definition also gives us the various quantities that you can compute with respect to this
Brownian motion. If you are interested in those, say for example, if I look at W at 0.05, if you want to
look at its distribution, you can see that it is 0.25 is the variable. Suppose if, I look at W (7)−W (3), I
know that this is distributed as normal 0 and with variance 4, (so this is what) and any calculation with
respect to this W since you know it is normal distributor say bias down to the calculations connected
with the normal distribution as far as the distribution properties, probabilities with respect to Brownian
motion is concerned.

If you want to know what are the probability that at time 2, say for example, this quantity suppose if
I want to see a W5 is greater than 5, suppose how do it compute because I know its distribution so I can
compute these probabilities and so on. So all these calculations you can do (with respect to) by using
the normal properties that you here.

Now for our convenience and the ease of use a little later. So we can also have and equivalent way
of defining our equivalent in terms of characterization. It is not equivalent characterization really it is
characterization. So it is also equal and to that definition characterization and in this path a and b remains
true. Now the c and d could be replaced by the following because the increments or say W (t1)−W (t0))
and so on, W (tm)−W (tm−1) are independent and normal, this implies that this quantity that random
variables, which are Wt1, W (t2) and so on W (tm) now these are independent and normal.

Now you can see Wt1 the same as this.Wt2 If I have to add, I can express this in terms of the first
2 in those a previous line that we have written as the increments. So you can express it as a linear
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combination of these independent normal. (So this will be) these are then jointly normally distributed
and this vector w which is essentially Wt1 and so on,Wtm has 0 vector because each of the random
variable has 0 mean as its mean vector.

(Refer Slide Time: 29:24)

Now, we only need to know the variance covariance metrics, for which we just compute, you Πck
s ≤ t and look at covariance of these two quantities. W at s and W at t, which is because mean, is 0. It
bias down to this quantity because this is what is now the covariance because means are 0. (Now this
you can write it as). So, these are not independent and so on. So you cannot, you really have to evaluate,
but in a convenient way you can write this as ws and wt minus ws plus w square s.

So what I do, add and subtract ws to this wt and then leave this. Now since expectation operation is
linear, I can separate this and the first quantity if I look at it, this two, so this and this are independent.
So this means that I can write this quantity as expectation of ws into expectation of wt minus expectation
ws plus expectation of the ws square is again, because w expectation ws is 0. This is nothing but the
variance of this. So which is essentially variance of ws and these quantities are 0. So this quantity is s,
so this is s. Hence, for s≤ tt

Cov(W (s),W (t)) = s

Which means the minimum if for arbitrary s and t, Cov(W (s),W (t)) = min{s, t}. So, if I use that now
by variance covariance metrics, which is recall c as per the earlier, so this is nothing but the matrix
described above.

So, which means that what is the equivalent characterization now without writing a and b remain
which means process starting at 0, process has continuous paths we have, instead of saying that the
increments are independent and the stationary and it has now distributed. You can say that these par-
ticular random variables, this set of random variables are this vector W has 0 mean vector and variance
covariance metrics as given by this C, then that process is a Brownian motion process. This is equivalent
characterization which we might use in some places.

Of course, we may have some more equivalent characterization which will come will later depending
upon the other property. But this interchangeably one can use, if you want to prove some processes
Brownian motion, either you can use the basic definition or this equivalent characterization. In the same
way, any other equivalent characterization if it is there that can also be used to prove that this process is
Brownian motion.

(Refer Slide Time: 33:29)
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Now, connected with this Brownian motion, as we go along, we will also need another concept,
which is called the filtration for Brownian motion. So, this is slightly different from the general filtration
that we talk about. In a moment you will see what is it. So you have w of t, which is a Brownian motion,
which is a defined on some probability space. Now a filtration for Brownian motion is a collection of
sigma fields say Ft , for t ≥ 0 and that satisfies 3 properties.

A) the first one is called information accumulation the usual first condition that you require here,
which is for 0 ≤ s ≤ t, every set in F(s) is in F(t), which means that at time s and time t if you look at
this as information, then the time t information is at least as much as what you had at the information at
time s. nothing is lost from when you move from s to t, information only accumulates.

B) The second is adaptivity, which means that what, for each t, W (t) is not yet measurable, which
means the information in Ft is such that we can determine what is the value of the process at time t, so
that is one W (t) is Ft measurable (this is also should be this notation).

C) Independence of future increment property. That means what, you Πck you know, t and u such
that it is greater than t. Then the increment, which is W (u)−W (t) is independent of f of t, means the
information in the filtration and information especially a time t the sigma field, which is the Ft should
give no clue about any future value of the process w, which is the Brownian motion. So which means
this increment should be independent of this ft.

So, in the normal, in general, filtration only partly you might call simply as filtration. But whenever
we say a filtration for Brownian motion means that it is connected with a Brownian motion in some way
or other, then that means these three properties would be satisfied. That is what you call a Brownian
motion a filtration for a Brownian motion.

(Refer Slide Time: 38:06)

7



Now, if I Πck any, a random process, ∆t and if I say that that process is adapted to this filtration,
which means that process is measurable with the respect Ft . So that is also true with whatever you
have it here. Now how do we construct such a filtration? There are two possibilities, which normally
happens. One is, you know, you take this at a time are this filtration to be the filtration generated by the
process itself. Where you know what we mean when we say F(t) of W , we call the Ft is the sigma field
generated by some ws this collection, this is what we have.

So, this means that the filtration has exactly the same information as that of the one that you might
have by absorbing the Brownian motion up to time t. In this case we say that the filtration is generated
by the Brownian motion, so this is FW (t) is nothing but the filtration, generated by the Brownian motion
is what then you have it here.

Or the second case could be you could have F a general filtration with these properties. Something
like, you know, the filtration could be not just W,X ,Y and so on. So many processes are also might be
there to generate this, but they should satisfy the condition that we have, which means that this filtration,
when we take this as a filtration for w the additional quantities that you know you have here, that this
x, y and these things again should give no clue about the future behavior of this w then only this will
become filtration.

So this filtration could be simply generated by W or more than one or more of the processes apart
from w also can generate such a process, but what you have to keep that in mind you the additional
process that you are using in general while having this Brownian motion for the filtration, for this
Brownian motion, again should not give a clue about the future behavior of this w that is what you
know, one is the keep it this case.

(Refer Slide Time: 44:15)
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Now once we have the definitions, then we look at certain properties of this, Brownian motion and
especially the two properties or other three properties have this Brownian motion which are important
one is the martingale property, the other is the path properties which we had a glance as in the quadratic
variation property, third is the Markov property.

Now let us take first case as the martingale property or martingales connected with this. The result
is that the Brownian motion is a martingale. So the Brownian motion means, like what we have used so
far is what this part is essentially. Now, let what you have to prove, so you have to prove, if you Πck
these quantities be given, then the Martingale property, then you have E(W (t)|Fs), again, you see when
you look at this, W (t) is in neither measurable with respect to Fs nor independent of Fs.

So really you have to evaluate this so what you can do, you can add and subtract something as some
up manipulations you can do so that you know, you can use the properties of conditional expectation to
simplify this process. So, what we do is, you subtract and add given Fs now so this quantity you can see
is independent.

First of all, you can use the linearly property to extract this as the two conditional expectations some
of two condition expectation. The second property that you would use is that this W (t)−W (s) is rather,
you know, independent of Fs and W (s) is Fs measurable. So you will use all the properties to end up
with simply thing, this is independent of that. So this is simply wt minus ws plus this is measurable. So
this is W (s) and this quantity is 0. So we end up with ws. So this is true for arbitrary s and t.

So, what is the property that we have shown. This is the Brownian motion, sorry martingale property
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or Brownian motion is a martingale property. Of course, for martingale, other properties are there, which
are you know the things who takes pay extract and testing. So you have this filtration and everything so
the other conditions are to be satisfied, only the conditional property we need to verify, which we have
verified and which we have seen that this is true. So Brownian motion is a martingale. So what we have
here. By the way, before we go further, there are notes. So, the Brownian motion that we consider is
sometimes also called as (inconveniently) standard Brownian motion.

So, that is what we mean whenever we say simply Brownian motion without getting objective. Of
course this essentially mean it contained with the standard normally in some sense 0 1 instead of that, if
I put some other then I am going to get a shifted and scaled Brownian motion or with drift or in other
cases that you see so that whenever we call, will call that specifically. The other thing is the standard
Brownian motion.

The other thing is a notation wise, again, you know we will use from the further you know for this
lecture purpose alone. So Wt will be denoted by w, I use subscript t for ease, there is nothing else other
than this but it is actually, it should be mean that this, so that you remember you know, little neat when
we are writing this. That is only reason we are doing this other than that, there is nothing.

Now the simple Brownian motion, a simple standard Brownian motion is a martingale that we are
shown and there are two other martingale get connected with this, which importance to us. Another one
so this is a martingale 2 is what W 2

t − t. This process is a martingale.
Now, if you apply your, this property, then you will be able to show that immediately this is a

martingale. The other martingale, which is martingale 3, which is also known as exponential martingale,
a form of this is already you have seen earlier. This is 1 martingale, the other martingale is exponential
martingale is basically if I pick a constant σ , if I look at this process eσWt−(1/2)σ2t e to the power sigma
of wt minus half sigma square t, if I look at this, this is a martingale.

Now you see this whenever in you want to show this martingale property, this will be independent
of Fs, this is Fs measurable you can pick it up and then this will become simple expectation eσ of this,
which again you can use the MGF of a normal 0 t minus s random variable. We have already seen
and use that expression then you will be able to show that this is a martingale too. So this experiential
martingale also will play a crucial role in the analysis which when you go forward. So this is what is the
first group of property which we call the martingale properties.

(Refer Slide Time: 49:26)

And now the go will go to the second group of properties, which we will call the sample path look
at this sample paths. For any stochastic process the sample paths means a realization, what you have
actually observed. Now for this, now let us look at the properties for which we start with a simple
definition, which we call the variation or the first order variation. simply sometimes it is called as simple
variation, but in this particular case we really mean the first order variation of a function say f, (which

10



we are defining in) is defined to be because this has some first order variation of the function in 0 to t of
the function fs, limit tends to 0 of J is equal to some n minus 1, | f (t j+1)− f (t j)|, where this Π means
this partition of this in trouble and this actually speaking like instead of this limit none of Π tends to 0.
One should say that it limsup but anyway for the some should be the exact things so which we can still
take lim here and then we can describe it rather than making it a little easier that is it.

Now, this is what we defined to be the variation. Now if we imagine what this tells me is, that if
you look at here you are having interval 0 to t you are partitioning this interval into some endpoints
or end sub intervals and in each of these sub interval you are actually looking at the absolute value of
the change in the function value, which means how much the function has moved, so you are making
absolute value not up moment alone or down moment alone or you are neither subtracting.

You are just adding the changes that happens in the function. Now as you increase the number of
partitions where the normal partition means that the maximum length of this, any of this sub interval
tending to 0. This norm of Π means exactly that as we seen earlier. So as you know, you increase the
number of points more and more. So, it is really going to evaluate the function, looking at the function
and it is how much this has you know made moments the amount of moments that you have, amount of
variations of f during [0,T ] is what this variation function we will give.

Now, you can note easily that, if the function is such that the derivative exists then by MVT which
you would have observed in ordinary calculus theory. That is the mean value theorem, by using the
mean value theorem, you can see that this particular variation can also be j0 to n−1 this could be written
as some | f ′(t∗j )|(t j+1− t j), star is a point in the sub interval [t j, t j+1]. This essentially in the limit, this
will be equal to, because this exists to so this will be equal to f ′(t)dt is what then you get so where, this
belonging to [t j, t j+1]. This is what you would see. Say essentially first order variation is nothing but
this quantity is what the you can observe.

(Refer Slide Time: 54:19)

Now, (there is another) this is the first order variation and similar to that you can also define, what
we call, a quadratic variation. Let me go to the next page itself. What we call quadratic variation, as
suppose to the first order variation, we also deal with, everything remained the same the function and the
partition and everything. Only thing is the quantity that we defined, is this one. Whatever condition that
we had earlier for first order condition that remain the same, but this quantity now will be given by f of
tj square first order variation, we limit absolute value of this function and the difference in the function,
at the subsequent points in the partition.

Now, we are looking at the square difference. So this is what the quadratic variation. And it can be
shown easily that if f has continuous derivative, which means, in the first case f ′ exist we assume, now
f ′ is also, in addition, continuous, then one can show that this quantity is 0. And this is for functions
that we encounter in the ordinary calculus. Most of the time it so happens that you know the function
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has continuous derivative and the second order variation is a quadratic variation, is the second order
variation, is a quadratic variation 0.

And hence, we really did not bother too much about this quantity, the simple ordinary calculus.
But of course there are also, you know, you would at sometimes want to look at that. But in stochastic
calculus this plays a major role. precisely because what we are going to see next is a property. and that is
because of, that is quadratic variation is important in the case of stochastic calculus because the function
that we have now taken up is the Brownian motion and the Brownian motion, one important property
is the nowhere differentiability property of Brownian motion, which we take without any proof because
the proof is involved.

What we say is the, with probability one the Brownian motion, which is Wt is non-differentiable at
any t ≥ 0. So what this mean is that if I take a path of the Brownian motion, you know we can go back
and see the sample path that we had. We had just this up and down moments, very sharp moments that
we have. So all those sharp points, as you know, like for example, |x|at the 0 is non-differentiable so
because it has a sharp edge. In similar way, these are all have you know, sharp edge paths, path is full
of sharp edges, which make no point of time you know, you will be able to differentiate. That is what
it means, which means that for Brownian path say w of t there is no value of t. We are saying all in the
almost surely since. So for which this is defined.

So, this is done. so, which means the first order variation, second order variation that we have noticed
that f ′ exists here, for Wt that does not exist and then no question of continuous everywhere property
also, So this whole things will break in the ordinary calculus thing. And this will break in this stochastic,
which was there in the ordinary calculus. you break in the main property is this nowhere differentiability
of the Brownian motion paths, which you are taking it granted because the poof is requires a lot of effort
and of course those who are interested you can always look it up any book is not a major issue at all.

(Refer Slide Time: 59:18)
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Now, what is the main research that we have, before we look at the first order property, we look
at the quadratic variation property. That is what the major property of this Brownian motion paths as
a sample path property. Now let w as usual, this is what it is, be a Brownian motion then t for all T
non-negative almost surely.

So, the sense that we talk here is almost surely but you know in a moment you will see like we are
actually not proving this but we are proving something slightly different but this can also be proved using
advanced results stochastic calculus. Now so basically what we want to show is the quadratic variation
process and the quadratic variation of this, is equal to t. Now let us take a partition t0, t1 and so on tn be
a partition of the interval [0,T ] and we also define the sampled with respect to this partition the sampled
quadratic variation for this.

Now, what we want to show, to show QΠ→ T , almost surely. That is what we want to show. Now,
how do we show ? This is basically as tends to 0. this is in the almost surely sense we want to show and
this is tends to 0. Now what we will show, we will show the expectation of QΠ is t and variance of QΠ

is tends to 0 as norm of this tends to 0, which is actually L2 convergence, but a technicality apart.
It can also be shown that this is true. So whenever this convergence takes place there is a subsequent

along which the convergence almost surely and hence, you know it can infer from that. So we will not
worry about that we just show this, you know, we will say this, essentially what we are proving is to L2

convergence. so this is L2 convergence, this is for only technically people oriented, otherwise you do
not worry about that, so you see that it is accumulated in this manner.
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Now first we will show what the E[QΠ] = T . , If you look at it, it is what. so if I take expectation
of that, that means the variance of this. So that means this is 0 to n− 1, the variance of each of these
quantities are all independent. so expectation of this Q is simply this, expectation of this one only we
are not variance that you are liking about. So this expectation of this, which is variance of the increment,
which is t j+1− t j, because you know the length of the interval and if you sum you will get T quickly.

So, there is nothing a great other thing complex to show that this part is true. But for the other part,
which is the variance part, you know first we will look at the one quantity inside the sum, which is
essentially variance of [Wt j+1 −Wt j ]

2. This is what we look at it, so this means, expectation of [Wt j+1 −
Wt j ]

2 minus its mean and the square, is what this quantity. Now you can again expand, expand and write
this as expectation of Wt j plus 1 minus Wt j to the power 4 minus twice t j+1− t j, Wt j plus 1 minus Wt j

to this square plus tj plus 1 minus tj, the square. Now here we we are using an important property for
normal x follows normal 0 sigma square. Your expectation of x to the power 4 is 3 times sigma to the
power 4, this is one of the properties of normal random variable.

If you use that, then you get this as 3 times tj plus 1 minus tj square minus this is again 2 times
this is 1 more time t minus. This is plus so again, I would say that this 2 could to quantities simplified
we will give you this, which ultimately resulted in 2tj plus 1 minus 2tj and if I look at variance of
QΠ as summation j equal to n tends to minus 1 variance of the quantity here because each of them is
independent there is nothing more than the resulting here.

So, this is essentially summation over j twice tj plus 1, (sorry this is square here),tj square. Now
this is less than or equal to, instead of one of this tj minus 1 minus tj, I replaced by norm Π, the rest
remaining, I leave it as it is. So then it will end up with summation twice, norm Π times, tj plus 1 minus
tj, which is again equal to 2 times t and norm Π, which tends to 0 as norm Π tends to 0. So on, hence
we have shown that the quadratic variation of this is true, what is given by this. So this is the proof. We
have shown it in almost L2 convergence but actually this is true in almost surely sense.

(Refer Slide Time: 67:23)
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Now we write this, that what is important. We write this informally in the following form: dw of t,
dw of t is equal to dt, this actually equal to 1 times t is what, and you know you would see that. This is
what you know you use. So this is what is the form that you will write as twt, which essentially means
Brownian motion accumulates quadratic variation at the rate one per unit of time, that is what it means.
Now this quadratic variation is, what is trouble, turn out to be the source of variability, volatility in at the
asset prices driven by the Brownian motion based models. So that’s what will come out to be the case
that we have here.

Now, in the along similar lines, along similar lines, you can also show 2 other quantities. So this is
a quadratic variation of a w with w, which we what we call the further results, or remarks along similar
lines. Similar processes by using, You can also show this quantity of Wt j plus 1 minus Wt j , tj plus 1
minus Wt j equal to 0, which we write informally again, which we write informally in the, in this form
dw t dt equals to 0.

And one more limit to 0 summation, [t j+1− t j]
2 square, which will also turn out to be equal to 0,

which we write informally as this. S,o these are the 3 basic results, basic formulas that we will, again
you can show it in along similar lines that we have seen. I mean this is much easier here because one
of them is a normal function and only w, is that we are encounter here so we can show simply using the
simple properties so these two. So these are the 3 bread and butter formulas that is going to be for all
the pen and paper calculation that we are going to use in the stochastic calculus a quantity that we have.

(Refer Slide Time: 70:21)
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Now, by using this, one can also show by using the quadratic relation property of this w the first order
variation of this Brownian motion is infinite in the almost surely sense. The hint for that is essentially
you look at this Wt j plus 1 minus Wt j sqaure is less than or equal to some maximum of a wt some k plus
1 minus wtk into summation of Wt j plus one minus Wt j .

So, this is k less than or equal to n for all, so you have this n minus 1, so this is what you have.
so this is the hint, you know, they can show that this is the case. Similarly, the higher order variation,
cubic variation or any other higher order variation is 0, for the Brownian motion. First order variation is
infinite and hence only like we are ending up with this quadratic variation being positive and quadratic
variation is positive and for finite interval it is also finite and the cubic variation are any third, fourth and
higher order variations, they are all 0. So these properties we will use later. So we will just mean in this
particular case, this mean as you say is this summation of a Wt j plus 1 minus Wt j . This is absolute value
to the power 3 is 0, that is what we mean when we say it cubic variation is 0.

So, this also leaves us with the result cubic once we have this a quadratic variation property called
as Levy’s characterization of the Brownian motion. So, what is that, so you take a martingale, levy’s
martingale characterization be a martingale relative to a filtration Ft . Now you, assume this process is
also starts at 0 and Mt has continuous paths and this is equal to t for all t. Then Mt is a Brownian motion.
Again, you see M0 = 0, Mt is just here and there also, second and third and fourth properties is replaced
by being martingale and the quadratic variation property that we have here in this case, so this is what
we have with respect to the second group of property.

(Refer Slide Time: 74:17)
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One final group of property that we would see is this Markov property, which we say is the following,
let as usual w to be a Brownian motion and ft be a filtration for the Brownian motion, it not be generated
by Brownian motion itself. It could be any filtration for the Brownian motion.

Then, wt is a Markov process. we can quickly see how this is true and then to show what we have to
show. So proof to show what we have to show is a following, whenever your 0 is less than or equal to
s, less than or equal to t and f a Borel measurable function, there is another Borel measurable function g
such that expectation of f of wt given if fs should be g of ws. So to show that w is Markov, we need to
show only this part.

Now, write this left side quantity E( f (Wt)|Fs). Now you see Wt and Fs, if you see the connection,
it is measurable with respect to Fs nor independent of Fs, but you can write this as E(wt −ws +ws|Fs).
Now if I call this quantity as one random variable, this quantity as another random variable. And you
see the first one is independent of fs. The second one is a you know, measurable with respect to fs, then
you can apply your independence Lemma, many are times that is what you use to show that some paths
of this Markov also to compute the conditional expectation in both cases that is what being used.

So, in this case you can simply use. so what did the relevant g(x) function, the g(x) function is now
for E[ f (Wt −Ws + x)|Fs] = g(Ws), After simplification, you get the quantity here and this is depends
only on Ws and hence this is Markov.

So, we can show that easily. This is a Markov so basically what it means that if it evaluate a function
of Brownian motion at time t given a filtration for the Brownian motion, then what you need to remember
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is only ws and its progress from s to t is what you would require to evaluate this.so that is what to real
implication. So these are the properties that Brownian motion that we will need, we will use in our
further when we go ahead with stochastic calculus. We will see, in the next lecture what the stochastic
plus point. Thank you.

(Refer Slide Time: 78:56)
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