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Hello everyone, welcome to the next lecture. where you know we are going to start the more difficult
part of the course, which involving starting from general probability spaces and other materials, which
we have seen in discrete time, but now we are move to the general one, which is essentially means the
continuous time cases, we are going to encounter, but what we are going to do is that we will just recall
some of the things, which you know and we might state most of the results as only results and without
proof.

But the results are similar to what you might have seen in discrete time, but the proofs are a bit
technical and since our objective is not essentially to master the stochastic calculus part, we will take
the results as given and we will go ahead and we will try to apply those results into the financial field,
which is what our objective is and hence many of the result that we will see in the next maybe about 6
lectures, what you would see is the results that are the required for application into the financial market
models that we are going to deal with okay.

So, this part is what we would consider as stochastic calculus ofcourse one could have a full course
on that itself, but we need it so we will just briefly take that input and then we will go ahead with it
okay. So let us start with the basic idea of general probability spaces, specifically what this means is that
we are considering since we have already considered discrete probability spaces, so what we actually
considering is essentially the infinite probabilities spaces, where, what we try to model is a situation,
wherein the random experiment results in an infinite number of outcomes, rather than being a finite or
countable number of outcomes.

So some would say that it is uncountable infinite, but for us that would be sufficient. So basically,
what we have in mind is this infinite probability spaces (is what we have). For example, if you pick a



random experiment which is of choosing a number from [0,1] is one such experiment that you can think
of. And the other experiment is basically toss since we are so accustom to coin toss experiments. So,
we can say toss a coin infinitely many times okay, so, this is what the two immediate examples that we
can see. Of course, the first one is what we are going to consider for little bit more elaboration, the
second one is long similar line. So, what we have now is suppose if we write down the sample space.
For example, for these two cases, so in this particular case, this omega would be this which you see has
an infinite number of elements in this omega.

And in this case the Ω is set of all ω such that this Ω can be expressed as {ω1,ω2,ω3, ...} just like
in the earlier case where each of these omega i’s are either head or tail right, so this is what you would
represent your that infinite coin toss sequences, it could be a you know infinite sequence of heads and
tails, H and T is what the usual okay, so this is the sample space and we also have on this sample space
a sigma field or a sigma algebra.

Ω = {ω | ω = ω1ω2ω3, ...;ωi ∈ {H,T}}

So, the definition which we have already seen stands true, even in this particular case which is basi-
cally is a non-empty collection of subsets of the sample space omega, which is closed under countable
Union and complementation right, that is what is a sigma field or sigma algebra which we have already
seen. And on which we also define probability measure P, the definition stands again exactly the same
as the previous one, just can recall that it is a mapping from F to [0,1].

And the, if you take you know set is joined, mutually disjoint sets Ai z from omega, then the union of
their probability, probability of their union is some of their probability, which is what we call countable
additivity properties. So this is the probability measure which satisfies this okay. But now, if you recall
in discrete time how we had defined or how we have specified the probability measure on the sigma field
that we consider okay.

What we did is basically we took the elementary events or sample points from the sample and then
we assigned non-negative numbers to that such that they sum to 1 and for any other event a we defined
the probability of that event a to be the sum of the probabilities of the elements in that set finish right,
but the same thing will not work here because you know you would see that for example, if you take
this Ω = [0,1] right, so the sigma field you know you and a typical nature of this (continuity) continuous
probability space or infinity probability spaces are that the each of these sample points carry a probability
of 0, alright.

So, this is all you can recall from your probability theory idea and in such a situation there is no way
that (you know) you can, you will assign probability such that this and then if and also, then if you want
to extend that there is nothing like and uncountable sum, something like that you can talk about it. So,
we must have a different way of assigning probability measure in such situations and so what is done
is rather than assigning probabilities to individual elements the probabilities are assigned to certain sets
and you assume or you ensure right that you know by defining that there are many subsets for which also
the probability get assigned automatically by the properties of the probability measure. Say for example,
right now we will take this simple example of this omega right.
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So, we will take Ω = [0,1] this is our sample space here. Now what we can do is that we can define
probability of closed intervals in [0,1] has given by its length for or a and b, so

P[a,b] = b−a, 0≤ a≤ b≤ 1.

And those of you who are familiar you will also know that this is also called as the Lebesgue measure
right.

Okay, so by defining this there are many subsets of Ω whose probability is determined by this P and
the properties of this probability measure P right. Say for example, if you consider the open intervals for
a, since open intervals can be written as unions of closed intervals right, so you can apply that and then
the limiting continuity property of P would ensure that the open intervals also has the same probability
as right.

So example cases, say probability of (a,b) would also mean, will be assigned a probability of b
minus a, so what you are appealing? We are appealing to the properties of P and then we consider all
possible closed intervals in [0,1] which is what is of the form a to b for arbitrary a and b and then since
you can write this, so you will get this.

Similarly, you would obtain probability of say for example, say some interval, suppose if you take
say [1/2,3/4]∪ [0,1/3] so you would see that this is again you can write it as probability of this first
interval plus the second interval property of P then each one of them can be applied here and then you
can apply in the probabilities here right.

So, this way there are many sets and for which the probabilities of all the, the probabilities gets
assigned automatically okay. But what is this collection, right? What is this collection of sets for which
the probabilities are getting assigned by this process?

(Refer Slide Time: 11:02)
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Okay, (that collection) so what is this collection of events? These are all event connected with
this, so what is collection of events for which the probabilities of gets assigned in this manner? Which
essentially means if I take closed interval a, b all possible closed intervals and I add whatever it is to
make this this collection as a sigma field or sigma algebra that is this collection and this collection is
what called as the Borel sigma field of subsets of [0,1] and it is also denoted as B[0,1] because we
started with the interval [0,1] took the class of all open intervals as generators what we call and formed
the sigma algebra, which is what is called the Borel sigma field, Borel sigma algebra over 0, 1, which is
sometimes written in this form (okay). Now, extending this idea suppose instead of 0, 1 on R, so what
you will have? This is okay you can call it this way or this way, so this is what is the Borel sigma field on
R essentially which is actually Borel sigma field of this. And a set B which is belonging to this is called
a Borel set okay. Now in the whole of thing, so this is the sigma field with which we will be concerned
with because this is what the sigma field with which we can assign probability measures on subsets of
this Borel there are in measure theory those people were aware about measure theoretic idea.

There are non-Borel sets, but that is not of interest to us, so essentially we will be confined ourselves
to when we say a subset of R in the whole course we mean a subset which is a Borel set right, so that is
what anything that is what is we will be concerned with the case okay. Now so this is the collection on
which this P is getting assigned.

Now I mean it is not possible to enumerate all the sets and all the probability measures that we have,
but you know there are singleton is a Borel set, a finite set is a Borel set, countable set is a Borel set and
uncountable in intervals is a Borel set, then open set is a Borel set, closed set is a Borel set, almost all
what you can think about with respect to real experiments all such things will be there in the inside these
Borel sigma fields, so we will be happy to deal with this itself, we will not look beyond this.

Okay, so going forward anything, any subset of R which we talk about is a Borel subset and the
sigma field that we consider over R is the Borel sigma field right that is what you know we will have.
Now, there is I mean as I said you know many things like we will just we call the results and we will be
using it frequently the terminology, so the next terminology that we will going to see.

So, here in continuous probability spaces or infinite probability spaces you have this problem that
you know, somehow if you take the an uncountable set say 0, 1 itself or 0 to half you see that each of
these points have probability 0, but if you put together 0 to half it has probability half, I mean according
to for example this is typical example that we have considered just now. So, this is basically you know
a side kind of little bit uncomfortable some people might feel, but that is the nature of the subject okay.
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So, what we will do is that, we will define such things by you know doing some kind of terminology
right, what we say is that one definition we have a probability space(ω,F,P) as usual and if there is a set
A ∈ F is such that P(A) = 1, then we say that the event A occurs almost surely. So this is the word that
you will be using equivalently in the engineering literature you will also find the usage with probability
1, is what also used equivalently, so this what is the word almost surely, this is one form of.

So, what does that mean? So, which means that probability of A is 1, if there is an event A simply, a
subset of you know omega, which is there in F for which this P(A) = 1, then the event A is set to occur
almost surely or if this A represents some property, then we say that the property holds with probability
one or the probability is true almost surely right, which means what? There are situations in which this
is not true right, but those together carry a probability of 0 (right).

So, if you go back to the previous 0, 1 interval, you know that if you take a set of all (you know)
rational numbers which is countable, so if you take their probabilities it will be 0 right, but that is what
it means, so which means that this is what then you will have if this is true okay. So this is the definition
that you will have with respect to probability.

(Refer Slide Time: 17:34)

The next thing, that we will go is essentially the idea of random variable, we already have seen area
of this random variable, what is that random variable? We have seen X it is a mapping from Ω to R such
that X ∈ B in F for all B ∈ B(R), so this is the general definition where what is this B? B is the Borel
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set. So if this is true, a real valued function on omega such that its inverse image of Borel sets are in F

is what then is a random variable.
Now associated with this you have what we call distribution of X right, distribution of X we define

to be Px(B) which is essentially probability of X belonging to B again B is a Borel set, so this is what we
call it as the probability measure, or I mean this probability distribution of X, this is different from the
distribution function that you might have been aware, but this is probability distribution, so this is also a
probability measure right.

PX is also a probability measure which mean that it satisfy the axioms of probability measure right,
so you can show. These two concepts are different random variable and distribution in finance that you
need to keep this idea in mind, random variables and distributions are two different concepts, the random
variable can have different distributions and there could you know be two random variables which have
the same distribution, so these things you know you have to keep in mind.

One other way, in which the distribution is been represented on which you have been knowing is to
record the distribution of X is the other way or the alternate way is through what you call cumulative
distribution function right, this also records the probability distribution of X and what is that? You have
already, those of you who are familiar recall that this is nothing but this function.

And remember this is nothing but if I write X ≤ x, I can also write this as probability of X belonging
to this quantity right, is what is X . So if you see minus infinity to X is a Borel set, so this is essentially
same as this Px, but we are taking a specific form of B, rather than taking for all Borel sets B as given
here, we take for all X in R which means you extend X, you take only the form minus infinity to X and
keep varying X. So you have one class of sets, this is also will generate the same Borel sigma field that
you have it here okay.

Now, in two special cases in which the distribution can be recorded in more detail is one is this
discrete, which is essentially meaning this is

PX(B) = ∑
i;xi∈B

pi

, for all Borel sets B okay. And what are these pi? These pi is what the collection is what the PMF of
the random variable X.

The other case is essentially PX of say a, to b if I take then this is this quantity for minus infinity
less than a less than equal to b less than infinity. And in this case this is discrete and this is we call
continuous random variable right and this f is what is called the probability density function and this is
what call this p i as the probability mass function which you have seen already in discrete time. So these
are the two cases in which you can record the details, these two special case in which you can record the
distribution function in a much simpler form in more detail.

Of course, there are random variables which has a part discrete and part continuous which are called
mixed random variables and there are random variables which have neither a probability mass function
nor the discrete density function okay. Even in finance you will also like they do have application but that
is much more advanced level. So elementary level what we will be concerned, just like in the discrete
case we assume that there is a PMF, in the case that we are going to consider, we will assume that the
random variable is continuous and it has a PDF and hence the probability measure would be equality
described by the PDF that we maybe have okay.

(Refer Slide Time: 23:28)
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Now once we have these random variables, the next thing that we consider is the expectations right,
we have seen in discrete also after this expectation. Now here, the E(X) okay, so for any random variable
X the

E(X) =
∫

Ω

X(ω)dP(ω)

In discrete, what we have written?

E(X) = ∑
Ω

X(ω)P(ω)

So this is in a way much similar but there it is a countable number of omega, so there was a sum but here
uncountable so this is, okay. But we need to make sense of what is this quantity? I will just come back
in a moment. This definition would make sense provided this exists okay.

So note, I will just write, this makes sense if this is defined in a way okay. Now, what is that we will
see in a moment okay. So, there is a particular case in which this quantity is not defined because this
will not make sense okay. Now, what is this quantity? Okay, so this

∫
Ω

X(ω)dP(ω), is what is called or
we are say writing this expectation of X in terms of this as, the in terms of Lebesgue integral right.

So what we have? So this is a form of Lebesgue integral, now those of you who are familiar with
what is this Lebesgue integral okay can skip this part, I will quickly move to may be another 5 minutes
later, but otherwise you know you can see what we mean by this okay. So, this is X dP in short,
X(ω) dP(ω), is what it is. Now, what is this quantity or how do we define this quantity? That is what
we are going to see and so what is this quantity? Is what that we are going to see.

(Refer Slide Time: 26:18)
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Assume first okay, assume that this whatever the X that we are considering is basically is a non-
negative quantity, for all ω ∈ Ω okay and let this I call it as pi, which is a set of numbers y1,y2, ... be
the set of partition points okay. Where, what we have? Since this non-negative, so, we pick y0 which is
equal to 0 and then the next value is y1, next value is y2 and so on okay.

Now, for each sub interval, which is of the form yk to yk + 1, we set the set Ak to be the collection
of all omega’s, which gives value of this random variable lies between and including the left but not
including the right side, right. So, this is set that we call okay, so this is what we have it here okay. So
now, the Lebesgue integral is what we are talking about, people were familiar with Riemann integral,
which is the ordinary integral, there what we do? How do we compute or how that is defined? You
partition the X-axis which is the domain right and then just like here the partition this is and then you
take the lower Riemann sum or upper Riemann sum or in general Riemann sum. And as the partition
points are getting increased in the limit that lower Riemann sum or upper Riemann sum would converged
to your value that is what you call the Riemann integral or simply integral that is what you will see.

Similar here, here if you look at you know this is what we have and then we are looking at not on the
X-axis the partition but on the Y-axis, the reason is that X is a mapping from Ω to R, this omega could
be any abstract set need not be a subset of R where you can make some altering properties there, so you
can make a nice partition. But since Y-axis is real number, so we make partition Y-axis and then we will
try to compute that is what the Lebesgue integral is right.

(Refer Slide Time: 29:12)
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Now, we define the lower Riemann sum in this particular case with respect to partition the lower
Lebesgue sum:

LS−π =
∞

∑
k=1

P(Ak)

And this converges as the norm of this partition approaches zero and we define the limit right, the
conversion, the quantity which is this limit to be

∫
Ω

X(ω)dP(ω) or simply for simplicity we may always
write in this form okay, so, this is what it is. We are assuming simple cases so there is not much issue,
so we say that this lower Riemann you could again do similar thing like upper or you can use Riemann
sum.

But here if you see you have to pick the yk multiplied by P(Ak) and this quantity converges, okay
this converges as this norm of this partition, what is this norm of this partition mean? The length of the
largest sub-interval of this partition (Y) a pi, which is in terms of this y that you have here, okay. Now,
note that here this could even be infinity right, so this limit or this Lebesgue integral we need not restrict
X, so this sum could even be infinity we do allow okay.

So, this could be infinity also, this quantity right because this non-negative quantity and we are sum-
ming over some non-negative number multiplied by some proportions. Now, this is non-negative, now
for general X, which takes both positive and negative values what we do, first we define two quantities,
which is

X+ = max{X(ω,0)}

X− = min{−X(ω,0)}

Also, observe that
X = X+−X−,

|X |= X++X−

Now, when you can write in this form you can see both X+ plus and X− is a non-negative quantity
and the previous discussion of X being a non-negative and the definition of integral is right.

(Refer Slide Time: 33:01)
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Ω

X+dP(ω)∫
Ω

X−dP(ω)
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Now since we said that this is each one of them can take (you know) the infinity, the value infinity right
and if provided both of them are not infinity you can define this∫

Ω

X(ω)dP(ω) =
∫

Ω

X+dP(ω)−
∫

Ω

X−dP(ω)

provided both quantity in RHS are not infinity, right.
If the first one is finite, the second one is infinity then you can define this to be minus infinity, if

the first one is infinity the second one is finite, then you can define this to be infinity but if both are the
infinity then this is not defined. So this is what we mean when we define expectation of X provided this
defined, we mean that this particular integral is defined for any X.

Now, we have a special name which we will did when which is the case of both are finite, what is
this? If both are finite, then we say that X is integrable and in this case we can observe that

∫
Ω

XdP(ω)
would be finite because in this case |X | = X++X− So, this is what we mean in this case, so this is the
first part.

Now, one more thing which you can, you have to note it down, is essentially instead of taking this
Lebesgue integral over the whole set omega, we often might have to take over some subsets of omega,
some Borel set something A, but you can see that this could be written in terms of the indicator function
that we are aware already, so this is true for all A ∈ F that you know when we mean the Lebesgue
integral over some subset of A, we mean we can also write in this form using the indicator function for
competition.

(Refer Slide Time: 36:12)

And another quantity that you know we will need is what we call the following. The definition
essentially, so you have a function from R to R and if, for every Borel set this set of all x such that my
f (x) belonging to B right is also a Borel set, then f is, what we call Borel measurable okay, so this is
what is the definition that we call.

Now, what are the Borel measurable functions? Normally, what you encounter the simple func-
tion that we always encounter, they are all Borel measurable functions say a continuous function is a
Borel (measurable) function, step function, increasing function or you know these all of them are Borel
measurable function that you normally we encounter.

So, again just like we said that any subset of a throughout we mean a Borel subset, any function of a
real valued function that we are considering will be a Borel measurable function only from now onwards
throughout the course. So, without any time repeating we always mean a function, a real valued function
means a Borel measurable function which is in the sense, which means what? The inversely measures
of Borel sets are Borel sets again right.
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Now, why do we need this is basically when we are defined Lebesgue integrals but how this compares
with the Riemann integral that we already know of okay. The comparison, which is what will help us
in computations of this Lebesgue integral or expectations and we define to be this are whatever you
already know we should also see that whether that is same as this one. So that is if the Riemann integral
say

∫ b
a f (x)dx is defined, then what we can say? f is Borel measurable and the Riemann and Lebesgue

integrals agree means they coincide. But there are situations where these will not agree, but in that case
if the Riemann integral exist, if you put that condition, if the Riemann integral exist and is defined then
this is that f is Borel measurable and the Lebesgue and Riemann integral are one and the same.

So, this gives as a way to (you know) write down the expectation which we defined in terms of,
which we defined in terms of Lebesgue integral to also write in terms of the easier and more much
more convenient form in terms of Riemann integral so that our computations can go with. So, this is
something similar to what you might have seen in the discrete case.

(Refer Slide Time: 40:01)

So, let us quickly see that, so what we have? The result is the following which is after a couple of
steps you know you will obtain this result but since we are not worried about that, so let us take the
result, that is what we have. So X be a random variable on some probability space (Ω,F,P) and let
g be a Borel measurable function on R. Also, suppose, this random variable X has density, which is
essentially means that is PDF, okay f , right X has a density f .

(Refer Slide Time: 41:03)
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Then, so what we are claiming? Then expectation of this quantity is given by

E|g(X)|=
∫ +∞

−∞

|g(x)| f (x)dx

and if this quantity is finite then

E(g(X))
∫ +∞

−∞

g(x) f (x)dx.

But, whenever this is defined which means this is defined right and then if this quantity is finite then
only we define E(g(X)) to be this, which is what is the normal probability course you would have seen
as E(g(X)) is defined or simply expectation of x defined in this case okay. It is also much similar to this
is when x has a density f . Suppose in case of discrete what happens? You just replace this sum by you
know, this integral by the sum, so you get your discrete case what we have defined as the expectation,
this is the case, okay.

(Refer Slide Time: 42:43)

So, once we know about this Lebesgue I mean expectation of x, again we will just recall certain
properties,

• X ≤ Y a.s. then E(X)≤ E(Y ).

• E(αX +Y ) = αE(X)+E(Y )

• If φ is convex then φ(E(X))≤ E(φ(X)) (Jensen Inequality)

We have seen discrete also it is exactly same, it is true here, right. So like this you can list out
property but this property if you apply this definition of Lebesgue integral sense like in this discrete case
this is also follow very quickly. Many other statements that we might write, now we may take it in the
almost surely sense, still the result will be true that is the beauty of this continuous time models that you
might consider, okay.

(Refer Slide Time: 44:31)
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Now, we also have to talk about when we talk about random variables or sequence of random vari-
ables we may also have to talk about convergence of, but in this case what we are interested ofcourse
in probability theory there are 4 type of convergence that you are aware. We will just recall what is
convergence? Almost surely or convergence with probability 1, right. So what we have?

We have a sequence of random variables, sequence of random variables, so we say and there is
another random variable X all defined on the same probability spaces and we say that Xn converges to X
almost surely, if the

P{ω inΩ|Xn→ X(ω)}= 1

Once you fix an omega right, then this sequence of random variables X1,X2, ...,Xn are going to give a
sequence of real numbers.

Now, what is that real number converse is what is given here, X(ω). So you collect all those omega’s
for which this convergence takes place and if this collection of omega carries a probability 1 then Xn

convergence to X which is in a way equivalent to your point wise convergence that you talking about in
normal sense, right. But there are omega’s for which this Xn does not converged to this particular X, but
together they carry probability. So the same thing you can also write Xn(ω) does not converges to this
particular but this various probability 0 because this is the compliment okay.

(Refer Slide Time: 46:48)

Now, the question will come which is what relevant to us in many situations is suppose if I have a
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sequence of random variables, the question is if this is sequence of random variables is there whether
this convergence carries over to the expectations, right? So which means whether is it true always that
expectation of X is given by limit of as n tends infinity of expectation of Xn, essentially you are saying
expectation and limit operation you are trying to interchange right.

Two results which we would require is one is call Monotone convergence theorem (MCT), which
means Monotone convergence theorem, when this is true? Suppose if these are all non-negative it is
X1, X2, ... and they are increasing almost surely then suppose if I call this as star, then start holds okay.
The other case which is given by what we call dominated convergence theorem, if there exists another
random variable Y such that your expectation of Y is finite and this Xn are bounded by Y almost surely,
then star holds. okay.

So, we give two conditions, two different conditions under which you know the limit and expectation
(operations) operators can be interchanged which essentially means that when Xn converges to X always,
okay is it true always with condition is Xn converges to X almost surely right, then whether this is true?
Then, if this is non-negative and increasing, then of course it holds, and if there is Y which bounds, so
this is dominated convergence theorem and that is Monotone convergence theorem.

Under these two scenarios, you can show that these are the two famous results in measure theory
which you know we might use whenever need a little later whenever we talk about a sequence of random
quantities converging, right and this is what we will see, okay.

(Refer Slide Time: 49:18)

Now, what you have the next idea is basically more relevant to our field, which is the financial
whatever we are going to deal with is this change of measure idea. You know recall, that in discrete also
we had considered two probability measures P and P̃, right, so but how do these two quantities P and P̃,
how are they related? Is via a quantity called

Z(ω) =
P̃(ω)

P(ω)

which we call as relevant equilibrium derivative, right. So you recall this quantity is we wrote right, so
this is what it is discrete case via this Z okay.

So now, in continuous case ofcourse since P and P̃ here we could define and we could easily get it
that both of them are strictly greater than 0, so you could define it in this manner. But in continuous case
ofcourse for individual omega this is 0, and even if you write this equation as P̃ of omega as equal to Z
of omega multiplied by P of omega, still both sides are 0, does not tell anything. But this gives the idea
of how to get a P̃ out of P, I mean the idea is you have to suppose use this Z, right.

(Refer Slide Time: 50:48)
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So, in which case what we have is this specific result which is what we will use. Let us quickly go
through, so you have a probability space be probability space and you have, and Z > 0 almost surely and
you also have E(Z) = 1 which means expectation Z is equal to under probability P this is 1.

Now, for A in f, define my P̃ of A which is equal to, so you define P̃ you see, if you rewrite the
earlier discrete case, you could write

P̃(ω) =
∫

A
Z(ω)dP(ω).

So this is inspirit captures that same idea, but since you cannot talk with respect to each of omega, each
omega because both sides are equal to 0. So you talk in terms of events, in terms of sets in f, that is what
the idea essentially right.

(Refer Slide Time: 52:12)

Then, what we have? This quantity is a probability measure, which is the first statement, further-
more, this relationship which you have also seen in discrete case XZ for X non-negative, in a moment
you will know why we say X non-negative under this condition. So

E(Y ) is essentially Ẽ(Y/Z) for Y non-negative okay. Now note, for general X the above two equal-
ities connecting expectation under (E and) under P and P̃, the above two quantities is, the above two is
applied to X plus and X minus and provided they will make sense, provided infinity minus infinity case
is not occurring.
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So, if that is the case of course these things are not defined so nothing you can talk about it, whenever
we say that whenever this is defined which means that this infinity measure case is not occurring, in
another case you can talk in a single way. But for the result mainly like you know you can consider X
non-negative that is sufficient because in this particular case you will going up by individually, so this is
what is the result.

What this says is it captured the spirit of what you done the discrete case, so pick a Z which is greater
than 0 almost surely you need only almost surely. And E(Z) = 1, these are the two properties that you
required for Z and this what is this required. And if you have that Z and in discrete also we have seen
these two properties are satisfied and if you have that Z of course you will get this P̃.

And in fact, to get this P̃ even you do not need this Z, non-negative is sufficient, but for some other
purpose we need Z strictly greater than 0, so we will keep that otherwise this last equation that he wrote
here again you have to assume Z to be strictly positive, so we generally assumed Z to be positive case
that you have. Now, this is the way you know your things are related in you are defining in this case.

(Refer Slide Time: 54:55)

Now, this leads to my next definition which is after giving this definition then we will see why,
and hence and what. So, you have omega be non-empty set and F sigma field of subsets of omega or
a sigma field over omega. Then two probability measures say P and P̃ on this (Ω,F) which we call
as a measurable space, again without this P attached to this, we are considering is a pair or said to be
equivalent, remember this is the technical term here what we are defining.

If they agree, which sets in f have probability 0, so we say P and P̃, two probability measures defined
on the same omega f is pair are said to be equivalent if they agree which sets in f have probability 0.
Alternatively this would also imply that they also agree on which sets have probability 1, which means,
which are the sets which are almost surely going to occur? Which are the sets which are almost surely
not going to occur, right? So that is what the equivalent probability measures property that we have here.

(Refer Slide Time: 57:09)
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Now, so once we define this right, (now our) what we state is that you know claim which we can
verify is P and P̃ you know as defined area or above or equivalent okay with just the previous result that
you recall we are defined P̃ using Z and that these two measures as under the condition that is specified
in the result they are all equivalent, how do we see? This is a quick proof this in, this you required to
know so we will just quickly do this.

Suppose you pick you know A ∈ F such that your P(A) = 0 is okay, Z as it is, Z is strictly greater
than 0 with E(Z) = 1 and you are picking an A such that P(A) = 0. Now this should imply that P̃ of A is
also 0 right. Now how do we see this? So since this is 0, you can see that the random variable indicator
function of A and Z right, Z is strictly greater than 0, indicator function of A is 1 for omega in this one
and otherwise this is 0 right, on a set of probability A this is 0 and Z is greater than 0 is what that you
have.

You can see that this is equal to 0, in what sense? This sense, almost surely this is equal to 0,
this quantity is almost surely equal to 0, so this implies my definition of P̃ A which we have here is
essentially omega IAZdP probability of A is integral over A of ZdP which is exactly equal to IAZ times
dP, but IAZ is equal to 0 with probability 1, so this is equal to 0. So P of A equal to 0 implies P̃ of A
equal to 0 okay.

On the other hand, suppose, you take a B in F such that your P̃ of B equal to 0, what does that mean?
This means that this quantity 1 by Z indicator function of B this is equal to 0 almost surely, I am writing
the same statement slightly differently okay, so what does this imply? This imply so almost surely under
P̃.

So this means, that Ẽ(1/ZIB) equal to 0, which is equal to expectation of IB which is equal to
probability of P, so probability of B. If I take P̃ of for a B for which P̃ gives probability 0 that also
implies that P also assigns a value 0 so and hence this claim which is these two are equivalent is true.
okay.

Now, as we said equivalent means that this is also saying that they also agree on which sets in f have
probability 1 okay. Now, why do we require this here? Because we look for just like in the discrete
case, we look for the equivalent probability measures is what we look for, so that just recall what we did
in the discrete. We had a probable discrete time model for the financial market, their actual probability
measure was P, we did the pricing under P̃ and we construct the hedge under P̃ and the hedge worked
well in the real world, that is what we have seen, this is the cycle that you know you close, you start with
P and then you come and close to the P.

Now, how did this work? Because the P̃ that we considered there was equivalent probability measure,
so same thing here. So, we look for same thing also. We need look for an equivalent probability
measure. So, we have a probability measure, which is P which is the real world probability measure
and we considered an equivalent probability measure which is risk neutral measure, now that we can

17



use the technology since you are aware about it, risk neutral measure and if this risk neutral measure is
equivalent to risk this actual probability measure, a real-world property measure, then this risk neutral
measure is you can use to price the derivative, construct hedge.

Now, since the hedge is going to work in risk neutral world in a sense or in almost surely sense, it
will also work in real-world almost surely sense, if these two measures are equivalent. So what we look
for in this model is again to construct an equivalent probability measure in this case okay.

(Refer Slide Time: 63:09)

So what do we call this? I mean the definition is basically such an Z that we, you take all this thing
omega F P be a probability measure and P̃ be another probability measure such that they are equivalent
and let PR is a random variable with those properties right, so that is Z greater than 0 almost surely and
expectation of Z is 1, then what is the Z is call? So that Z is what is called as Radon–Nikodym derivative.

And we write this Z = dP̃
dP is what that we write, this is, so this is Z that we have. Now to construct

an equivalent probability measure we need an Z. Now, suppose if I have to probability measures P and P̃
which are equivalent, now does there exists any Z? Only if I ensure that their exist an Z, I can construct
that you know build that Z in some way or other right. So, that result is what guaranteed and the only
way you can get the equivalent probability measure is the way that we are define in the previous result.

So, you need an Z, now does there exist an Z such that that is the there. The result is what called
as the Radon–Nikodym derivative theorem which is what, the following. Now let P and P̃ be equivalent
probability measures on which are defined on omega F then there exists an almost surely positive random
variable Z, such that E(Z) = 1 and P̃ of A is essentially given by this, so this is what guarantees that
their exists an Z.

So, what are the properties that you look for? Z greater than 0 almost surely and expectation of Z is
1, so if you can find out an Z such that, so this Radon–Nikodym is guarantees the existence, if there are
equivalent probability measures then always there is an Z with the required properties, we just have to
find what is that Z and that is what is call RN Radon–Nikodym derivative or simply RN derivative as we
have seen in the discrete case the terminology is familiar, but this is the more general case that we have
here, okay.

So, these are the basic ideas from the probability theory that from discrete and continuous when we
want to move ahead with these things okay, yeah so we will continue with the remaining in the next
lecture, bye.
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