
Mathematical Finance
Risk-Neutral Pricing in Discrete-Time

Lecture 22: Examples of Conditional Expectations, Martingales

Professor N. Selvaraju1 and Professor Siddhartha Pratim Chakrabarty1

1Department of Mathematics, Indian Institute of Technology Guwahati, India

Hello everyone, in the last lecture we have seen about the properties of conditional expectations.
There are few minor points that we will want to look at that and then we go on to see examples, especially
in the context of binomial model. We have seen that in some sense the conditional expectation is the
best, in what sense?
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We have seen given an X on some probable which is defined on some probability space and you
have a sub-sigma field of F, then E(X |G) is the best predictor for the X given the information G.. So,
that is what we said. So this also let us to look at this conditional expectation in some other way as if
you can also have a different look or different way to view this conditional expectation which, you could
also define and we said that this conditional expectation we define one way, and we characterized this
and then we said that we characterization is what we are going to take it as a definition later on, right.

That could also be taken as a definition and given that this is the best predictor in the sense that
we have shown, which is the mean square error sense. We could also define E(X |G) to be, you know.
Suppose if I take this quantity X I have picked, G I have picked, now I pick some Z, which, is essentially
the Z belonging to the class of G measurable random variables.

So, we could also define the conditional expectation as the minimizer of this quantity among all G
measurable random variables. It is an alternative view which one can think about as this conditional
expectation, but as you see like this requires the existence of second moment as far as X is concerned
to talk about this part whereas we defined it even if you look at the characterization based upon the
assumption that the first moment of X exists, okay.

This is alternative view in some books or in some material like you would find that this is defined
as the minimizer of this particular quantity among all G measurable random variables. It is the E(X |G).
There is one more interpretation which of course, if you are comfortable with the linear space idea or
linear vector space ideas then one can also look at the set of all random variables defined on (Ω,F,P) is



a vector space or a linear space and G is a subspace and the orthogonal projector of X on to the subspace
G is what is the conditional expectation.

So, if you are comfortable with that view you can also explore that a bit, right. So, this is what is the
conditional expectation is, right. Now we also can see that if you have a discrete random variable, say if
Y is a discrete random variable that is it takes values say Y1,Y2, and so on then, we let this Bi to be the
set Yi. Now,if I take this Bi to be the set of all omegas that gives the value of random variables equals
yi. Now, I see that this B j satisfies the properties that earlier we have described that this has positive
probability, they are disjoint and their union is Ω.

Then Bi’s are disjoint and they are union over i of Bi is Ω. Then if, then we know that we have
already defined that, right. Then, if σ(Y ), if we pick which is nothing but the sigma of field generated
by the random variable Y are equivalently the sigma of field generated by this classes of set Bi’s. Then
this is a sigma of field which we have already seen right and it is this smallest sigma field with respect
to which this random variable Y is measurable right.

Then if you pick this as you know in our case, suppose if I pick my G to be this then we write
the conditional expectation of X given this particular sigma field σ(Y ) which is essentially E(X |Y ). So
whenever, we write in this form E(X |Y ), the conditional expectation given sigma field that is information
content and Y the information content which is given not by this random variable Y and the sigma field,
σ(Y ), here they are one and the same.

And whenever the sigma field with respect to the which we take the conditional expectation is
generated by a random variable, we can simply denote by this E(X |Y ). But you should understand that
when we write E(X |Y ), we essentially mean the sigma is generated by Y in this place.
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And going forward, we will also state one important result, which is just the extension from the
classical or mean usually probability theory ideas to the conditional expectation ideas, that is basically
from the property of E(X) and the similar property for conditional expectation which is also true.

If a function φ is convex function, then we will have the following inequality holds

E(φ(X)|G)≥ φ(E(X |G))

So this inequality will be true, this is what called as Jensen’s inequality, which is also true with respect
to ordinary expectation and this is also true with respect to conditional expectation. Of course, this we
take without proof and the proof is similar to how you prove in the case of ordinary expectation. So we
will not worry about that too much. So this is what one more property that you know we may recall,
okay and we will be using this quite frequently.

Now let us take example, we will consider the 3-period binomial model for this example. Now since
now, we are going to talk about expectations and so we need probabilities to be associated. So let the
probability distribution that we consider with respect to the binomial model be denoted by P, which is
essentially the distribution is given by these two elements p and q because it is binary.

We only need to assign probabilities for an up moment which is p and for a down moment, which is
q = 1− p. We also assume for the sake of clarity and expectations that this is strictly between 0 and 1.
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Of course, if P is either 0 or 1 then you see that you know it collapse to a single (tree) and to keep that
as a tree we assume this way and then so this is what is probability being assigned. So that, essentially
mean, if we are corresponding to the coin dice experiment so each coin has probability of p of occurring
head and q of occurring tails and the coin dices are independent so you get this as assignment for each
and every node of this particular binomial tree.

So we have this 3-period binomial model. Now let us look at the quantity that you know, which
you can easily associate from your ordinary probability theory, you can easily translate to this particular
way of looking at the conditional expectation. So let us take the simple example of E(S1|S2). Go back
to your basic probability theory where you would have seen quantities something like expectation of
E(X |Y = y) and you know how to compute this. Just refresh those ideas, right.

So, you have joint probability distributions of X and Y , mean you can assume or you can be com-
fortably within your discrete random variable case. There is a joint distribution of X given Y from which
you get the model distribution of Y , and you compute the conditional distribution of X given Y = y and
take the expected value of that conditional distribution which will give you this particular value, that is
what you have it, okay. So you can easily associate.

Now, when we view this as not for a particular value of this random variable Y but in a generic case
then we will call this as E(X |Y ) and that is a random variable that also you would have seen right, that is
precisely this. So, that is the way that you compute the conditional expectation in that case. Of course,
that computation can still work.

You can see with this example and here we will compute this using the way how we have defined
this particular case right. Recall, this in our sense is essentially E(S1|σ(S2)), right. Now what is this
sigma field generated by.

(Refer Slide Time: 13:54)

Okay, so we have this 3-period binomial model with the probability measure P and we are trying
to compute E(S1|S2), which is essentially E(S1|σ(S2)). Now, as you know σ(S2) is the sigma field
generated by the random variable S2 and this has 3 sets, as atoms which is what these Pi’s are. What are
they?

So essentially speaking, this is Sigma field generated by the sets you know AHH , AHT ∪AT H and AT T .
So this is the sigma field generated by these 3 atoms and where, we know AHH is the set of all omegas for
which the first two elements are head-head which means only since this is a 3-period binomial model,
only third element is different which is either H or T . So it has since this omega has 8 elements. So
2 elements are there in AHH and 2 elements are there in AT T and the remaining 4 elements are there in
this.

So this suppose, if I call this as my B1, this as my B2, this as my B3. Now you can take first on the
set B1. You know you recall the definition, either you can write it as E(S1|S2), as E(S1|Bi). So, we can
take one by one Bi and then we can try to compute that. So now first take say B1which is AHH and you
look at E(S1|B1) which is essentially E(S1|AHH).

This would be then E(S1IAHH )

P(AHH)
. You can see on the 2 elements in this set AHH are HHH, and HHT

and in both my S1 value is simply uS0 and the probability of each of those elements is what would give
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me the numerator which in this particular case is uS0 p3 +uS0 p2q. The first one is corresponding to the
three H and this is HH and T for that element and probability of AHH is simply p2 which is what would
result in uS0. So this is one way right, now if I have to use my partial averaging property alternatively,
suppose if I have to use the partial averaging property.

(Refer Slide Time: 17:48)

Then partial averaging property because we are looking at, the same thing we are trying to derive
through this partial averaging property. So what does that says? It simply says

E(E(S1|S2)IAHH ) = E(S1IAHH )

Now, if I consider the left hand side right, so this you know AHH is an atom for the sigma field and
on Bi’s this conditional expectation is a constant. right, so you can write this as probability of, you can
take this out essentially because this will be a constant on AHH and this that E(IAHH ) which is P(AHH and
E(S1|S2)(ω) for ω ∈ AHH which is essentially p2E(S1|S2)(ω) for ω ∈ AHH , this is the left hand side.

And on the right hand side, this quantity is simply equal to on this what is the expectation of S1 on
the set AHH . So this is essentially you would easily see that this is p62uS0. We have just shown it in
the previous step. So this is. Now by equating these two from this implies my E(S1|S2)(ω) = uS0 for
all ω ∈ AHH . So this is what you have obtained. But intuitively is if you see also, now when you see
on the set AHH the S2, right, so the S2 is simply u2S0, which means two heads are appearing and two up
moments are there.

And S1 given that there are when the value of S2 is given to be, so equivalently if I have to say that
my ω ∈ AHH , the equivalent way of saying is my S2 = u2. So equivalent way is that if my S2 = u2S0,
only on this set, this is the set AHH all my ω which is in AHH gives me S2 = u2S0. So given this then my
S1 has to be, other than this nothing else can come and this is what normally you would have seen with
respect to the simple probability.

Now, you can try to compute this right, given an S2 of this, what is the S1 of this? Even from the
ordinary probability theory then you will get this value to be uS0. So this is on the set AHH . Similarly,
on B3 which is AT T right, so you can also see that E(S1|S2)(ω) = dS0 ∀ ω ∈ AT T . So this is exactly
same, similar way that carry out what you have done for the set AHH or B1 and B3 for this also, this will
be true.

(Refer Slide Time: 22:30)
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Now, take the other set which is B2 = AHT ∪AT H . Now, in this case you can compute E(S1|B2) =
E(S1IB2 )

P(B2)
=

E(S1IAHT )+E(S1IAT H )

P(AHT∪AT H)
. Now, this if I do the calculation with respect to the first expectation on the

set AHT , the E(S1IAHT ) = uS0 p2q corresponding to HT H, and uS0 pq2 corresponding to HT T . Similarly
for the other expectation on AT H , we get dS0 p2q for T HH and dS0 pq2 for T HT .

Now, P(AHT ∪AT H) = p2q+ pq2+ p2q+ pq2. You can easily see that the final result is 1/2(u+d)S0.
Thus, you can use the partial averaging to arrive at the same. So thus, you have E(S1|S2)(ω) = 1/2(u+
d)S0 ∀ ω ∈ AHT ∪AT H . So this is what you compute, right.

So now can, you have pretty much computed the conditional expectation of S1 given S2 right and
you would see that, so this is, this conditional expectation of S1 given S2 is random only through the
deponents of S2 and that is why S1 given S2 will be, right.

(Refer Slide Time: 25:51)

We can also write this just to connect to what you might have been already comfortable. g(x) = uS0
when x = u2S0, = 1/2(u+ d)S0 when x = udS0, and = dS0 when x = d2S0. And now, this form you
would have seen in the ordinary probability theory, right. So this quantity is what? So E(S1|S2) is
nothing but g(S2) where g is as above.

So the function g, so this is what is you are computing. So essentially in ordinary probability theory
for the fixed value of S2 that is the first step that you normally do is you compute what is this. Now you
vary this x for all possible values, so you get a function g, now, make that function as a function of the
random quantity because this x is essentially u2S0 or udS0, or d2S0 is what the values of S2. So make
that as the random. So g(S2) is what this function. So this function is what then you are computed as a
function of S2 is what this E(S1|S2) that is what we say, this is a random only through the dependence
on S2.

So, this example then you can easily correlate or related to what you might have studied in your
ordinary probability theory where E(X) given under the random variable particular value. You can
easily relate and then you can come to see what we have doing it here.

(Refer Slide Time: 28:05)
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Next, we will see another example, again in the binomial model and that is going to we take a bit
forward a little bit, okay. So let us take, so instead of taking expectation of in the binomial model itself
one random variable given under the random variable. Now, where is our definition? If it is exactly the
same then why do we need this different setup. No, because we need the set up because we are talking
about random variable, expectation of a random variable given a general, a generic sigma field which
might not be or may not have been generated by random variable.

So, we need we are just generalizing in that sense, okay. So, recall in our models so as again you
can assume a 3-period model or for this particular example, even you can go beyond does not matter
because there were notation takes care of that. Suppose, if I take my F1 this is the sigma of field that you
have it here, okay. Now what we are interested? We are interested on E(S2|F1), what is this quantity?
Is what we are interested, okay.

And F1 is this quantity where these are my B1 and B2, right. So as far as this particular sigma field
is concerned there are two B1,B2, and which is what forms the atoms for the sigma field and we are
interested in E(S2|F1). Again in the binomial model you can for understanding purpose one-two step
binomial model, for this particular step is sufficient but even if you generalize, generally take any n step
binomial model, this whole notation and everything goes through.

Okay, now what we know? We know that this particular quantity we have to compute and this
particular quantity is constant on each of this B1 and B2. That is what we know. And we are going to use
that property. So by the partial averaging property what we are saying property since, this E(S2|F1) is
constant on AH and AT . So we will take first E[E(S2|F1)IAH ], so we see that this must be equal E(S2IAH ).
This is the partial averaging property on the set, AH . And on this set, this E(S2|F1) is constant.

So again the left-hand side would imply that this is P(AH)E(S2|F1)(ω), for ω ∈ AH . This is
pE(S2|F1)(ω), for ω ∈ AH . Similarly in the right-hand side what you will have. This is S2 on AH ,
right. So, S2 on AH means, we talked AH is only the first coin toss is head, second coin toss could
be anything, right, and given that the first coin toss is head, second coin toss is head or tail, the two
possibilities.

So if I have to use that idea then this will be uS
0 with probability p2 and udS0 with probability pq. If

I equate these two then E(S1|F1)(ω) = (pu+qd)uS0 So, this is for all ω ∈ AH .
(Refer Slide Time: 34:06)
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Similarly, you need to show this:

E(S2|F1)(ω) = (pu+qd)S0 ∀ ω ∈ AT

So this is, what is the conditional expectation, so I mean if I have to write in our original form, so I can
write this E(S2|F1) = (pu+qd)uS0IAH +(pu+qd)dS0IAT . So, this is the expression for this conditional
expectations that you have here.

Now, certain observations are in order because that is what we are going to use here. You can see
that in this E(S2|F1)(ω). For example for ω ∈ AT , we wrote (pq+qd) as dS0. This dS0 is nothing but
my S1 at the down node right. Similarly if we look at the previous quantity.

(Refer Slide Time: 35:50)

This uS0. it is the value of S1 at the up node, right.
(Refer Slide Time: 35:56)
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So combinedly, you can write both these as simply E(S2|F1) = (pu+ qd)S1(ω) ∀ω ∈ Ω. So, this
is the simple expression, right. So this tells something more that the F1, which is what we are trying
to do. We are trying to estimate, remember conditional expectation as the best estimator. So among
all F1 measurable random variables, we are looking for the best estimator for S2 which is what this
E(S2|F1) means: given all the information F1, when we are trying to estimate S2, right, is in a way, the
all information that is required are summarized in the value of S1 that is what this pretty much says.

So, the complete information is F1 and here we say, this estimation requires only the value of S1, not
the complete information. What is relevant from the complete information is the value of S1. So, this is
what this says. Now similarly, you can extend the same, you can do exact same steps that we have done
so far to compute E(S2|F1).

So this is an exercise, you can do a similar thing and you can arrive at E(S3|F2). Again, this is a
random variable, so I can put an omega here. So E(S3|F2) you can also show that this is nothing but
S2(ω) for all ω . See extending the same idea of E(S2|F1) to E(S3|F2), you will see that exactly the
same expression comes but S1 be replaced by S2, okay.

You can also see that this equation can slightly be written in a slightly different way also, that this
could be written as sum p times okay, I mean, this is first thing is what you observe is, in a similar
way, you can uptime this. Now but either this or this can also be written as suppose this is F2, so now
if I write explicitly suppose if I assume that it is some 3-period model or so then I can write this as
puS2(ω)+qdS2(ω), right. What is this u S2?

It is basically S3 if I look at it and with omega up ended with because this omega when we write
suppose if I assume if I have 2 period or 3 period model simpler case so this will be up to 2 then the third
element of this omega would be head and here the third element of this omega is tail right in the second
component that we are write. So you can see that you can also write it in this form.

Now further, you can also notice, suppose if, I take this quantity right E(S3|F2). I further take
E[E(S3|F2)|F1]. Now, I will get E[(pu+qd)S2|F1], now pu+qd is constant so I can take out and then
I see (pu+ qd)E(S2|F1) =, so in net result is my (pu+ qd)2S1(ω) for ω ∈ Ω and you can see that by
the tower property, this is nothing but E(S3|F1).

You can see that this particular quantity, the left-hand side of this equation by the tower property if
I apply it is nothing but the E(S3|F2). So what we have written here, is simply S3 given F1 which has
this property, right. So this you can observe and this part is what you can observe with respect to the
binomial model that you what you have as conditional expectation and this definition can be generalized
and written as in the textbook that we have we are using which is series volume 1 if you look at the
conditional expectation.

Definition in the context of N period binomial model is nothing but is the generalization of this
where S3 and F2. Now you take any N period general model and a random variable x which is defined
on the full probability space and given any fn intermediate then what is the step that you have is what is
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precisely that quantity that you have it here, right. So that is a general definition and if for the sake of
completeness you want we can also write down that definition which is the general.

(Refer Slide Time: 42:52)

Suppose, if I take in general N-period binomial model and if I fix, fix an n and if I pick ω1,ω2, and
so on ωn as given and this both these for the moment given and fixed. Suppose if I assume then there
are 2N−n possible combinations of ωn+1 and so on of ωN that you have here. So, this is as a sequence
are is you know if that if you look at it. So, this is what you will have it here. From the sequence, this is
basically a fixed value of ω1,ωn. So any fixer value up to ωn that you fix this ω1 to ωn either head and
tail take a particular this particular things you keep it fixed then the remaining ones you will have these
many possibilities.

Now, suppose if I denote the number of head of ωn+1, . . . ,ωN be the is equal to the number of heads
or the number of up moments in this sequence and similarly number of tail in ωn+1. This is a notation
that if we use number of tails in ωn+1, . . . ,ωN and if you look at, if look at go back and look at my F1
and F2 and so on that you would what have seen. So for a fixer value of omega, for each fixed one the
variations will give the atoms. So the atoms will be as per the variation of this 2n elements that you
know ω1, . . . ,ωn that you may have here right. So these are variation that you have it here.

Then, if I pick you know a random variable X on my full space omega where my F is same as my
FN , right. This is the full sigma field that you have, complete information case. Then this particular
quantity and if I also assume my probability to be p and q then the E(X |Fn) right. so since this is Fn

is what is our sigma field. So appropriately you know we denote only ω1, . . . ,ωn because this is what
it would depend on. This could then be written if I use the previous ideas as a sum over probability of
number of heads in ωn+1 to ωN and q number of tails in ωn+1 to ωN times X(ω1, ...,ωn, ...,ωN) where
the sum is over all ωn+1 to ωN .

So, for all variations, so you can just whatever we have computed earlier E(X |F1) or E(X |F2) that
we have seen. So, you can easily see that it falls into this. So, this is what is the definition. If you want
to specifically write the conditional expectation in the context of the N-period binomial model for use
then one can directly use this definition. This is what is what will turn out to be the quantity if you apply
the usual process, right.

But what we have defined so far is any general sigma field G that is applicable here, right. Now one
couple of simple observations you can make which is trivial E(X |F0) as you know is simply E(X), and
E(X |Fn) and if it is same as E(X |F) because we have taken Fn to be F which is usually the case and
since X is defined on (Ω,F,P), so this is X is measurable with respect to F.

So you can see that this too follows easily and this is small property that you can look into this
case, okay, so this what is all the examples of this conditional probabilities that you know that you
might think and this definition is basically with respect to N-period binomial model, the definition of
conditional expectation you can write in this form, okay. This is just the additional but even without the
even to the basic definition will work, but this is a simplified definition which you can directly use it in
the case of binomial model that you have it here okay. Next, we look at the case of certain observation
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that they have made of course we will come back to that.
(Refer Slide Time: 49:41)

So, you recall in the binomial model case you had defined not just P but you also used another
probability distribution P̃ = { p̃, q̃}, where p̃ = 1+r−d

u−d and q̃ = u−1−r
u−d .

This P is what we call the real-world probability measure and we call this P̃ as risk-neutral proba-
bility measure, right. Now, it is easy to observe that

p̃u+ q̃d = 1+ r

So this is, so what this says you know just look at this and what are the u and d? These are the up factors
and down factors in the binomial spacing model and the expected value of this factors, up factor and
down factor suppose if I call this is u and d. I can always represent it as Sn+1/Sn. So which is what this
up factor and down factor would mean , right.

So the left-hand side is nothing but the expected increase in the underlying risky asset like underlying
stock suppose if I call this S as a stock price process then this is nothing but the expected increase in
the stock prices is what is given by the p̃, q̃. p̃u+ q̃d under the risk-neutral measure, right and on the
right-hand side is basically you can think of it as the increase in the risk-free asset. So, if you have 1
rupee invested in risk-free will grow to (1+ r). If we invest 1 rupee in the stock then it will grow on an
average to the quantity which is given by the left side. Now for this particular probability measure P̃, this
quantity is equal to this and hence the name that from where this name the word risk-neutral came. You
could now understand that you know it neutralizes the additional risk in a way by making the expected
increase equal to the risk-free. So under this measure, both these assets are on an average is going to
give the same growth, right. So that is what is the risk-neutral word that it comes here.

Now, where does this helps? Recall we have written under this measure suppose if I take under
p̃ earlier we have written the E(S2|F1), E(S3F2) and so on. In general, you can write E(Sn+1|Fn) =
(pu+qd)Sn. Now here you could write under P̃, Ẽ(Sn+1|Fn). Now this will be a function of ω1 to ωn.
It will be equal to (p̃u+ q̃d)Sn(ω1,ω2, ...,ωn).

Now under this measure remember I have used an Ẽ here the tilde means that it is a expectation
under probability measure P̃. So there are two probability measures here, one is P the other is P̃, right.
So this is under P̃, the risk-neutral measure. So this will be (1+ r)Sn(ω1, ...,ωn). Otherwise, this gives

rise to this property: Ẽ
(

Sn
(1+r)n |Fn

)
= Sn

(1+r)n .

So now, if I look at this so what this says is that, so what we are looking at? We are looking at
the best predictor of this particular random variable given some information, that is the meaning of
this conditional expectation. Now what this says is that, the conditional expectation of, the conditional
expectation under the P̃ measure of Sn

(1+r)n given the information up to the time n is nothing but the
present value of this. Suppose if I call this process as some Yn+1 if I call. so E(Yn+1|F1) = Yn.

So under this measure or under any measure for that matter but in this particular case it so happened
for the stock price process this property. This, if it happens, then this property is what we call as the
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Martingale property. So when we define next, so we have to going to define is this martingale’s and
so you see here that it has this, so it has a name that property of this type, right, that we have here is
essentially what we call the Martingale property. So you see here certain property and you are now
observing that this is satisfying this. Now what is this called? This is what is called the martingale
property.

(Refer Slide Time: 57:03)

So, now let us define what is Martingale? Now to define Martingales, we need to first assume as
usual there is always an underlying probability space (Ω,F,P) okay and there is filtration. Now let us
assume that this n runs from 0 to N fro some discrete filtration. If I assume finitely so it is some FN

would be this F. So there is a filtration and we have random variable defined on this probability space,
okay.

So we take a sequence of random variables, right. This filtration is generally we are saying this is
need not be the complete filtration that we talked about in the case of binomial model. So it could be
any filtration, right which leads to this and this the Fsub capital N is what is my F so that is the full
probability space and the random variables are defined on that probability space, okay.

Now we need a few definitions here, one which is we say that a particular random variable X we
say it is integrable if my expectation of this is finite. Now another definition is given a filtration Fn, a
filtration, we say that a sequence of random variables ,say Xn, is adapted, (this word is adapted) when
we say if Xn is Fn measurable for all n. So there is a particular terminology that we will use, so we say
an adapted process. So this sequence of random variables is what is generally called as more generally
for more generic case is called a random process or a stochastic process and this process is adapted to
this particular filtration Fn if Xn is Fn measurable for each n.

(Refer Slide Time: 59:45)
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Now once I have these two definitions, now we can define Martingale. So a martingale, what is
Martingale? Suppose if I call this as some {Mn} is (we are talking about now discrete time martingale)
sequence of random variables such that
(a) Mn is integrable for all n,
(b) this process Mn adopted to this sequence Fn and
(c) E(Mn+1|Fn) = Mn, for all n.
The first is the integrability property which ensures that this conditional expectation exists and then Mn

is adopted property which shows that this Mn will be measurable with respect to Fn and the third is
Martingale property.

So the third is what is the crucial property which is called is martingale property (okay). Now this
martingale, this is what is called the martingale and if the property (c), if you have in this form rather
than equality here, if this is greater than or equal to Mn for all n then we say that Mn is sub martingale
and if instead this property (c), we have E(Mn+1|Fn) ≤ Mn for all n, then this {Mn} is called super
martingale, okay.

So this is what the martingale, sub martingale, and super martingale. So what it says if you look at
it in a martingale setup, the best predictor of next random variable in the sequence given the information
up to the current which is Fn is the current value itself whereas in the case of sub martingale and super
martingale, you are saying on the one side which means that it is at least the current value of and this is
utmost the current value of the process, okay.

So this is what is the and here if you see depending upon the convenience we may simply say {Mn}
is a martingale whenever the underlying Fn and the probability measure is understood or sometimes
we say {Mn,Fn} is a martingale or you know if or sometimes we specify the probability measure also
because as we saw just in the previous example right.

(Refer Slide Time: 63:31)
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If you go back to this particular example, you see under P = p,q if you compute, under P this is not
going to be true. Here, (pu+ qd) is not in general is going to be equal to (1+ r), and hence under the
measure P this equality that we have written here need not be true and hence under P this need not be
martingale but under P̃, since this is going to be equal to (1+ r) and hence this particular quantity is
going to be Sn

(1+r)n .
(Refer Slide Time: 64:07)

So, we will say this particular example if we have to say so this { Sn
(1+r)n }, now say in N period

binomial model what you are being observing is that this quantity is P̃ martingale or a martingale under
that probability measure right. So that is what we will say. So, this is one example so which we have
seen in this and we have define now what is a martingale. It is nothing but a stochastic process with
certain properties, right. In the stochastic we classify it or we give names to various stochastic processes
depending upon the properties that it has.

(Refer Slide Time: 65:01)
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And if in particular if it has this property then we say this is the martingale or if it has either of these
two properties then we say accordingly either sub or super martingales that we have, right.

(Refer Slide Time: 65:12)

So this is what it is and one example in the case of N-period binomial model is this is a P̃ martingale
which is not in general, it may not be P martingale or martingale under the real-world probability mea-
sure. It will be a martingale under P̃, the risk-free probability measure and this is how this probability
measure you know is constructed so that you know this becomes a martingale that you have it here, right.
Now, this there is one step property that we have seen a couple of properties that we see quickly before
we close which is the one step property we know. Quickly we will close this with a couple of properties
that we can observe so that we no need to repeat it again.

So this is basically what we have observed is E(Mn+1|Fn) = Mn. This is true for any n and hence
E(Mn+2|Fn+1) = Mn+1. Now, take the conditional expectation of this quantity with respect to Fn further,
so you would see that E(Mn+2|Fn) = Mn. So what we are saying is n+ 2, n to n+ 1, this is one step
property n+2. So in general E(Mn+m|Fn) = Mn which is what we call it as the multistep property that
you have it here, okay.

So this is true across any step given Fn, if you want to predict the value of the process M, M step
ahead then the best predictor is still the current one, is what this property one would observe.

(Refer Slide Time: 67:23)
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The other thing is that if I take again, the other property if I look at it E(Mn+1|Fn) = Mn = Mn. Now
I take expected value on both sides what I will get is E(Mn+1) = E(Mn), this is for all n. So what this
means is that martingales have constant expectations overtime period, right.

So which means E(Mn) = E(Mn−1) Thus, E(M2) = E(M1) which is equal to E(M0), and if M0 is
not random then this will be equal to simple some constant value. So this will be true this is what you
know you will have.

The third property that you can observe from Jensen’s inequality is that, if I take a convex and if I
take martingale, if I take a martingale then you can easily observe that this process {φ(Mn)} be what. if
I apply for a couple of convex function and for a martingale if I insert and I can look at this. This will
be a sub martingale, right.

(Refer Slide Time: 69:12)

So this is one other property which we can easily see is which is what will be very helpful for us
when we go ahead is that suppose you fix X is a random variable on (Ω,F,P) with E(X) < ∞, let you
define E(X |Fn), this is what you define for all given any and so and also you are given a filtration Fn

then this you define. Then what is the claim: {Mn} is a martingale.
So you can verify the first two properties again you will use the Jensen’s inequality to verify the

integrability property and since this definition itself X given Fn. So measurability is immediate. For
the integrability property, you will use Jensen’s inequality. We can look at the third property which is
E(Mn+1|Fn) = Mn. You can look at this is E(Mn+1|Fn) = E(E(X |Fn+1)|Fn) = E(X |Fn) = Mn.

So this is the martingale property and hence the result follows and this is an important example.
In the set, you can also take an example and you can see how one can construct the martingale and
most of the martingale that you basically encounter are of this nature. So they are actually given as
conditional expectation of some random variable given a filtration, a sigma field in the filtration would
define a martingale. So most of the martingale that you encounter can be represented in for some random
variable X and for some sigma field in this form. So that is why this thing. So whenever you encounter
any such random variable basically what you are looking at it as Fn increases, Fn is a filtration so it the
information accumulates, so there is an increase in sub sigma fields of F and which means if you will
think about this information so as you get more and more information, you are trying to estimate the
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X and those estimates for X given more and more, more and more information that you will add will
form a martingale right. So that is what this pretty much says okay. So we will see this with respect to
binomial model and other things later. We will see in the next lecture. Bye.
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