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Topology of the Complex Plane Part – III 

Hello viewers, we will continue the study of the topological properties of the complex 

plane. So, far we have seen until what limit points are and what interior points, boundary 

points and exterior points are. So, today we will start with compact sets, so firstly 

bounded set. 
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So, a set S contained in C is said to be bounded, if there is an M positive such that the 

modulus of z is strictly less than M for every z belongs to S. So, what that means is a 

bounded set physically means that the modulus of z which is the distance of the point z 

from the origin is bounded for every z belongs to S by the same number M. 

So, if you if you draw a circle of radius M around the region then every element of S is 

contained within this circle of radius f, and so that is a bounded set. So, in total it fits the 

the picture that you know the the points of S are contained in the large circle. So, that is a 

definition of a bounded set. We will see that the property of boundedness together with 



closeness or the property of a set being closed in the complex plane play an important 

role many times in complex analysis. 

So, you will recall from the calculus of functions of one real variable that you had the 

extreme value of theorem where a function on a closed and bounded interval assumed its 

maximum value or minimum value on a closed and bounded interval. So, such properties 

are exhibited by closed and bounded intervals and functions on closed and bounded 

intervals in real analysis. So, an equivalent concept here is that of closed and bounded 

sets in the complex plane which we are going to call compact. 
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So, we are going to call, we will call closed and bounded sets, subsets of C as compact 

sets as compact sets. So, that is not a definition. We are going to give a definition now, 

but firstly, compact sets play the role of closed bounded intervals in real analysis. So, 

these sets are to complex analysis what closed bounded intervals are to real analysis or 

functions of one real variable.  

And so firstly I want to define compact sets. We will call these kinds of sets as compact 

sets, but I had not really defined. It is defined in terms of open sets so that it fits a more 

general setting of an arbitrary topological space, that is not our point of discussion here, 

but we will give the definition, we will show that it is (( )) or we will state a theorem 

which says that it is equivalent to the statement here. 
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So, firstly an open covering, let S be a sub set of C, let S be a sub set of C, could be 

empty, does not matter. An open covering of S is a collection of open sets. Let us call its 

script G. So, the elements of G are open sets and G is the collection, script G is the 

collection and it is a collection of open sets such that the union of G, G belongs to the 

script G contains S. So, whose union contains S. Such is an open covering. So, it is 

essential open sets which cover really the set S. 

So, now we will define a compact set. So, a set S contained in C is said to be compact if 

every, what is important is if every open covering of S has finite sub cover. So, a sub 

cover is a sub collection of this collection of open sets. So, if, if there is finite collection, 

finite sub collection of this collection of open sets which is enough to cover the set S, 

then we say that the set is compact. And this property should be exhibited to, exhibited 

for every open covering that you can bring for this set S and in that case we call the set 

compact. So, that is the definition.  
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And you will see I mean an example or a non example will actually help us see that such 

a phenomenon not exhibited by every sub set of complex plane and easy example is B 0 

1, the unit disk in the complex plane. So, what you can do is you can form the union of 

so first let me define a collection of open sets. This is B 0 r such that r belongs to 0 1, 

this is the interval 0 1. So, this this is interval contained in r, contained in the real 

numbers. So, this sorry I can sorry I think this is 0, the the interval closed at 0 and open 

at 1. And the union of actually that does not matter whether I close it at 0 or not.  

The union of B 0 r, r belongs to this 0 1. Is, this will definitely contain all of the ball 0 1. 

So, what I have done is I have that is, this is the following is the picture, here is the unit 

disk and this collection of open sets here is essentially a set of disks which are growing 

in size, you can think of them as growing in size and they will have radii. So, it is the 

inside here. So, they will have radii in the interval 0 comma 1. So, as this radius grows so 

these, these, this collection of open sets tend to cover the whole ball of radius 1 centre at 

0, but unfortunately there is no finite sub collections of this collection which will actually 

cover all of B 0 1.  

Notice, that B 0 1 itself is not included here. So, this B 0 1 does not belong to, this does 

not belong to the collection G, because 1 is excluded from this. That is an example where 

we cannot have a finite sub collection which will contain the whole set S. So, in this case 

set S under consideration is this B 0 1. 
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Yet another, yet another example or a non example of compact set is the set of natural 

numbers or integers contained in… So, let us take the set of all n plus i times 0 such that 

n belongs to N contained in C. So, these are of course, points on the real line which stand 

for the natural numbers. So, you can consider the collection G of B 0 let say n such that n 

belongs to N. 

So, each of these in turn starting with B 0 2, starting with B 0 2 is going to contain one 

additional natural number than the previous B 0 n minus 1. So, B 0 n will contain one 

more a natural number than B 0 n minus 1, but all in all you can never have a sub 

collection of this which will cover all the natural numbers, all the set S solely because if 

you take a sub collection or or a finite sub collection even worse then I should not say 

just sub collection, but I should say finite sub collection. If you take a finite sub 

collection then you will have to stop at a point and beyond that point there will still be a 

natural number which will not a fall in here. 
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So, I apologise. I should see a finite sub collection in this, in this non example also there 

is no finite sub collection of G which actually a span all of B 0 1, you can always get a 

sub collection, that is not the point. So, there is no finite sub collection. So, these are two 

examples of sets which are not compact and then what are examples of sets which are 

compact. 
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Well, if you will, I mean we will give a theorem. We are not going to prove this. This is 

the Heine Borel theorem which will give us many examples of of compact sets. So, a set 



S contained in C is compact if and only if it is closed and bounded in C. So, we will skip 

the proof of this theorem, but we will use its conclusion to give examples of compact 

sets. So, examples of compact sets, the the unit circle circle in C is compact, its closed 

and its bounded. It is closed because the complement of it is the unit disk without its 

boundary and everything outside the closed unit disk and we saw that both those sets are 

open sets.  

So, this set is closed and also it is bounded, well the modulus of any number on the unit 

circle is 1. So, it is bounded definitely. So, this is a closed and bounded set and hence it 

is compact. So, in general you can take, I give a pictorial example two. You can take any 

any box like that and consider the set of points inside that box. This this is a curve of 

some sort, you can I mean if you do not like this you can take some polygon and then 

consider the box obtained by taking the points inside and may be even points well points 

inside and on the polygon.  

So, this set is compact because it is because it is closed and it is also bounded. There is 

no reason why this this box should be symmetric. It could be asymmetric, it could be 

placed completely in the first quadrant for example, or it could be a it could be a little 

skew, but nevertheless it is going to be a bounded set, because it is a box and and it is 

closed definitely, because we are including the points on the boundary and and so we are 

including all its limit points in addition to the interior points. So, such a set is called 

compact. 
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Some properties of a compact set, we are going to see that these compact set are, sets are 

going to play an important role in complex analysis. And here are some properties. Well, 

I will give at least one important property. So, it is a Cantor’s theorem. So, let let K j’s be 

compact sub sets of the complex plane with… So, this k j’s j belongs to N. So, with K 1 

containing K 2 containing K 3 etcetera. So, it is a nested sequence of compact sets like 

that, then the intersection of K j, j equals 1 through infinity, is non empty.  

If you take the intersection of the all these nested sequence of compact sets then it has to 

be non empty. We will see why. A proof, well K 1… So, what we can do is suppose it is 

empty. Suppose, this inter section is empty. So, if the inter section is empty then the 

complement of the intersection is all of the complex plane. So, what we can do is we can 

consider the complements of each of these compact sets. A compact set is closed.  
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So, its complement is going to be open and so you can, what you can do is if you 

consider this collection G of the complements of K j’s, the complement in the complex 

plane of these K j’s such the j belongs to N. Then you know that the whole of the 

complex plane is actually covered by this K j complement, j equals 1 through infinity. 

Why? Because of course, the inter section of all this is empty. So, the the complements 

when you take the union of all of them, then you are going to get the whole of the 

complex plane.  

In particular K 1 since this is the whole complex plane K 1 is definitely covered by G. G 

is an open covering for K, K 1. So, K 1 is contained in the union of j equals 1 through 

infinity K j complement. And here is where, here is one instance where we are going to 

use the particular definition of compact sets that we have given, that every open covering 

will have a finite sub cover.  

So, there is since K 1 is compact there are there are numbers j 1, j 2, so on until j n let us 

say such that so there are finitely many indices such that the union of j equals 1 through, 

I should say m equals 1 through n of K j sub script m complement is going to contain is 

going to contain K 1, I apologise this is K 1 is contained in, this is the whole complex 

plane. So, K 1 is contained in the union of this. So, K 1 is contained in here. So, since K 

1 is contained in here, these are finitely many and by this condition here that these are 

nested like this K 1 contains K 2 contains K 3 etcetera. 
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The union of all of these will be contained in K j n plus 1 complement. So, here I am 

actually assuming more so I will say that j 1 is less than j 2 is less than so on until j n 

such that. So, I mean when there are finitely many integers I can of course, order them. 

Finitely many natural numbers I can order them so I will, without loss of generality 

assume that j 1 is less than j 2 less than etcetera until j n. So, j n is the largest integer and 

so K j n complement the the union of all of these m equals 1 through n K j, j m 

complement is going to be contained in K j n plus 1 complement because the union of m 

equals or or K j n plus 1 is contained in K j n is contained in etcetera contained in K j 1 if 

you wish.  

So, since this is true the union of the the complements of all of these will definitely 

contained in the complement of this L j and plus 1 and so, this tells you that K 1 

contained in the complement of K j n plus 1 which implies that K 1 intersection K j n 

plus 1 whatever that induce is is empty, but this is the nested set any point in K j n which 

occurs for the down has to be contained in K 1, so this is the contradiction. So, this 

contradicts the given hypothesis and so the intersection has to be non empty. 
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So, the inter section of K j, j equals 1 through infinity has to be non empty. So, it is one 

property of compact sets and yet another proposition is as follows. Here is another 

property which we might have some use for. So, a closed subset this, the proof of this is 

very clear, a closed subset of a compact set is compact. Any subset of a compact set is 

bounded because the whole set itself is bounded. 

If you have a closed subset of a compact set then you have a bounded set and it is also 

closed by hypothesis. So, it is compact. So, the proof is just directly there in the 

statement. So, that is another property which we might have some use for. So, then we 

will see the concept of connectedness. So, this is a different property and we will have 

use of this property as well from time to time.  
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So, connectedness so like compactness, connectedness is also defined in terms of open 

subsets of the complex plane. So, a set S contained in C is said to be connected if it 

cannot be expressed or if it is not contained not contained in the union of two disjoint 

non empty open subsets of C, which have a non trivial intersection with S. So, I mean 

that is a mouthful. 
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Let me explain. So, if there are, if you can never write S to be contained in G 1 union G 

2 where G 1 is non empty, G 2 is non empty and G 1 intersection G 2 is empty and G 1 



G 2 are open with G 1 intersection S is non empty and G 2 intersection S is non empty. If 

you can never write S to be contained in such union, then S is connected. So, what that 

means is I know that sounds like a bunch of conditions. So, what you want to avoid is 

that is the is the following. So, for example, you look at the following intuitive example.  

Suppose, you have the unit disk and you have yet another, you know set like that there. 

So, what you can do with the complex plane is you can come up with one open set which 

contains that piece and yet another open set which contains this piece and so you can 

separate these two blobs here. And we exactly want to avoid this situation here. So, this 

this set which is the union of the unit disk and this piece here is we want to call that 

disconnected.  

So, a connected is the opposite, you can never write this S to be contained in G 1 union 

G 2 where G 1 and G 2 are disjoint open sets like that. We want them to be non empty as 

well and then they are open sets and they should have some non trivial intersection with 

S that is also important. So, that is the definition in terms of open sets. So, we will not 

consider here all the intricacies of this definition here because what we are going to see 

are mostly open connected sets which we will call as regions or domains. 
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So, an open connected set, subset of C is called a region or a domain. I will 

interchangeably use these words. Sometimes, I will call open connected subsets of C as 



domains and sometimes I am going to call them regions. They both refer to open 

connected subsets of C and we will see that with that additional condition open this 

connected sets behave in better fashion. 

So, we can sort of use the property of open connected sets and do away with this 

definition itself. But I am giving this definition for completeness. Let G be a non empty 

open subset of C, then G is a region which means it is an open connected subset of C, if 

and only if any two points of G can be connected by a polygonal path. So, a polygonal 

path is a finite union of straight line segments in the complex plain. So, that is the 

polygonal path and if you take any two points in an open connected set, we will show 

that they can be joined by polygonal path. And if an open set is such that you can join 

any two points by polygonal path then that that open set will be connected. So, it has to 

be connected. 

(Refer Slide Time: 30:48) 

 

So, proof once again here we will use this property and we will use the property in the 

direction that if we have an open connected set then any two points can be connected by 

the polygonal path. That is the direction we will frequently use this property in. So, I will 

proof only the direction and and skip the proof of the converse all though this is an if and 

only if statement. 



So, I will prove one direction that if G is a region then any two points can be joined by a 

polygonal path. So, suppose G is a region. So, fix a point a belongs to G. So, G is non 

empty. So, a belongs to G and a 1 or let G 1 be the set of all points in G such that there is 

a polygonal path from a to z which is completely contained in G. If you have some set 

like that of polygonal path is a path like that. So, let G 2 is the complement of G 1 in G. 

So, we are going to show that G 1 and G 2 the complement of G 1 and G, both of them 

are open sets. So, by the definition of connectedness. So, if you write…  
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So, another implication of definition or another way to say this definition is that if you 

are able to express S with all these conditions if you are able to express S contained in G 

1 union G 2 wherein G 1 G 2 open, non empty are open and non empty then then either 

G 1 is, either G 1 intersection S is empty, then either this is empty or G 1 intersection G 

2 intersection S is empty. What that means is S is completely contained in either in G 1 

or G 2 if you are able to write a connected set. So, if S is connected and you are able to 

write it to be contained in G 1 union G 2 where G 1 and G 2 satisfy all this conditions 

then one of this has to be empty. It is the same; it is the same thing saying all this. 
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So, connected set when if you show the G 1 and G 2 are are open then G 1 union G 2 is 

G which implies that and G is connected, G is the region. So, this will imply that either G 

1 is empty or G 2 is empty, that is the strategy. So, we want show that either G 1 is 

empty or G 2 is empty. So, this is the standard way of using connectedness. So, normally 

the, we will encounter proofs where we will use the property of the region, that it is 

connected and we will use it in the following fashion. We will split it into two open sets 

and then which are disjoint and since the set is connected, given set is connected it has to 

be that one of these open sets is empty. So, we might encounter such proofs in this 

course. 

So, here is one such. So, here is G 1. G 1 is set of all points in G which are polygonally 

connected to a. So, we are able to make way from a to z in the region G, we are able to 

connect a to z. And so what we miss out is all those points in G which cannot be 

connected from a. So, G 1 is open.  
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So, if suppose z belongs to G 1. Then since G 1 is subset of G. So, since G 1 is contained 

in G there is and G is open and G is open, being an open set there is an r positive such 

that B z r is contained in G. So, if z is contained in G there is boll of radius r around z 

which is completely contained in G because G is open set. 

Now, what happens is since z belongs to G 1 since a and z are connected by a polygonal 

path, we can extend this path to any point w belongs to B z r by joining perhaps an 

additional line segment, additional segment containing or additional segment joining z 

and w, z and w.  
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Well, so if you have this boll of radius r. Let me draw a bigger figure picture and w is 

any point here. So, there is a path from well I should say polygonal path. So, there is a 

path from a to this z here. z is the centre of this boll, by joining one additional piece like 

that we are not disturbing the finiteness because we are, we have added one more 

segment and this is, this joining of additional z to w we still have a polygonal path 

starting from a ending at w. And notice that if this path is completely in G then so is this 

path because this open set, so is this new path which is obtained by the joint because this 

whole set is, opens sorry boll is contained in G. So, this this additional line segment is 

also contained in G. So, the path joining a and w is also contained in G.  
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So, w belongs to B z r is such that w belongs to G 1 because now a and w can also be 

polygonally connected via a path which is completely contained in G. So, in conclusion 

this is an arbitrary in B z r. So, B z r is completely contained in G 1. So, G is open which 

implies or rather G 1 is open. Likewise the same applies to G 2. So, likewise I will just 

say likewise G 2 is open. It is the complement and if you are unable to connect a and 

anything in the complement via polygonal path, the path joining z and w where w is the 

point in a boll around z, that also will not be contained in G. So, you cannot polygonally 

connect any point in the neighbourhood of z and so G 2 will also be open.  

And now or said otherwise, if you have a point in a neighbourhood of z which can be 

polygonally connected to a, then you can extended by a segment to join z as well to a 

polygonally. So, what that does is it puts z in G 1, but by assumption it belongs to G 2. 

So, that is why G 2 has to be open. G 2 is open. So, G 1, G 1 or union G 2 is all of G, G1 

and G 2 open and G 1 intersection G 2 is empty which implies either G 1 is empty or G 2 

is empty which is what we want if if one of them is empty, then you would have shown. 

Well, G 1 is non empty. 
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We know that, we know G 1 is non empty. So, so G 2 is empty. So, every point what that 

tells is that i e G 1 is equal to G. So, every point in all of G can be polygonally connected 

to this fixed point a. So, that completes the first portion of the proof. Well, I am going to 

skip the other direction like I mentioned. So, that is the proof of this proposition and it is 

this property of open connected sets that we keep on revisiting. So, we will use the fact 

that any two points in an open connected set can be joined using a polygonal path which 

is completely connect, contained in the open connected set.  

So, for technical reasons I am sorry I will go back to this definition of the region. I will 

call an open connected non empty subset, I will always take a non empty subset of C and 

that is what I will call as region or a domain. So, please note that, that has to be non 

empty subset of C for it to be called a region or domain. By convention an empty set is 

connected. So, I insist that it been non empty. 
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Next, we will look at sequences of complex numbers. So, a sequence of complex 

numbers is is an ordered list of complex numbers such that corresponding to each natural 

number n there is an nth complex number, number in the list. We will call it a subscript n 

and so since the viewer I am assuming is familiar with sequences of real numbers. So, 

sequences of complex numbers are similar.  

So, it is it is a list where there is a starting starting complex number, the first complex 

number, the second complex number etcetera. So, it is the starting point then you have a 

list and then this is denoted by, denoted variously by a n and sometimes even by a n n 

equals 1 through infinity. So, there are different kinds of notation.  
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And an example, well a quick example a n such that I will define the nth term, the nth 

term is defined by 13 plus 1 by n times i. So, I have given a formula in terms of n where 

n is a natural number. So, that is an example of a complex sequence and then you could 

also define a sequences recursively like the Fibonacci sequence in case of real numbers. 

So, you could have also recursive definitions like this a naught is 1, a 1 is defined as 1 

and a n is defined as a n minus 1 plus a n minus 2 plus perhaps imaginary part is a n 

minus 1 plus a n minus 2 times a n minus 2, something like this. So, this is the recursive 

definition of a sequence. So, it is a, it helps you build the sequence. So, these are 

sequences of complex numbers and we can talk of their convergence in the topology of 

the complex plane. 
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So, we say so that convergence sequences can converge. A sequence a n is said to have a 

limit l, a complex number l. So, if given epsilon greater than 0 there is there is a 

corresponding corresponding n naught belongs to n such that for each n greater than or 

equal to n naught the modulus of a n, the nth term minus l is strictly less than epsilon for 

each n greater than or equal to n naught. 
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So, what that means is that a complex number l is said to be the limit of a sequence a n, if 

for any given epsilon. So, that epsilon is provided. So, if for any epsilon like that positive 



given you consider the boll of radius epsilon around l and then all the all the a n’s for n 

greater than or equal to certain n naught depending upon epsilon. So, all these a n’s will 

now be inside this boll. So, after a certain stage n naught, stage as in you think of this 

order list.  

Somewhere down the list starting from some points all numbers down in the list will be 

contained in this boll. So, the, that is when you say that, that is the meaning of modulus 

of a n minus l is strictly less than epsilon. Then you say that and if this this behaviour is 

exhibited for every epsilon you can find a corresponding n naught, then you say that 

sequence converges to the limit l. 
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And a sequence is said to be convergent if it has a limit and is said not to converge or is 

said to be not convergent, is said not to converge, is said to be not convergent if it has no 

limit. It is said to diverge if the modulus increases arbitrarily. So, a sequence is said to 

diverge a complex sequence of course, is said to diverge. If given any large positive 

number there is an n naught belongs to N such that for each n greater than or equal to n 

naught the modulus of a n is quite large. It is greater than the provided M. 

So, you give these circles, you imagine the circle centered at the origin and then large 

circles. So, if if there is an n naught corresponding to each of these circles such that 



modulus of a n is larger than the radius of the circle. So, which means these a n’s all of 

them fall outside a circle of radius M. Then you say that this sequence diverges. 
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So, if I give you an M and circle of radius M around origin then all your a n’s are outside 

this circle of radius M and this behaviour if it is exhibited for every positive real number 

M, if you can bring a corresponding n naught then you say the sequence diverges. So, 

that is about sequences converging and diverging. 
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So, it is similar to the notion of convergence and divergences of sequence of real real 

numbers and there is a Cauchy’s criterion for convergence. So, a sequence a n is 

convergent in C which means it has a limit if and only if given epsilon greater than 0 

there is an n naught belongs to n such that for every m comma n greater greater than n 

naught or greater than or equal to n naught the modulus of a m minus a n is strictly less 

than epsilon. So, that is similar to the Cauchy’s criterion for real sequences except here 

we considered the modulus of the difference a m minus a n. And then we have the, for 

compact sets we have following Bolzano Weierstrass property. 
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So, Bolzano Weierstrass theorem or a version of it actually. So, an infinite subset of a 

compact set has a limit point, it is interesting. Once again, we see that appearance of the 

compact set here and this in general of course, it is not true if if you do not consider a 

compact set. So, excuse me. So, this is not true for example, if you consider the natural 

numbers infinite sub set of the complex plane that may not have a limit point.  

So, that is the Bolzano Weierstrass property which we might use, property of compact 

sets and with this we will conclude the topology or the study of the topology of the 

complex plane. And we will see that the topological properties of the complex plane 

have a, have an important role to play in the study of analytic functions. And that thing 

we will see all throughout the course. 


