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Hello viewers, in the last session, we defined what a limit point is, we were discussing 

the topological properties of complex plane. We will continue with the discussion of 

limit points and isolated points. So, a limit point, recall from last time, is such a point 

that in the deleted neighbourhood of that point, or in a B prime a r, you find at least one 

point from the set or the intersection with the set of the deleted neighbourhood is non 

empty. 
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S intersection B prime a r, if that is non empty for every r, that is the point, for every r 

then, we say a is the limit point. So this is I mean, very similar to what I have defined 

before and we also saw what an isolated point is. If a point belongs to the set and if there 

is a neighbourhood of this point, there is a epsilon such that B a epsilon; a belongs to S 

and B a epsilon intersection S is empty for some epsilon. Or I should say B prime, 

because a itself is in epsilon. So, you remove the point a and consider the ball of radius 



epsilon around a. With the point a removed, intersection S if that is empty for some 

epsilon positive, then a is said to be an isolated point. We saw some examples last time, 

and we will see one more example here. So, consider the set S equals 1 by k plus i times 

2 by k, such that k is integer. So, this is our set. What we are going to show is that 0 is 

the only limit point of S. 
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So, please note in literature sometimes a limit point in textbooks, some textbooks called 

limit points as cluster point. So, there is another name for this limit point. So, we will 

show that 0 is the only limit point of S. So, notice this example is of a set of the form, 

you know x plus i times 2 x, where x is of the form 1 by k. So, essentially all the points 

of this set fall on the line y equals 2 x in the complex plane, x actually is subset of this 

line. 1 comma 2 that point is on the line and then minus 1 comma minus 2 is on the line 

and all other points fall between these 2 on the line and 1 by k tends to 0. 

So there is a clustering behaviour or a limiting behaviour at 0, although the point 0 in the 

complex plane itself is not in the set. So firstly, you know we want to show that 0 is a 

limit point. So, consider B prime 0 epsilon, epsilon positive. So, by Archimedean 

property of real numbers there exists n, there is an n such that 1 by 2 n is strictly less than 

1 by n, is less than epsilon. 1 by 2 n is of course less than 1 by n but, there is an n such 

that 1 by n is less than epsilon. 
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So 0, is indeed, is a limit point of S. So, every neighbourhood of 0 has some other point 

in S than 0, well 0 itself does not belong here but, there is some other point in there. That 

is the point. So, then also we will show that any other Z in the complex plane is actually 

not a limit point. So, the idea is simple. If you take any point half of this line then, you 

can find a ball around that point, which will stay clear of the line. So, there is no chance 

of intersecting with the set S, which lies completely, which is the subset of the line.  

So, for points lying outside, the idea is simple. So, for Z belongs to Z equals x plus i y 

belongs to C and Z naught of the form x plus 2 i x for some x belongs to r, these are 

essentially points which lie outside the line, they are not of the form x plus 2 y x. Then 

what happens is, then the perpendicular, the short form for perpendicular distance, of the 

point from the line, say call that epsilon 1, epsilon Z depending on, Z epsilon subscript z, 

is positive, is strictly positive because the point does not lie on the line. 

Then, B Z epsilon Z will, I mean will, completely stay half of the line. So, in particular 

half of the subset of the line, namely S; here that is empty. So, Z is not a limit point of S. 

Likewise, if you take a point on the line well if it is away from the point 1, 2 or minus 1, 

minus 2. Or, what I mean to say is, if it is half of this line segment between 1, 2 and 

minus 1, minus 2. Even if it lies from the line what we can do is we can take the distance 

of that point to the point 1, 2 and take a ball of that radius. So that will stay clear of the 

set S. So, that is the idea.  
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So, to make it concrete, if Z is of the form, if Z is equal to x plus i 2 x belongs to C x 

greater than 1, or x strictly less than minus 1 x, belongs to r, of course. Then, what you 

can do is take epsilon Z equals the modulus of x minus 1. So, what we are doing is, we 

are calculating the distance or taking this x plus i y projecting it on to the x axis. Then we 

are taking 1 or minus 1 and we are taking the modulus of x minus that. 

So, actually this pertains to x greater than 1 for x less than minus 1, we can do something 

similar. We can take x plus 1, epsilon Z x plus 1. So, if that is x greater than 1 or x is less 

than minus 1 then, take epsilon Z is that or epsilon Z is modulus of Z plus 1 respectively. 

Then, what we can guarantee is that B Z epsilon Z intersection S is empty, because I 

mean if you take a ball of this radius, ball of this radius that definitely is going to stay 

clear of the set. So that intersection S is empty. So, notice that if you, I mean this ball 

does not contain points, which are at distance epsilon Z from Z, so that is the definition 

of ball, the inequality there is strict.  
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So, the modulus of it is all such points w, I mean the set is set of all points w, such that 

modulus of w minus Z is strictly less than epsilon Z. So, we do not allow equality, so in 

particular that point 1,2 or minus 1, minus 2 do not lie in B Z epsilon Z; whatever the 

cases they do not lie there. So, the intersection with S is definitely empty, so that is the 

idea. So, any point on that line with x greater than 1 or x less than minus 1 is also not a 

limit point. So, Z is not a limit point. There is a third case. Now, what about points in 

between? 
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So, if Z is of the form x plus 2 i x. First, let me assume that Z is of this form and Z does 

not belong to S. In this case there are integers such that x strictly lies between 1 by k plus 

1 and 1 by k. Pick epsilon Z is equal to minimum of modulus of x or absolute value of x 

minus 1 by k plus 1 comma x minus 1 by k. The picture is there is a x here and then there 

is 1 by k plus 1, plus i times 2 by k plus 1 here. 

So, that point is 1 by k plus 1 comma 2 by k plus 1 and then there is that point 1 by k 

comma 2 by k here. So, you measure the distance to either of these points, x lies between 

1 by k plus 1 and 1 by k, and then you take the minimum of these 2. So, B Z epsilon Z 

intersection S will be empty. B prime, so B prime Z epsilon Z, of course, intersection S 

will also be empty. 
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Now, in the case that if Z is equal to x plus 2 i x and minus 1 less than or equal to x less 

than or equal to 1 and Z belongs to S, then what you do is you take a epsilon, take 

epsilon is equal to 1 by k plus 1 squared. You could take 1 by k plus 1, that also or 1 

yeah, 1 by k plus 1 squared. So, it is the distance between 1 by k and 1 by k plus 1. But, I 

should say what is k. There is a k such that x is equal to 1 by k, because x belongs to the 

set. 

So then, take epsilon is equal to epsilon Z is equal to 1 by k plus 1 square. So, B Z 

epsilon Z, B prime Z epsilon Z now; Z of course belongs to the set. So, we need to delete 



the point itself that intersection S is empty. So, in any case any other Z, any point Z 

belongs to C minus 0, we have shown, is not a limit. So, every such point has a 

neighbourhood which stays clear from the set at every point. 
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So, what we have shown is that Z belongs to C minus 0 intersection S, which is equal to 

S. We have shown that S is completely contained in C minus 0; 0 is not a point in this 

thing and every point in S is an isolated point.  

Next, we are going to look at the notion of a closure of a set. So, recall that closed set is 

something whose complement is open. So, in the context a set is said to be closed in C in 

the complex plane if its complement is an open set in the complex plane. Now, we have a 

set which may or may not be a open and may or may not be closed either and then there 

are points which are limit points to this set and which means may or may not be contain 

in the set. 

So, when you add all the limit points of a set to the set, we are going to show that that 

will become a closed set. To that end we make the following definition the closure of a 

set, so we are sort of closing the set with its limit points. So, these limit points are like 

holes if they are not already present in the set. So, we will close the set, close those gaps 

or holes with the limit points. 



So, the closure of the set, of a set S contained in C denoted by S bar, S bar is closure of 

S, is the union of S and all the limit points of S. The limit point set, I should say this as 

the set of all limit points of S. So, that is the closure. So, the first thing we want to know 

is whether S bar by this definition is a closed set. We are calling it a closure but, we want 

to know whether it is really a close set. So, I will prove a proposition which says that S 

bar is closed but, first an example. 
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At the end of last session we solved the following exercise. Show that every point in C is 

a limit point of the set x plus i y, such that x belongs to Q, the rational numbers, and y 

belongs to Q. 

So, what that means is if I call this set S, then what a this means is S closure now is the 

union of S with set of all limit points. Well, this itself is C, set of all limit points is C. So 

this is going to be C. So, the closure of a set this all of C, of this set is all of C. In the 

example that we just saw, so in the earlier example S was the set of all 1 by k plus i times 

2 by k such that k belongs to Z. The closure of S is, there is only 1 limit point to S 

namely 0 that we have shown, so, S closure is going to be 1 by k plus i times 2 by k such 

that k belongs to Z and union the point 0, that is S closure. So, those are some examples. 
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We, immediately want to show the following proposition that let S contained in C be a 

subset, S closure is a closed set in C, recall. By closed set we mean the compliment is 

open. So, what we want to show is that the compliment of S closure is open. So, let Z 

belongs to the compliment of S closure. So, Z cannot belong to S because S closure 

contains S, since S closure contains S, so in particular Z cannot belong to S. Also, Z is 

not a limit point of S because limit points are also contained in S closure. So, it implies 

there is a epsilon positive, there is an epsilon positive such that B Z epsilon intersection S 

is empty.  
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So, what we want to show is that, so we want to show that B of Z epsilon intersection S 

bar S closure itself is empty. We are able to conclude that Z is not a limit point of S and 

Z does not belong to S. So, B Z epsilon intersection S is empty that much we know 

because Z is not a limit point there is some epsilon such that that happens. 

Now, we want to show that B Z epsilon intersection S closure itself is non empty or is 

empty. So, in order to show that suppose it is non empty, we will arrive at a 

contradiction. So, suppose B Z epsilon, well we already knows Z is not in S closure. So, 

suppose B prime Z epsilon intersection S closure is non empty, since we already know 

this then there is a limit point and since S closure is the union of S and limit points there 

is a limit point of S in B prime Z epsilon. 



(Refer Slide Time: 23:07) 

 

So here is the picture, here is B Z epsilon. Suppose, w is the limit point, Z here and w is 

the limit point of the set S. So, say I will not call that w. Now, modulus of w minus Z is 

strictly less than epsilon because it is in the ball of radius epsilon, around Z. Let 0 strictly 

less than delta, strictly less than epsilon minus modulus of w minus Z. So here is ray or a 

radius line passing through Z and w and the distance between w and Z is some number 

which is strictly less than epsilon. 

So, epsilon minus modulus of w minus Z is a strictly positive number. So, pick a number 

between that strictly positive number and 0. So, by properties of real numbers you can do 

that, then B prime of w delta, so essentially we are talking now delta is this remaining 

distance, so that is your B prime of w delta, without w. So, this intersection S has to be 

non empty because w is a limit point of S by assumptions. w is a limit point, means that 

every neighbourhood of that point, every deleted neighbourhood of that point contains 

another point of the set. So, this implies that B prime of Z epsilon contains, so this 

neighbourhood contains, the hash neighbourhood contains a point from S. Which means 

B prime Z epsilon intersection S also contains the point, which is a contradiction, which 

is a contradiction, so our assumption that that is non-empty, which is a contradiction. 
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So, B Z epsilon intersection S closure has to be empty. I am including Z because Z is 

picked from compliment of S closure. So, this implies B Z epsilon there is some epsilon 

such that for every point Z in the compliment of S closure. There is a corresponding 

epsilon such that this ball is contained in S closure compliment, which implies S closure 

compliment is open in C, which will imply that S closure is a closed set. So, it is the 

proof. So the closure is indeed a closed set. 

Now, what we want to show is the following equivalence, just as a further extension. Let 

S contained in C then, the following are equivalent. First S is the closed set, S is closed. 

So the context is C, so I will not say inside C. So, S is closed in C. S contains all its limit 

points and 3, S closure is equal to S. so these 3 are one and the same; these 3 statements 

are one and the same. 
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So what is the proof of this fact So what we will show is that, we will show 1 implies 2; 

implies 3; implies 1. So, then all three are equivalent. So, 2 implies 3 is simply by 

definition. If S contains all its limit points then, the union of S with its limit points has to 

equal S, so is by definition of closure. If S contains all its limits points, S closure is S 

union limit points of S. But, if the latter is contained in S then, the union is simply S. So 

that is by definition. 

Then, 3 implies 1 is by previous proposition. So, S closure is a closed set, S closure is a 

closed set, and if S is equal to S closure, S is a closed set, so 3 implies 1. We have shown 

2 implies 3 and 3 implies 1. We have shown both these. So, we have to show 1 implies 2, 

that if S is a closed set then it contains all its limit points. So, suppose S is a closed set, S 

is closed I will say I short then, we will show that no limit point of S can be in S 

compliment. So, limit points will show, limit points of S cannot be in S complement. 

That is what we will show, which means every limit point has to be in S. 
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So, suppose Z belongs to S compliment, is a limit point of S. But, we know something 

about S compliment; since S compliment is open, there is an epsilon positive such that, 

for open sets we know that there is room around the point present in the set. So, since 

this is open, there is an epsilon positive such that B Z epsilon is sitting completely inside 

S compliment. What that means is B Z epsilon for that particular epsilon positive 

intersection S if that is contained in S compliment this intersection S has to be empty, 

which contradicts the definition of the assumption that Z cannot be a limit point. I mean 

if that intersection S is empty for some epsilon, that Z cannot be a limit point of S. 

So it contradicts assumption that Z is the limit point. So it has to be that no limit point of 

S is in S compliment. So this implies S contains all its limits, which is 2. So, that is how 

1 implies 2 and the statements are equivalent. So, that is a discussion about closure of a 

set and then we should also be aware of following notion of interior and boundary points. 

So we have seen limit points and isolated points there is also something called interior 

point. 
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So firstly, we know that not all sets are open, for some points in the set there could be 

room in it, some points there could be no real room around the point. So, we want to 

identify those points of a set and label them which have room around themselves. So, 

that is an interior point, interior point. Let S contained in C, so this is a property about 

points of a set. So, a point Z belongs to S is called an interior point of S if Z has room 

around itself, if there is an epsilon positive such that B Z epsilon is completely contained 

in S. If this condition is met for every point in the set then, the set is open. But that need 

not be the case. Nevertheless a set could be not open and still have interior points. 
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So, first example, well, an open set—every point of an open set is an interior point. 

Another example is x plus i y in complex plane such that x y are both rational numbers. 
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Then, no point of S is an interior point. How do we know this? Well, if you take any 

epsilon ball around a point in S then, there are bound to be points which have irrational 

coordinates in 1 or the other component, by component I mean x and y the real and 

imaginary part, so in every neighbourhood this is true for a point. 



So in particular, it is true for every neighbourhood of points in S. So they cannot be 

interior points, the ball has holes. So, holes in S, so it cannot be an interior point. So, that 

is a vague proof of why this is true. Of course, there could be sets which have some 

interior points and some are not interior points. For example, if I take the union of real 

line, union ball of radius 1 around 2 comma 2. So, it is B 2 plus 2 i, 1 union the real line; 

set of all x plus i 0 belongs to C, x belongs to r. 

So of course, all the points in this, that is an open set—that component, that piece is an 

open set. So, all point here are going to be interior points and all points here are not 

going to be interior points. So that is an example, where set contains some interior points 

and some which are not interior points. So there are other scenarios possible as well. The 

viewer is asked to construct examples and see various scenarios where sets have some 

interior points and some which are not interior points.  
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We are going to state a fact that every interior point is a limit point that is clear by the 

definition of interior point. If something is an interior point there is a B Z epsilon such 

that this intersection S is non-empty, something is an interior point this ball is completely 

contained in S. So if you take any epsilon less than this particular initial epsilon, any 

delta less than epsilon then, that ball intersection, deleted ball—so you delete that point, 

intersection S is going to be non-empty. So that point is a limit point. So that is why 

every interior point is a limit point. 



Now, there is a notion of boundary and boundary points. So first, I will define a 

boundary point. So, there are interior points and then there are points which we will call 

as boundary points by the following notion. So, roughly I will give you the intuition. 

Suppose you consider B 0 1. You would want to call all the points on the unit circle in 

the complex plane as the boundary of this. So, B 0 1 is the points set of all Zs such that 

modulus of Z is strictly less than 1 and so, you would want to call set of all Z such that 

modulus of Z equal to 1 as the boundary of this set, boundary of B 0 1. There could be 

more complicated scenarios. 
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Well, you could take B 0 1 and then may be throw in some points with modulus 1. So let 

us say you throw in all the points Z equals x plus i y such that modulus of Z is equal to 1, 

x comma y belong to q; for example. So, you are throwing in some points not all points 

with modulus 1 have rational coordinates like that - so you are throwing in some points 

to this but, despite throwing in some points into this set S, you would still want to call set 

of all Z such that module Z is equal to 1 as the boundary of S. B d y short for boundary 

of S. 

So that is the intuition behind this boundary notion. So you could have points which are 

contained in this set and you know would still be called as boundary points and you 

could have point which are completely non contain in the set and still you would want to 



call them boundary of the set. The contrasting scenario to this example is where you take 

B 0 1 bar and you would still want to call set of all Z such that mod Z is equal to 1 as the 

boundary. Mans this contains all its boundary points for example, this set. So, more 

general definition is as follows. 
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 Let S contained in C, definition, let S contained in C. A point Z belongs to C is called a 

boundary point, notice Z does not need to belong to S, so a point Z in the complex plane 

is called a boundary point of S if B Z epsilon intersection S is non-empty and B Z 

epsilon intersection S compliment is also non empty, for every epsilon positive. 

So, every epsilon neighbourhood, said otherwise, so every epsilon neighbourhood of Z 

contains points from the set and from outside the set. So, contains points from S and 

from S compliment. So this example tells you or this definition tells you that your old 

familiar examples are true. So, if you take B 0 1 any point here, any point on the unit 

circle and if you take any neighbourhood of that there are points outside the unit disc and 

inside the unit disc. So these examples will make all those sets, I mean, all those points 

such that mod Z is equal to 1 as boundary points of those set. So, that is an example of 

this definition. 
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Another example is, let us revisit our set S equals set of all x plus i y such that x belongs 

to Q and y belongs to Q. What are the boundary points? We saw that no point of this set 

is an interior point and every point of the complex plane is actually a limit point of this 

set. So it is a strange set and then what is also true is a every point of the complex plane 

is actually a boundary point. 

So every point of the complex plane of C is a boundary point of S. That is because if you 

take any neighbourhood of any complex number, it will contain points with rational 

coordinates and it will contain points which do not have rational coordinates. So, then 

every point in the complex plane is actually a boundary point of the set. So that is 

another example. So, here is a yet another example. Let S equal set of all Zs such that 1 

less than or equal to mod Z less than 2. Then the boundary, so that is the curly bracket, 

then what is the boundary of S? Then the boundary of S. So I will not as a part of this 

example but, more generally let me define the boundary of a set S. Usually this refers to 

the set of all boundary points of S. I defined the boundary point - a boundary, simply a 

boundary of the set is set of all boundary points of S. So then the boundary of this set S is 

boundary of S. 
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For this example, the set is equal to set of all Z such that the modulus is either 1 or the 

modulus is 2. That you will identify as the annular region between 1 and 2. So you have 

that mod Z is equal to 1 mod Z is between 1 and 2, but not equal to 2. So set of all such 

points. So, boundary is that, so that is a boundary notion of a boundary of a set. 
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So, exercise to the viewer, what is the boundary of the set? So, what is the boundary of 

the set such that mod Z is strictly less than 1 union set of n plus i 0, such that n belongs 

to Z. Calculate the boundary of this. 



So, it is the open unit disc union the integers. So, also further find the limit points, 

isolated points and interior points of S. So, we have seen limit points, isolated points, 

interior points, boundary points; there is also a notion of exterior points. These are points 

which lie completely outside the set in the following sense, a point Z belongs to C is 

called an exterior point to a set S contained in C if there is an epsilon positive such that B 

Z epsilon intersection S is empty. So, there is a neighbourhood, there is a ball around the 

point Z which is completely half of the set S. In that event you call Z as an exterior point 

of the set S. 
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So, here are some quick facts. Please check all these facts, these are easy to check from 

the definitions. But, this is summary; I mean this is summary of all these limit points. So, 

1 needs to internalise these facts. So, every interior point is a limit point. So, this is the 

relation between limit points and interior points. Every interior point is a limit point, but 

every limit point, but every limit point need not be an interior point. In fact the limit 

point need not even belong to the set, so it cannot be interior point sometimes. 

So that is 1. Second statement I want to make is that the limit between isolated points 

and interior points. So, isolated points are never interior points. That is because there is 

no neighbourhood of those points contained in the set. And interior points are never 

isolated. Interior points enjoy a whole ball around them which is contained in this set, so 

they are not isolated. So, interior points are never isolated; that is the relation between 



isolated and interior points. So, show this fact. Every boundary point of a set S is either 

an isolated point or a limit point, is an isolated point or a limit point. 

For example, if you take the unit disc, the open unit disc union some point here, let us 

say 3. Then 3 is a boundary point, the boundary of this set is going to be 3 union set of 

all Z such that mod Z is equal to 1. So, the boundary here is 3 and then the unit circle. 

So, boundary can have isolated points and then there are other points mod Z is equal to 1 

and every point mod Z is equal to 1 is a limit point of the set S. So, boundary points are 

either isolated points or interior point or limit points. So try to show this fact more 

generally; that is an exercise. 
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I also want to say that every limit point need not be a boundary point, a boundary point. 

Why? That is a question for the viewer; need not be a boundary point, why? Think about 

it, and try to prove the ones, which I have not proved here. Those are exercise for the 

viewer, I will stop. 

 


