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Module - 6 

Isolated Singularities and Residue Theorem 

Lecture - 1 

Removable Singularities 

Hello viewers, in this session, we will learn about the singularities in particular isolated 

singularities of an, of an analytic function. So, firstly a point in the complex plane, where 

a function f is analytic is called a regular point. So, a singularity is such a point, where f 

is not defined, so of particular interest are singular points, which are surrounded by 

points, which are regular or in other words if there is a point a, such that in the 

neighborhood of a f is analytic. Then such a point is said to be a singularity, isolated 

singularity of f and we are interested in predicting the, the behavior of f. Then around 

this point are using the behavior of f around this point in order to classify such isolated 

similarities. So, I will first define a regular point and a singular point.  
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So, a regular point we say that a belongs to C is a regular point of a function f. If f is a 

analytic at a, and a point a is called a singularity of a of f rather called a singularity of f. 

If a is a limit point of regular points of f, so that is a singular. So, suppose f is analytic on 

B prime a r, then we say that f have an isolated singularity, at a ok. So, the first trivial 



case is the case, where f is actually analytic at a. So, it is a, it is analytic in B prime a r 

recall B prime a r is the is the deleted neighborhood of a.  

So, we are removing a from the ball of radius r around a. If f is analytic in this de 

punctual neighborhood or deleted neighborhood it could happen that actually f is analytic 

at a, but we did not define it there, that is all. So, in that event we say that such a point is 

a removable similarity of f at a and there are other cases, but first this, this is I mean first 

this is the trivial case, which we will consider and then we will classify other kinds of 

behavior of f around a. 

(Refer Slide Time: 04:09) 

 

So, firstly ill start by giving some examples, so consider these functions f 1 of z define 

by e power z minus 1 divided by z for z belongs to C and f 2 of z. So, firstly I will I will 

complete these three examples and f 2 of z is 1 by z for z belongs to C. One can actually 

consider f 2 of z equals 1 by z power n. n is any integer for z belongs to C, okay? f 3 of z 

is equal to e power 1 by z for z belongs to C. I apologize C minus 0 at 0 at this function 

is not defined, so C minus 0 and even this is C minus 0.  

All these are functions on C minus 0, so all these have singularities at the point 0. So, f 1, 

f 2, f 3 have isolated singularities at 0 at z equals 0. And we could I mean f 1 could be 

redefined to be, so these are three different kinds of isolated singularities as we will see. f 

1 could be redefined as f 1 of z, so let us redefine f 1. As f 1 of z is whatever it is given to 

be e power z minus 1 by z for z naught equal to 0 and let us define it to be 1 for z equals 



0. So, since we know that the limit as z goes to 0 of this quantity e power z minus 1 by z 

is actually equal to 1. So, that limit is 1, so if you redefine f 1 to be 1 at 0, then f 1 is 

actually analytic. 
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One can check f 1 is analytic con the whole of the complex plane. So, we have actually 

in effect remove the singularity at at 0 by by redefining f 1 at 0 itself to be 1, which is the 

limiting value of the definition of f 1 and a neighborhood. So, if the limit we will see, 

that if the limit of f of a function f in a deleted neighborhood, as z goes to that a isolated 

singularity exists, then, then f will be analytic. Of course, f is analytic in the deleted 

neighborhood, then f is analytic in the whole of the disk and that singularity can be 

removed.  

So, such a kind of singularity will be suggestively called as a removable similarity. So, 

another way of saying this is the function, f if it can be extended to an analytic function, 

even at the point which is the singularity. Then, then a such a kind of singularity is 

removed, such a kind of isolated singularity is removable, okay? We, we will define that 

in a movement, so but f 1 here has such a kind of singularity. f 2 f 2 of z has another kind 

of singularity, f 2 of z notice that it tends to infinity as z tends to 0, whether you consider 

this definition or the that definition of f 2 on C minus 0, here also I should have select C 

minus 0.  



So, which ever definition we consider, we know that as z tends to 0, the modulus of the 

denominator becomes larger and larger. So, f 2 tends to infinity. So, this kind of 

singularity, so this kind of singularity has a definite pattern, f 2 of z in modulus tends to 

infinity or f 2 of z tends to infinity as we call if and also. Notice that, z times f 2 of z if 

you consider the first definition limit as z goes to a 0 of z times f 2 of z is 1 are if you 

consider the other definition in the parenthesis of f 2. Then limit as z goes to 0 of z 

power n times f of z f 2 of z is equal to 1. In either case the limit of the appropriate power 

of z minus 0, which is z times f 2 is a non zero quantity and that actually characterizes 

the the the kind of singularity of f 2 and 0.  

So, f 1 is actually analytic of 2 is said to have a pole at the at the singularity 0. The 

singularity zero of f 2 is said to be a pole, okay? Then we will see something we will 

define something called the order of the pole that integer n here or one in this case we 

will we will call that as the order of the pole. We will define that more concretely and 

that is another kind of singularity. Finally, you notice has different kind of singularity f 3 

of z does not tend to infinity as z tends to 0 and sorry as z tends to 0 and f 3 of z does not 

approach a limit.  

f 3 that does not approach a finite, limit n as z approaches 0. There is no finite limit for a 

f 3 nor does it uniformly go off to infinity, so it, it is sort of jumping back and forth. 

Well, see a more concrete pattern to this jumping and then this kind of singularity is the 

third kind we will call this an essential singularity. We will see that the the Casorati 

Weierstrass theorem for these kind of singularities, okay? In a sense these are the only 

three kinds of behavior, we will also show that these are the only three kinds of behavior 

exhibited by a function, which is analytic in a deleted neighborhood of a point a, okay? 

So, let us proceed to classify the isolated singularities of a function. So, we will start with 

the removal similarity like I have said.  
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So, I will first define a removal similarity. If function f is said to be, is said to have a 

removable similarity at a point a, if f is analytic in B prime a r for some r positive. 
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And if there is a function there is an analytic function g on the whole of B a r which 

means it it is already defined on at the point a itself with with g of z is equal to f of z for 

z belongs to B prime a r. So, g is an analytic function on B a r which agrees with f of z at 

all points in B prime a r. So, then f is said to have removable similarity, we will give a 



criteria to to identify removable similarity for a function f. So, here is the criteria, so here 

is the theorem, which states the criteria.  

So, suppose that f of z is analytic on B prime of a r where r is some positive quantity, 

there is an analytic function g of z on B a r. So, that g of z is equal to f of z for for z 

belongs to B prime a r if and only if limit as z goes to a z minus a times f of z is equal to 

0. So, if this condition is satisfied that the limit as z goes to a of z minus a f of z is 0, then 

then there is an analytic extension of f to the whole open disk B a r. If f is already 

analytic on B prime of a r. So, and it goes the other way round. Of course, if g matches 

with f on B prime of a r and g is analytic then limit z goes to a z minus a times f of z will 

be 0 by continuity of g. So, so that direction is easy, but the other direction requires some 

work, okay? 

So, in retrospect this is equivalent to saying that there is an analytic extension of f on to 

the disk B a r, if and only if the limit z goes to a f of z is defined, if the limit exists. So, I 

am saying in retrospect in retrospect of what we are going to do, so if and if if we prove 

this theorem after we prove this theorem, we will see that that will imply that the 

statement that I have said. That limit z goes to f of z if it exists, then f can be redefined at 

a in order to make it analytic on the whole disk B a r. So, that is the theorem and in order 

to prove this theorem we will first see couple of lemmas, okay? 
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So, lemma before we prove this we will see this lemmas. Let f be analytic on B a prime r 

or B prime a r satisfying limit z goes to a z minus a f of z is equal to 0. Then integration 

over gamma f of zeta d zeta is equal to 0 for any simple closed curve gamma in B prime 

of a r. So, gamma should lie in the deleted d disk B a r B prime a r. Then integration over 

gamma of f is, so it is a modification to Cauchy’s theorem.  

So, what we are saying is that we can have a point a, at which we have a condition limit 

z goes to a z minus a f of z is 0. With these kind of exceptional points the Cauchy’s 

theorem still holds that the integration around any simple closed curve of is 0, if f is 

analytic in B prime here. So, the proof is simple, so if the inside of gamma i of gamma 

recall we have define what the inside of a contour gamma is does not contain a, then the 

lemma is true automatically by version of Cauchy’s theorem, that we proved already 

because then your inside of gamma is completely contained in the domain of analyticity 

of f. So, then this lemma is true. So, if a belongs to inside of gamma, then we ha we need 

some modification.  
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a is inside of gamma, then given epsilon greater than 0, we know there is a delta positive 

because the limit the the the the said limit exists of z minus a f of z and it is equal to 0, 

given epsilon greater than 0 there is a delta greater than 0, such that modulus of z minus 

a times modulus of f of z is strictly less than epsilon by 2 pi. We need this at just print 

factor. So, this is true when ever z belongs to a ball of radius delta around a. So, then 



now consider now consider a circle of radius delta 1 with where delta 1 is strictly less 

than delta delta 1 is positive strictly less than delta. So, I will call this circle C delta 1, 

consider a circle C delta 1 of radius delta 1 around a. So, the center of the circle is a and 

then integral over gamma f of zeta d zeta is equal to the integration around this circle. 

Now, C delta 1 of f of zeta d zeta. 
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This is because, now if you have this contour gamma oriented in the positive direction, if 

we take a circle of radius delta 1 around a then, we know by one version of Cauchy’s 

theorem, that the integration over gamma of f of zeta d zeta is going to equal integration 

over the contour C delta 1 f of zeta d zeta. So, these are one and the same by version of 

Cauchy’s theorem. So, this is by Cauchy’s theorem for simple closed curves, so then 

then the modulus of of this integration f of zeta d zeta is less than are equal to the 

integration over C delta 1 of the modulus of f of zeta times modulus of d zeta is strictly 

less than well 1 by 2 pi times integration of epsilon.  

Because modulus of f of zeta is less than epsilon by sorry, mod modulus of z minus a f of 

z is less than epsilon by 2 pi. I have modulus of f of z less than epsilon by modulus of z 

minus a in this case zeta minus a times modulus of d z d zeta, okay? So, notice this is 

true for every z in B a delta and this contour C delta one lies in completely inside this B a 

delta. So, for all points on the contour C delta 1 this this inequality holds this inequality. 

This estimate in terms of epsilon holds and so and so we can we can say that the modulus 



of f of z is less than or equal to we can say less than are equal to 1 by 2 pi epsilon by 

modulus zeta minus a m mod d zeta a n.  
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Then divide by 2 pi this is on C delta 1, so this is equal to epsilon by 2 pi times 2 pi. So, 

this integral 1 by mod z minus zeta minus a mod d zeta is 2 pi. So, that cancels and this is 

equal to epsilon. So, this is less than epsilon, so this was a strict inequality sorry. So, this 

is a strict inequality here, so I get epsilon. This is strictly less than epsilon, so, this so in 

summary this integral is equal to this integral and this is arbitrarily small. So, so 

integration over gamma f of zeta d zeta is equal to 0.  

So, notice that we have we have we have proved this by using a technique similar to 

Cauchy’s theorem, but we are using Cauchy’s theorem itself once again. What we are 

doing is, we are considering this contour gamma which contains a in its interior. We are 

sort of contracting this this contour to a very small circle around a and then we are 

estimating the value of the function f on that circle around a itself. So, that is a teahnique 

very similar to 1 and Cauchy’s theorem, but this condition, this condition that the limit z 

goes to a z minus a f of z is equal to 0, helps us give this estimate.  

Then we can say that the integral of f around that circle is 0, so the around the the 

integration over gamma itself is of f of z is… So, that is the proof of this lemma there are 

only two cases that a is in the inside and a is not in the inside of gamma. So, in either 



case I have showed that the integral is 0, so that proves this lemma and we need one 

more lemma before we can prove the theorem.  
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But first notice that, note so the here is the remark on this lemma we just proved we can 

have more than one points, we can have finitly many points a one through a n for which 

limit z goes to a i z minus a i times f of z is equal to 0. And and of course, with 

assumption that f is analytic on well on a disk B a r minus the points a 1 a 2, so on till a 

n. Even in this general scenario, we can show that we can show that using the very same 

thing, we can, we can contact these disks a 1 through a n, which are finitely many points. 

We can contact these disks to smaller disks or contract this region to a very small disk 

around these points a 1, through a n.  

Then apply this lemma repeatedly to each of these disks to show that the above holds the 

same lemma holds with many points having such a such a condition limit z goes to a i z 

minus a. If of z is equal to 0, so even in this case, even in this case integration over 

gamma f of zeta d zeta is equal to 0, where gamma is a simple closed curve in B. 
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a r minus a 1 a 2 so on till a n . So, we have the slightly modify the technique of the of 

the proof of lemma to to consider the case where more than one points a 1 through a n 

are inside gamma. What you can do is actually, then take very small circles around these 

points. So, that the integration or gamma equals the integration for the smaller circles 

which do not contain any other points. Then one of the a i s inside them and then by 

using Cauchy’s theorem the integration on gamma.  

So, may be a schematic will help, so here is gamma. Suppose, it contains a 1 and a 2 you 

can consider two small circles around a 1 and a 2. The integration over gamma will equal 

the integration on these kind of circles and then we can use Cauchy’s or the limit on a, 

the limit condition to show that the integration on the smaller circles of f is 0. Hence, the 

integration on gamma is 0, okay? So, so that is a remark on the theorem and we need one 

more lemma. 
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Here, so let f be analytic what we are going to do is with the same condition limit z goes 

to a z minus a f of z is equal to 0. We are going to say that the Cauchy’s integral formula 

holds. So, in B prime a r and let limit z goes to a a minus a f of z is equal to 0. So, if this 

condition holds, let gamma be circle of radius r 1 less than r. So, I will write this as 

gamma be a circle of radius r 1 with 0 r less than r 1 less than r centered at a. Then f of z 

is equal to the integration 1 by 2 pi i times the integration of f of zeta by zeta minus z d z 

d zeta for any z belongs to b prime a r 1. 

Note that, we use the Cauchy’s integral formula to show that f of z is equal to this 

particular thing this particular integral on the right hand side. That was a kind of 

representation formula for the value of f at points inside the circle. So that, we that we 

have emphasized, while showing I mean, while showing the version of Cauchy’s integral 

formula. Here this lemma says that, that kind of representation formula for f of z for z 

inside a circle of radius r 1 like this is still valid, if z is not equal to a z belongs to B 

prime a r 1 provided that this condition limit z goes to a z minus a f of z equals 0. 

So, once again we will we will use this condition to actually show that all the previous 

results are the the Cauchy’s integral formula still holds. So, let z naught belong to B 

prime a r, so I am picking an arbitrary point in B prime a r 1, sorry B prime a r 1 and then 

I will show that this is representation formula holds. So consider, consider capital F of z 

is equal to f of z minus f of z naught by z minus z naught.  
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Then notice that the limit z goes to z z naught of capital F z times z minus z naught, so 

firstly capital F is analytic on B prime a r 1 minus the point z naught. So, we are in a 

situation like this a remark like in this remark. So, there are finitely many points and f is 

analytic in a disk minus some point removed, okay? So, we are in that kind of situation 

and F is analytic over there and limit z goes to z naught f of z times z minus z naught. 

What is this? This is the limit as z goes to z naught of f of z minus f of z naught. Well z 

naught belongs to B prime a r 1 where F is analytic.  

So, it is continuous at least, so this limit is 0 also for the other ambiguous point a capital 

F of z times z minus a. This, what is this? This is the limit as z goes to a of f of z times z 

minus a by z minus z naught minus f of z naught times z minus a by z minus z naught. 

Each of these is 0, so the first one is 0 because of the given condition by the hypotheses 

and the second one is 0 because the limit as z goes to a z minus a 0. So, all in all this is 0 

minus 0, this is 0. So, the limit exists and this is 0. So, B prime a r 1 in B prime a r 1 

minus z naught f capital F is analytic. At the two points z naught and a, this kind of 

condition is satisfied.  
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So, by above lemma, so by the above remark, following the lemma, following the proof 

of the previous lemma, what we can say is that integration over gamma capital F of z d z 

is 0 for gamma has given. Since, since we are picking this point z naught inside the circle 

of radius r 1, there is a no danger of z naught itself lying on the circle of radius r 1. Also 

a is, a is not on the circle of radius r 1, centered at a. So, we have this integral 0. So, what 

this means is that the integration over gamma of f of z minus f of z naught by z minus z 

naught is equal to 0, d z is equal to 0. So, that is the definition of capital F of z. 
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So, this tells that integration of f of z by z minus z naught d z is equal to over gamma is 

equal to f of z naught times the integration over gamma of 1 by z minus z naught d z. We 

know that that integration is 2 pi I, so this tells us that f of z naught is equal to 1 by 2 pi i 

times integration over gamma of f of z by z minus z naught d z, which is what we want, 

okay? So, since z naught is arbitrary point inside B prime of a r 1, so since z naught 

belongs to B prime a r 1 was arbitrary, that lemma is proved. So, this representation 

formula holds for any such z naught, so that is the proof of this. Once again there is there 

can be a remark following this, that there can be more points than a itself, where this 

kind of condition can be satisfied.  

Even then we can have the representation formula, where we avoid such points as a. So, 

now we are ready to prove the theorem. So, let us go back to the statement of the 

theorem, so this theorem says that if we have this really handy condition that z minus a 

times f of z is equal to 0, in which case the two lemmas following this hold. Then there is 

an analytic extension to f of z at the point a, so one direction is pity easy. Also I, I will 

slightly add an important term to this theorem sorry, I will I will actually add there, there 

is a unique analytic function. 
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So, this function is also unique which gives more rigidity, okay? So, this should, this 

function such an extension is unique well the uniqueness is immediate because g and f 

agree on a set with a limit point. So, by that identity theorem the, the uniqueness 



automatically follows, so that is a run much of a punch, but nevertheless uniqueness 

follows.  
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So, proof of theorem, so well the necessity condition is easy one direction of it is easy 

necessity says that, well requires that g is continuous. So, which implies that limit z goes 

to a z minus a f of z is equal to limit z goes to a, there is unique extension to f and that is 

g. So, we are assuming that, so then this is z minus a times g of z f is equal to g. Then 

this is equal to limit z goes to a, well I mean this is 0 and that is 0. So, this is equal to 0, 

so the necessity is really easy uniqueness follows from of g follows from the identity 

theorem.  

So, let me be more clear here what I mean is, if we know that there is a function g which 

extends f to the point a as well, then it has to be unique by the identity theorem. Because 

f and g have to agree that is the condition on g, so f and g have to agree on B prime a r, 

which is a set with limit point. So, now I have to assume the condition that limit, limit z 

goes to a z minus a f of z exists and I have to show that f function exists. Now, suppose 

limit z goes to a z minus a f of z exists or is equal to 0 rather f of z is equal to 1 by 2 pi i 

integration over C r 1 of f of zeta by zeta minus z d z, where C r 1 is a circle of radius r 1 

centered at a with with 0 strictly less than r 1 strictly less than r and z naught equal to a z 

belongs to B prime a r B prime a r 1. 
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So, by considering large enough circle we can actually include all the points in B prime a 

r. So, this actually suggests the definition of the new function g. So, g of z, so define g of 

z is equal to well, we are force to define it to be f of z for z belongs to B prime a r. 

Define this to be 1 by 2 pi i integration over C r 1 if you place of f of zeta by zeta minus 

a d zeta. I apologize this should be d zeta zeta d zeta for z equals a. So, will force it to be 

equal to this representation formula g to be equal to this representation formula, when, 

when z is equal to a.  
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We will show that g is analytic, so the limit as z or we can say limit as h goes to 0 of g of 

a plus h minus g of a by h. There is no doubt that g is analytic in B prime a r because f 

is… So, we will calculate this limit, this is equal to 1 by h times 1 by 2 pi i times the 

integration over C r 1 of f of zeta by zeta minus a plus h d zeta minus 1 by 2 pi i times 

integration over C r 1 of f of zeta pi zeta minus a d zeta. This is equal to 1 by h times to 1 

by 2 pi i times integration over C r one of f of zeta.  

I will combine these terms can clear the denominator I will get zeta minus a minus zeta 

minus a plus h. So, that will give me an h in the numerator divide by zeta minus a plus h 

times zeta minus a, so this h cancel and I have this is equal to 1 by 2 pi i. So, I have a 

limit hanging in there limit h goes to 0 limit goes to 0 etcetera. This is limit as h goes to 0 

of 1 by 2 pi i integral over C r 1 f of zeta d zeta by zeta minus a plus h times zeta minus a 

d zeta. 
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So, now I can take the limit into the integral, and then this is equal to 1 by 2 pi i integral 

over C r 1 of f of zeta d zeta divide by zeta minus a square d zeta. So, this limit exists, 

limit h goes to 0 g of a plus h minus g of a by h it exists and it equals 1 by 2 pi i C r 1 

integration over C r 1 of f of zeta d zeta by zeta minus a square d zeta, whatever that 

value is. So, g is analytic at a, and g is a extension of f as desired. So, that completes the 

proof of this theorem and will see other kinds of singularities, next time.  


