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Hello viewers, in this session, we will continue with the properties of complex numbers, 

geometric, arithmetic, etcetera. So, firstly last time, we saw the the modulus of a 

complex number, and we also said what the argument of a complex number is, so we 

will see a couple of more properties of the modulus.  
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So, last time recall we proved the triangle inequality for the modulus of complex 

number. So, it said that the modulus of z 1 plus z 2 is less than or equal to modulus of z 1 

plus the modulus of z 2. And it was an exercise to show that equality occurs only when z 

1 and z 2 lie on the same line passing through the origin, and on the same side of the 

origin. So that is, that is your triangle inequality. So, it can be generalized, so it can be 

applied to n numbers.  

So, may be well using induction one can show that using the principle of mathematical 

induction one can show that the modulus of a sum of n complex numbers like that is less 

than or equal to the, the sum of the moduli, one can prove this using mathematical 

induction.  So, exercise prove this by using mathematical induction. And it is convenient 

to record one other form of triangle inequality, it is as follows. So, the modulus of, so the 

modulus of z 1 plus z 2 or let me say modulus of z 1 minus z 2, so let us estimate this, 

plus z 2, which is equal to the modulus of z 1. 
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So, I am adding and subtracting z 2, by the triangle inequality if I treat this as one 

number, complex number and this as the second complex number by the triangle 

inequality, this is less than or equal to the modulus of z 1 minus z 2 plus the modulus of z 

2. Now, using this and this on 2 sides of this inequality, what we get is that the modulus 

of z 1 minus the modulus of z 2 is less than or equal to the modulus of z 1 minus z 2. 

And this is symmetric in z 1 and z 2 by that I mean, the modulus of z z 1, so the modulus 

of z 1 minus z 2 is likewise greater than or equal to we can show the modulus of z 2 

minus the modulus of z 1. 

By doing this using doing this using z 2 instead of z 1, I mean doing the same procedure 

here you will get modulus of z 2 minus z 1, but that is the same as a modulus of z 1 

minus z 2. Then so you get this other part, and so in conclusion the modulus of z 1 minus 

z 2 is greater than or equal to since it is greater than or equal to this and this it is greater 

than or equal to the absolute value of the modulus of z 1 minus the modulus of z 2. So, 

this form of triangle inequality is also useful sometimes and I have proved it here for 

records. Next what we are going to do is, we are going to give a geometric interpretation 

using or geometric locus using the modulus. So, we know the geometric interpretation of 

the modulus as the distance of the complex number z from the origin. 
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So, the modulus of z for example here here is z let us say, so the modulus of z represents 

the length of this line segment from 0 to z, that is that is your modulus. Since, a circle is 

the set of all points which are at a distance, which are at a constant distance from a fixed 

point, so we can say that a circle in complex plane has an equation, the modulus of z 

minus a is equal to r.  
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So, the modulus of z minus a measures the distance of z from a; so a is the fixed point, a 

is the centre and modulus of z minus a is the distance of a varying point z from the fixed 



point a and r is where I mean, this equation is telling you that this distance has to be 

constant r, so r is the radius of the circle. 
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I will first talk about the geometric. So, consider the geometric interpretation of 

multiplication, of of complex number multiplication and then I will come back to the 

straight line business. So, if you have z 1 equals r times, r 1 times cosine theta 1 plus i 

sine theta 1 and z 2 equals r 2 cosine theta 2 plus i sine theta 2 for some r 1 theta 1 and r 

2 theta 2. Let us assume for the time being z 1 not equal to 0, z 2 not equal to 0, so that 

they have a polar representation like that.  

Then z 1 time z 2 we can work out is r 1, r 2 times when you multiply this expression 

with this expression you get cos sine theta 1 plus theta 2 plus i sine theta 1 plus theta 2. 

So, this complex number z 1 times z 2 has modulus r 1 times r 2 and an argument for z 1 

times z 2 is theta 1 plus theta 2. Where theta 1 is an argument of z 1 and theta 2 is an 

argument of z 2.  
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So, the interpretation one can give is, let us take a simplistic picture, suppose this is z 1 

and then it opens with an angle theta 1 from the positive x axis. Then suppose this is z 2 

and it opens with an angle theta 2 from the positive x axis, then your z 1 times z 2 is 

going to have a modulus. So, the length of this line segment is going to be modulus of z 

1 times modulus of z 2, like we see here. So, it is going to have r 1 times r 2, as it is 

modulus and then it is going to open with the x axis, positive x axis with an angle theta 1 

plus theta 2. So, that is your geometric interpretation of multiplication and note that 

argument of n argument of z 1 times z 2 is equal to an argument of z 1 plus an argument 

of z 2.  

So, if you take a particular argument of z 2, z 1, any argument of z 1 for that matter and 

any argument of z 2, recall there are many possible values of theta 1 and theta 2, that you 

can take because cosine and sine are 2 pi periodic. So, any choice of theta 1 and theta 2 

will give you this equation, this multiplication rule dictates that equation and so you get 

this, this equality. So, the n argument, n argument for z 1 times z 2 is argument of z 1 

plus the argument of z 2 or plus n argument of z 2. 
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Next, what I want to do is, I want to look further into a multiplication. So, we saw that z 

1 times z 2 is equal to r 1 r 2 cosine theta 1 plus theta 2 plus i sine theta 1 plus theta 2, 

where z 1 is r 1 cosine theta 1 and z 2, sorry r 1 cosine theta 1 plus i sine theta 1 and z 2 

is r 2 cosine theta 2 plus i sine theta 2. So, this we saw. So, as a consequence if you 

consider z equals r cosine theta plus i sine theta, I will drop the subscripts then z squared 

is equal to r squared cosine theta plus theta. 

So, that gives me 2 theta plus i sine 2 theta so likewise we can show using mathematical 

induction. So, using the principle of mathematical induction just say M I we can show z 

power n, n is a positive integer is equal to r power n cosine n theta plus i sine n theta.  

The base case is clear base case, n equals 1 so then z power 1 is equal to r power 1 cosine 

1 times theta which is theta plus i times sine 1 times theta which is sine theta, so this is 

true. 
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Now, suppose z power k for some positive integer k greater than 1 is equal to r power k 

cosine k theta plus i sine k theta. Then z power k plus 1 will be z power k times z and 

then by using this supposition which is the induction hypothesis I can say this is equal to 

r power k cosine k theta plus i sine k theta times z, z is once again r times cosine theta 

plus i sine theta. So, this is equal to r power k plus 1, i will club this r power k and r and 

then multiply cosine k theta plus i sine k theta with cosine theta plus i sine theta. So, you 

get cosine k theta cosine theta i times i will give you a minus and then sine k theta sine 

theta. That is the real part plus the imaginary part is i times cosine k theta sine theta plus 

sine k theta cosine theta. 

So, that gives you r power k plus 1 times of course, this is cosine k plus 1 theta cosine k 

theta plus theta, which is cosine k plus 1 theta plus i times this is sine k theta plus theta, 

which is sine k plus 1 theta sine k plus 1 times theta. So, indeed you get z power k plus 1 

is r power k plus 1 cosine k plus 1 theta plus i sine k plus 1 theta. So, by the principle of 

mathematical induction so by the principle of mathematical induction z power n is r 

power n cosine n theta plus i sine n theta. So, this statement is true for for positive 

integers, for any positive integer n.  
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It is also true for negative integers and 0, well 0 by convention, z power 0 by convention 

is 1 and so that will tally with r power 0 cosine 0 plus i sine 0. So, this is by convention 

and so this is true for n equal 0. So, this statement that z power n is r power n cosine n 

theta plus i sine n theta is true for n equals 0. By the way, of course we need that this is z 

is not 0 otherwise we do not have, an we do not have the argument or an argument for z 

defined. So, we need all this is true only in the case of z not equal to 0. Likewise, we do 

not define 0 for 0 it is undefined and z power minus 1 is, is indeed, well it is 1 by z 

which is 1 by r times cosine theta plus i sine theta and by multiplying and dividing by 

cosine theta minus i sine theta we get, we get r in the denominator. 

So, cosine theta plus i sine theta times cosine theta minus i sine theta gives you cosine 

squared plus i plus sine squared so that is times 1. So, this can be written as 1 by r which 

is r power minus 1 times cosine minus theta plus i sine minus theta. So, it is true that z 

power minus 1 likewise is r power minus 1 times cosine minus 1 theta plus i sine minus 

1 times theta. Now, either by using induction or by using what was already proved we 

can show that z power minus n, n positive integer, z power minus n is r power minus n 

times cosine minus n theta plus i sine minus n theta. So, you can do this directly by using 

the fact that already this is true for positive integers, so this is true for positive integers. 
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So, z power minus n is z power n power minus 1 and then by using this loss of exponents 

which will work and then this is equal to 1 by z power n etcetera. So, this is, this gives 

you r power minus n, I mean if you do what we have done already here you, have to use 

the De Moivre’s formula first or sorry, you have to use the fact that z power n is r power 

n cosine n theta plus i sine n theta.  

This is what we have done already, n is a positive integer and then write this as 1 by r 

power n which is r power minus n r power minus n and then multiply and divide by 

cosine n theta minus i sine n theta to to get cosine minus n theta plus i times sine minus n 

theta. That denominator will give you cosine squared n theta plus i sine plus sine squared 

n theta which will give you 1. So, z power minus n will also be this. So, it is true that z 

power n is r power n cosine n theta plus i sine n theta for all integers (( )) for any integer 

and this is referred to as a De Moivre’s formula. So alright. 
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So, De Moivre’s formula can be put to use at least in the following way. Here is an 

example, so find the fourth roots of z equals minus 3. So, consider this example z equals 

3 cosine pi plus i sine pi. So, we can write if we take the argument of z to be pi we can 

write z like that 3 times cosine pi plus i sine pi. So, De Moivre’s formula suggests that if 

you want if you want if you say w equals z power 1 by 4 you want the fourth root, w 

power 4 is equal to z.  
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So, w power 4 you imagine w in the place of z here; so if w is, if w is taken to be 3 

power 1 by 4 times cosine pi by 4 plus i sine pi by 4, then definitely, then by using De 

Moivre’s formula we get, we get w power 4 is 3 power 1 by 4 power 4 which is 3 times 

cosine pi plus i sine pi, which is your minus 3 which is your z. So, definitely this value of 

w will work, but is this all? Well, the answer is we are missing out on other values of 

other possible values of w by considering one particular argument for z.  

We can do better by considering a general argument for z, so if we consider z to be 3 

times cosine 2 k pi plus pi plus i times sin 2 k pi plus pi which it is because sine and 

cosine are 2 pi periodic, k belongs to a integers. Then by doing the same what we can say 

is that w equals 3 power 1 by 4 times cosine 2 k pi plus pi now divided by 4 plus i times 

sin 2 k pi plus pi divided by 4 is such that w power 4 now gives you z it it gives you the 

z. So then, now the question is how many different values does w give? Notice that now 

this 2 k pi has been divided by 4 so you get for example, when k is, k is 1 you get 2 pi by 

4 pi by 2 plus pi by 4.  
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So, for for k equals 0,1,2 and 3 we notice that we get different values of w. So, let me be 

slower, so maybe I will say w is 3. Now, 3 by, 3 power 1 by 4 times cosine k pi by 4 plus 

pi by 4 sorry k pi by 2 plus pi by 4 plus i sine k pi by 2 plus pi by 4 where k belongs to 

integers. Now, notice that if values of k equals 0 and k equals let us say 4 give the same 

w, that is because, when you substitute 4 in there you get 4 pi by 2 which is 2 pi, and 



then I mean, k pi by 2 is equal to 4 pi by 2 which is 2 pi and cosine and sine are 2 pi 

periodic. So, cosine k pi by 2 plus pi by 4 will be cosine 2 pi plus pi by 4 which will once 

again give you cosine pi by 4. So, k equals 0 gives you the this part gives you 0 plus pi 

by 4 and then for k equals 4 you get cosine 2 pi plus pi by 4 etcetera and these are equal.  

Likewise, sine gives you same values when k equals 0 and k equals 4, so you get the 

same w as a result. So, for k equals 0, 1, 2 and 3 you get all the distinct values because k 

equals 1 and k equals 5, k equals 2 and k equals 6 etcetera they will all give you the same 

values for w. 
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So, pair wise for k equal to 0, 1, 2, 3 we get we get all the possible values, all the 

different possible values of w. So, when we work it out, well when we substitute and see 

what the values are we get w equals let us say 3 power 1 by 4 times plus or minus 1 by 

root 2 plus or minus i by root 2. So, all the possible combinations 1 by root 2 minus i by 

root 2 or 1 by root 2 plus i by root 2 etcetera. So, minus 1 by root 2 plus i by root 2 

minus 1 by root 2 minus i by root 2 so these are different possible values of a w which 

give you w power 4 is equal to z minus 3, so those are the fourth roots of minus 3. So, 

De Moivre’s formula can be used to solve this example or to find nth roots of a certain 

complex number in general.  
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So, next we are going to meet the notion of the complex plane with the point at infinity. 

So far we have this complex plane and then what we can do is we can add 1 point at 

infinity and this is to discuss, this will be useful this gadget will be useful to discuss 

continuity of certain functions as these functions tend to 0 tend to infinity. So, and in the 

discussion for Mobius transformation for example, so we are we are going to give this c 

union infinity, this set c union infinity a concrete picture. So, what we are going to do is 

we will consider the complex plane as contained in r 3.  
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So, consider ,I will write here, so consider C as contained in r 3, triples of real numbers 

in the form x plus i y or which is now in the plane form it is x comma y. It is contained in 

r 3 in the form x comma y comma 0, this is a point in the x y plane in r 3. 
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So, here is the plane x y plane in r 3 and we have this z axis coming out, so this is the x 

axis y axis. So, what you can do is now you consider the unit sphere, so so consider the 

unit sphere S equals set of all x y z such that x squared plus y squared plus z squared is 

equal to 1. So, this set intersects the x y plane in the unit circle, so when z equals 0 this 

equation is just x squared plus y squared is equal to 1. So, that is the unit circle in the 

complex plane.  
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And then complex plane contained in r 3, now what you can do is you can you can take 

any point in the complex plane here which is now sitting in r 3 and join it to the north 

pole of this sphere by a straight line and that straight line hit is the unit sphere S at some 

point. You notice that if you take any complex number on the x y plane corresponding to 

it, there is a unique point on this a sphere. By joining, which is obtained by joining the 

number on the complex plane to this point at this north pole which is the point 0, 0, 1.  
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So, we can we can find out what that point of intersection of that line is, so to do that you 

consider t times 0,0,1 plus 1 minus t times x,y,0. So, this is the point z in the complex 

plane and then this is the point which is the north pole the north pole and so this this t 

times 0,0,1 plus 1 minus t times x,y,0 when t is allowed to be any real number gives you 

a straight line connecting 0,0,1 and x,y,0. We know how to construct equations of lines 

in r 3, so t times a point plus 1 minus t times another point will give you a line passing 

through these 2 points. So, so this is a point in r 3, let us call that capital z. So, capital z 

equals this is a straight line in r 3 connecting 0,0,1 to a complex number to the complex 

number x,y,0.  

Now the complex numbers are on the x y plane, now the point of intersection of this line 

we can calculate with the sphere is obtained by well S is set of all points I already wrote 

it here, so S is the set of all points such that x squared plus y squared plus z squared is 

equal to 1. Let us look at the x y z coordinates of this capital Z capital Z. Let me rewrite 

that as, it is t 1 minus t times x so that will give me x, sorry t times 0. So, that gives me 1 

minus t times x and then t times 0 times 1 plus 1 minus t times y that gives me 1 minus t 

times y likewise and t times 1 plus 1 minus t times 0 gives me t.  
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Now that is your point z and when we put it on the unit sphere, we get 1 minus t squared 

x squared plus 1 minus t squared y squared plus t squared is equal to 1, but x squared y 

squared is the modulus of a complex number z. So, if we call this number as z belongs to 



C we already called this z belongs to C, so this is 1 minus t squared modulus of z squared 

plus t squared is equal to 1. Now, let us solve for t, so we get 1 minus t squared is equal 

to 1 minus t whole squared modulus of z squared. So, t from here, we can solve for t. 

Well notice that t does not equal 1 because when t is equal to 1 when you substitute t 

equals 1 in here you get 0, 0, 1. 
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So, there is no, well there is no complex number which intersects this sphere in this point 

0,0,1 itself. After all you are, you are connecting the complex number to this point 0,0,1 

so that will not intersect this sphere in 0, 0, 1 itself. So, t can t will not be 1 because since 

this corresponds to the point 0, 0, 1, so you can divide by 1 minus t squared for example, 

and then if we solve this for t we can solve this for t, well let us do it. So, 1 minus t 

squared is modulus of z squared plus t square modulus of z squared minus 2 t modulus of 

z squared. 
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So, this gives you t squared times modulus of z squared plus 1 plus minus 2 t times 

modulus of z squared plus modulus of z squared minus 1 is equal to 0 and so excuse me 

so t then is by using the quadratic formula what we can get is t is modulus of z squared 

minus 1 by modulus of z squared plus 1. So, substituting t in this point capital z we get, 

we get the following, capital Z is equal to 2 x by modulus of z squared plus 1 comma 2 y 

by modulus of z squared plus 1 comma modulus of z squared minus 1 by modulus of z 

squared plus 1.  
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And if you want to write this completely in terms of the complex number z we will 

remove the appearance of x, so this is z plus z bar by modulus of z squared plus 1. So, 

that represents the conjugate (( )) z bar represents the conjugate of z, then minus i times z 

minus z bar by modulus of z squared plus 1. And then this is modulus of z squared minus 

1 by modulus of z squared plus 1, so that is your point of intersection of the line joining 

the north pole and point z on the complex plane with the unit sphere.  

So, that is the point z and then so if you if you wish to find if we are given a point, the 

opposite is if you are given a point capital Z on on the sphere on S then then we can find 

the point z on the complex plane, then z on C can be found recall what we are doing is 

we are drawing a straight line connecting 0,0,1 and the point capital Z and that gives you 

and when you project it on to the complex plane it gives you a point of intersection of the 

complex plane and we can calculate that, so that can be found. 
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We get z equals x 1 plus i x 2 by 1 minus x 3 where capital Z is assumed to be x 1 x 2 x 

3. Once again x 3 is is not 1, x 3 is not 1 because x 3 equals 1 will correspond to the 

north pole. So, I should say that if we are given a point Z on S not equal to 0, 0, 1, then 

we can find z on the complex plane. So, by this kind of association corresponding to 

each point on the sphere there is a point on the complex plane and corresponding to each 

point on the complex plane there is a point on the sphere. So, there is a 1 to 1 



correspondence between points on the sphere and the complex plane, we can we actually 

have the equations for them.  

Then these points, the one to one correspondence is given by drawing geometrically 

drawing a straight line passing through the north pole and the point on the, on the 

complex plane or in the other direction by the by joining the north pole and any other 

point on the, on the sphere on the sphere, which will be projected on to the complex 

plane to get the complex number.  
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So, in this way there is a 1 to 1 correspondence, but notice here that we have accounted 

for all the points on the sphere except the north pole and and let us look at the picture 

once again and as you move farther away in the complex plane your moving higher up 

on the sphere. The point of intersection of the line joining that farther away point on the 

complex plane and the north pole will be higher up here. So and so you keep 

approaching the north pole, but you never reach the north pole by these lines which are 

intersecting the sphere. So, in that sense when you move faraway your getting closer to 

the north pole in that sense the north pole represents the point at infinity. So, you call you 

you you think of the point at infinity has the north pole.  
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And then so that is the correspondence of points in C union infinity with the points in S, 

points in C go to points in S which are anything but the north pole by that straight line 

connecting north pole and the complex number and the point infinity it iself goes to the 

north pole. So, that is the correspondence and this sphere is often called the Riemann 

sphere when we put some distance also on this, so we can put a distance on a can give a 

distance function on C union infinity. 
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We can find the distance between any 2 numbers z and z prime in C union infinity, so 

this is defined as define this as the distance between, so actually it is a split definition so 

define this to be the distance between the corresponding point z and z prime on the 

sphere in r 3, distance in r 3. When z and z prime not equal to infinity, we are defining 

distance function for C union infinity, so forget infinity for the time being if you take any 

2 complex numbers. The the new distance on the in C union infinity is defined to be the 

distance between the corresponding points z and z prime in r 3. 

And then if you have infinity in picture so then you can also define distance what you do 

is define this to be 2 by 1 plus modulus of z squared power half if z prime is equal to 

infinity. If z prime is infinity, then this is nothing and if z is infinity of course, you have 

2 by 1 plus z prime modulus of z prime squared power half is raised to power half. So, 

let me rewrite this as the distance between z and z prime is x 1. So, in terms of x 1 x 2 x 

3 representing z and x 1 prime x 2 prime x 3 prime representing z 1 z prime we have x 

1minus x 1 prime squared plus x 2 minus x 2 prime squared. Of course, that is the 

distance in r 3 plus x 3 minus x 3 prime squared power half. 

And then this is equal to 2 by 1 plus mod z squared power half if z prime is equal to 

infinity, if z or z prime not equal to infinity. So, that way we can measure the distance 

between any 2 points the the only new point is infinity, but actually we we measure 

distances using the distance in r 3.  

(Refer Slide Time: 46:42) 

 



So, this correspondence, this, this structure on C union infinity is often called the 

Riemann sphere structure, and then correspondence along with this distance is called 

stereographic projection. So, using the stereographic projection, we, we have this point at 

infinity being added to this, this complex plane. And then in C union infinity we have 

arithmetic as well. So, a plus infinity is equal to infinity for a belongs to C and then a 

times infinity is infinity a belongs to C a by a not equal to 0; we do not define 0 times a 

infinity. Then 1 by infinity is equal to 0 and then or a by infinity is equal to 0 a belongs 

to c, and then 1 by 0 or a by 0 a belongs to C is infinity.  

So, we have this additional arithmetic, and then so this is a discussion about the Riemann 

sphere. So, we have added a point at infinity in addition to the complex numbers, and 

then there is a distance measuring gadget as well. So, we will put this to use when we 

study a Mobius transformations.  


