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Hello viewers, in this session we are going to look at some examples concerning 

Taylor’s theorem, and then we will analyse the properties of zeroes of an analytic 

function, that is the points, where an analytic function is 0. And we will see some 

theorem’s concerning the zeroes of analytic function; so firstly some examples for 

Taylor’s theorem.  
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So, the first example is determining the power series of a function. So, to determine the 

power series of f of z equals z power 6 sin 3 z. So, what we can do is, we can actually 

use Taylor’s theorem and say that the power series of this function f of z will equal you 

know, whatever the Taylor’s theorem says, the coefficient c n are given by the n-th 

derivative of this function divided by n factorial etcetera, but to compute the derivatives 

of this function is tedious. So, instead what we will do is, we will compute the Taylor 

series for this function sin 3 z and then multiply by z power 6 that is easier than directly 

computing the Taylor series for f of z. 

So, we know by one way or the other, that the Taylor series for sin 3 z well by using its 

derivatives. Let us say that the Taylor series so, the Taylor’s series for sin 3 z is sin 3 z 

equals sigma, n equals 0 through infinity of minus 1 power n d z raise to 2 n plus 1 

divided by 2 n plus 1 factorial. So, the Taylor’s series sin 3 z, z being a complex number, 

tallies with the Taylor’s series in the real case for sin 3 x, where x is a real real number. 

So, x replace with a complex number z here, works and the radius of convergence of this 

series is infinity. So, what this means is that for any for any z belongs to c. So, sin c z is 

this so, we can say that f of z, the Taylor’s series for f of z is nothing but z power 6 

multiplied by this Taylor’s series n equals 0, through infinity minus 1 power n 3 z power 

2 n plus 1 divided by 2 n plus 1 factorial. 
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And then take the z power 6 inside and multiply, you can do that because you have a 

convergent power series and z power 6 is anyway an analytic function. So, this is n 

equals 0 through infinity minus 1 power n. So, this is 3 power 2 n plus 1 times z power 2 

n plus 7 divided by 2 n plus 1 factorial, for any z belongs to c.  

So, this is much easier than actually finding the derivatives of f and then figuring out its 

Taylor’s series. So, this is the practical note as oppose to using the Taylor’s theorem 

directly. Now, the next example is that of the logarithm a branch of a logarithm. So, here 

is the example so, consider the set complex plane minus the segment minus infinity is 0. 

So, you know this is not really I mean this notation is kind of sloppy, but you understand 

what this is? This is the complex plane minus the negative real axis including the point 0. 

So, you have removed the negative real axis along with the point 0. So, you consider this 

set, so that is the branch cut and you can define a logarithm on this, as we know from 

before. So, f of z defined f on c minus minus infinity comma 0 as f of z is equal to log 

modulus of z plus i theta, where you considering theta to be between minus pi and pi. 
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And theta here is the argument. So, I should say theta belongs to log mod z plus i theta 

and theta and theta is belongs to the argument, the set argument of z recall argument of a 

complex number is a set and the entries are at 2 pi apart from each other. So, if you 

considering theta to be in this region minus pi to pi, then you have a function here f of z 

equals log mod z plus i theta. So, this is this as we know there is a branch of logarithm. 

So, f is analytic on c minus, minus infinity comma 0 as we know from before. 

So, f must have Taylor’s series expansion locally, locally at every point in c minus, 

minus infinity minus 0 that is Taylor’s theorem. So, in particular let us pick a point here 

so on. This complex plane on this picture, let us pick a point, let us say 1, 1 on the real 

line. Now, we can expect this Taylor’s series for this ranch of logarithm to have a 

Taylor’s series expansion in a disc about one, well how far can that disc stretch really 

well that can actually stretch until we hit a point, where the function is no longer 

analytic. So, we can expect this disc to have radius 1, this will have radius 1 and it 

centred at 1 it is an open disc remember.  
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So, we can expand we can hope to have, we can hope to have Taylor’s, Taylor’s 

expansion for this for f, I will say f that branch of algorithm for f around around the point 

1 around 1 with radius of convergence 1. And let us try to get the Taylor’s series 

expansion well instead of finding the derivatives etcetera directly once again we will 

resort to indirect methods. 

So, first we know that, we know that 1 by z. The function 1 by z can be written as 1 by 1 

plus z minus 1 and in this disc itself, in this disc under consideration or the disc our guess 

this is equal to sigma n equals 0, through infinity of minus 1 power n modulus or sorry z 

minus 1 raise to n. So, this function as this series expansion power series expansion it is 

the geometric series, as long as the modulus of z minus 1 quantity is strictly less than 1 

this is i e in B 1, z i e z in B 1, 1. So, we will actually use the fact that this function 1 by z 

is the derivative of log z on o c minus on the domain given here c minus, minus infinity 

0. 
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So, d by d z since log z is analytic, log z is analytic and its differentiation is 1 by z on the 

disc of interest at least affiliates its derivative equals 1 by z on all of its domain. So, this 

is equal to this is equal to sigma n equals 0, through infinity minus 1 power n z minus 1 

power n for z belongs to B 1, 1. So, we also know that the power series if log z has a 

power series, if log z is equal to sigma c n z minus 1 power n n equals 0 through infinity 

for z belongs to B 1 1, then we know the d by d z of log z. 

We saw that power series are analytic, and their differentiation is given by differentiating 

it term wise. So, this is n equals one through infinity of n c n z minus 1 power n minus 1 

for the same z for z in B 1, 1. What this means is that, you know by comparison of this 

and this, what we get is that n. So, in case by shifting index, what we get is n c n is equal 

to n c n is equal to minus 1 power n minus 1 and not only that, this true for n greater than 

or equal to 1 and f of 1 is 0, log 1 is 0. So, c 0 is 0. 

So, f of z is equal to sigma n equals 1 through infinity of minus 1 power n minus 1 

divided by n because c is now, here c n is minus 1 power n minus 1 divided by n times z 

minus 1 raise to n for z belongs to B 1, 1. So, that the power series for this branch of 

logarithm. Once again, a little indirect way we use the power series expansion of the 

derivative of this branch of logarithm to obtain, the power series for the logarithm. 
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So, another sort of remark, really on Taylor’s theorem; so the function when, we when 

we see the following function and its Taylor’s expansion in the real case i, the function 1 

by 1 plus x square as a function of real numbers, we see that its expansion is 1 minus x 

square plus x power 4 etcetera. So, and then the radius of convergence happens to be 1 it 

is not immediately clear. Why? 

This function 1 by 1 plus x square should have a radius of convergence 1, when it comes 

to Taylor’s series, in the real setting in the real number setting, but when we accent to the 

complex number setting, we see that 1 by 1 plus z square is 1 minus z square plus z 

power 4 etcetera with mod z less than 1 and we sort of see, why this 1 acts as a barrier 

for this power series around 0. 

So, what I mean by that is around 0, you notice that 1 by 1 plus z square is analytic on B 

0, 1, but is undefined at plus or minus i the numerator, the denominator actually becomes 

0. So, i and minus i here actually act as a barrier for the expansion of power series 

around 0. So, this series really does not extend beyond this disc of radius 1. So, that is 

the geometric explanation of y, the radius of convergence of power series 1 by 1 plus z 

of 1 by 1 plus z square around 0 sort of has a radius of convergence 1, and you know it 

does not go beyond. So, this i and minus i which are not points of analyticity of 1 by 1 

plus z square act as barriers. So, a similar phenomenon, we saw happens in the case of 

branch of logarithm.  
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So, beyond, beyond this radius 1 we have points here, which are not points of analyticity 

of this function of this branch of logarithm. So, likewise if we going back to this example 

if we take let us say 10 on the real line or any complex number c for that matter. So, let 

us pick this example of 10 on the real line then, we can expect to have power series 

expansion for this function, this branch of logarithm of a with radius of convergence 10. 

So, that sort of solves the quote and quote mystery of why this power series have a 

certain radius of convergence, and why that power series cannot be extended for a ever 

beyond point. So, these functions when they have certain barriers or points, where they 

are not analytic there power series expansion around certain points cannot be extended. 

So, that also we can note from Taylor’s theorem and power series in the complex plane. 

So, next what we will do is we will use Taylor’s theorem, to study the zeros of a 

complex analytic function.  
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So, this is zeros of analytic function, of an analytic function. Firstly some notation a 0 of 

a function f like we know of a function, f is a point a where f of a is equal to 0 that we 

call zero of a function. So, let define z of f we will use this notation, z of f we will use 

this notation following the text book of Pressley, z of f is equal to z belongs to g such 

that, f of z is equal to 0 it is the set of all zeroes of the function f. So, Taylor’s theorem 

gives us some important conclusions about the zeroes and we will see that. Suppose, f is 

analytic on a certain B a, r ball of radius r around a r strictly positive and suppose, that f 

of a is equal to 0 then Taylor’s theorem tells us that.  
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Firstly since f is analytic in the ball of radius r around a, f has a power series expansion 

about a with, with certain radius of convergence. So, c n z minus a power n, n equals 0 

through infinity at least the radius of convergence is r or is at least r. So, modulus of z 

minus a strictly less than r, where we also know that c n is 1 by n factorial the n-the 

derivative of f a t, we also know that since f is 0 at a c 0 is 0. Since, f of a is 0 f of a is c 

0. Now, there are two cases.  

Case one if all the derivatives of f at a are 0. So, if all the derivatives of f at a are 0 then 

Taylor’s theorem tells us that, then f is identically the 0 function, identically the 0 

function on B a, r. Notice this is far from true for functions of real numbers, there are 

functions whose derivatives are all 0, but then the function itself is non zero. 

So, since since analytic functions have local power series expansion so since, they are 

equal to a certain power series and the coefficients of this power series are nothing but 

the derivatives of f. If f is 0 at a point, and if all its derivatives are 0, then the function 

should be identically 0 on that disc of radius r. So, that happens for complex analytic 

functions.  So, that is a that is a very important conclusion from Taylor’s theorem, about 

the zeroes of a function and then case two. 

Suppose, that is not true; so, if all the derivatives of f at a are I mean if not all of them are 

0, then there is a smallest positive integer such that m such that the m-th derivative of f at 

a is non zero. So, if, if not if case one is not true, let m be the smallest positive integer 

such that, f m the m-th derivative of f at a is non-zero correspondingly that particular c m 

you know, in the Taylor’s series expansion will be non zero. 
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Then what we can say is that f of z by definition, m is the smallest positive integer. So, f 

of z looks like z minus a power m sigma n equals m through infinity of c n. Now, z 

minus a raise to n minus m, what I am doing is the expansion for f now, starts at n equals 

m because c n’s are all 0 for n less than m. So, I will start the expansion from n equals m 

and when I start the expansion from n equals m. I know that i can factor out z minus a 

raise to m and when I do that, when i factor out z minus a raise to m, what I get is this, 

this form. So, this particular form so, this form and now also I should immediately note 

that, this is true for modulus for z belongs to B a, r did I use r i, guess I used r here. 

So, now what is also important is that with this is true, with c m with the first term c m 

not equal to 0. So, that is the Taylor’s series expansion, then f in this case, in case two, in 

this case is said to have a 0 of order m at a. So, the 0 is called a simple 0 if so, this 0 of 

order m at a and the 0 is called as simple 0, if m is equal to 1, which means, factoring out 

occurs for I mean m equals 1; that is the smallest integer for which the c n is non zero. 

So, you see that from this thing circled in red, you see that f of z sort of behaviours like a 

polynomial. We know that polynomials, if they have a 0 at a point you can factor out that 

particular z minus a raise to a certain power m, where m is the order of 0 of that 

polynomial and then whatever is the remaining factor; that is non zero at that point a you 

can factor out a polynomial that way. So, likewise you can factor out a an analytic 

function locally, in that fashion. So, in that sense the analytic functions behave locally 



like polynomials in that sense. And then what want to say is here is I want to take an 

example. 
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Here is an example sin z is equal to 0, we know for z equals k pi and only for these 

values of z. And we also know that the differentiation of sin z is cosine z, which is not 

equal to 0 at z equals k pi. So, we already see that the first derivative of the analytic 

function sin z is non zero at the zeroes of the analytic function. 

So, here so all the zeros of sin z are simple because m. In this case m in this case is just 

one the first derivative is non zero. So, that happens for sin z so that is an example of an 

analytic function, which has simple zeros and it is likewise relatively easy to construct 

examples of analytic functions, which have double zeros or triple zeros. What I mean by 

that is they have zeros of the order 2, 3 etcetera. So, you just take z square sin z or you 

know z sin z as a 0 of order 2 at has a order 2 at 0 z has a 0 of order 2 at z equals 0. 

So, I will actually state the following here is a fact, which you can prove easily or by just 

using what we have done using Taylor’s theorem. So, if f and g are analytic on B a, r and 

f of a is equal to g of a is equal to 0 and if n f is the order of the 0 of f at a and n g is the 

order of 0 of g at a then, the 0 of f times g at a. 
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Firstly note that f times g will be 0 at a because f and g are both 0 at a. So, the 0 of f 

times g at a has order n f plus n g simply, it is the addition of the order. So, because of 

this fact, which can easily be obtained from this form of expansion and multiplication of 

power series, you can multiply power series in a certain fashion, and then you can 

immediately conclude this fact. So, from there I can say that z sin z has a 0 of order 2 at z 

equals 0 or for that matter. Now, I can construct a function having 0 of a certain order at 

a point. 

So, that is a fact there and now I want to further analyse these thing, that I have circled in 

red what I want to conclude further is that, I will define so let f of z. So, f have a f of z 

equals so from above, from above that is easier from above the same set up f of z equal z 

minus a power m sigma n equals m, through infinity of c n z minus a raise to n minus m 

for z belongs to B a, r positive, where c m the first term is non zero.  
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Now, what I will do is define I will take this part, which is non zero define phi of z is as 

z is equal to sigma n equals m through infinity of phi n z minus a raise to n minus m. So, 

first as noted above I can conclude that phi of a is non zero, right because c m is non 

zero. So, phi of a which is c m is non zero. And also note that phi is a power series so 

define this for set belongs to B a, r on the very same set. Since, phi is a power series 

function, we saw that power series are analytic since, phi is a power series in fact 

convergent power series is a convergent power series on B a, r phi is analytic by what we 

already know and hence continuous at least continuous . 

So, that gives us an important conclusion that if phi of a is non zero. So, there is an 

epsilon positive phi of a is non zero means, that phi of z is non zero for a certain z in a 

neighbourhood around a. So, that is a property of a continuous function so, there is 

epsilon positive such that phi of z is non zero for z belongs to b a, epsilon. So, there is a 

whole neighbourhood around a, where phi is non zero. Now, this immediately tells us 

that f has a 0. Let us go back to this form once again this form here was in red. 

So, f has a 0 of order m at a and whatever is remaining this, this is non zero at any point 

around a this function is definitely non zero around a, and we just concluded by 

continuity of this power series that this is also non-zero around a, around a 

neighbourhood of around a in a neighbourhood of a. So, what that gives is that as is that 



the zeros of f are actually isolated. What I mean by that is there is a small neighbourhood 

around the 0 such that, f is non zero in that neighbourhood. 
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So, what we conclude is that. So, we conclude that the zeros of f are isolated in this case. 

What is this case? This is case two we are dealing with, this case two. So, we will sum 

these up in the following theorem, this we will call as identity theorem after the text 

book. Suppose, that f is analytic on B a, r, r positive and that f of a is equal to 0 then 

either of the two happens.  

Case one f is identically 0 in B a, r or 2 that is this is the case two, we are working with 

2, I will write below 2 the 0 of f at a is isolated that is there is epsilon positive. Such that, 

the punctured disc b prime of a epsilon recall what that is that is B a, epsilon minus the 

point a itself. So, B a, epsilon B prime a, epsilon has no other 0 of f.  
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So, as a consequence of this, what we can conclude is that the consequently if a is a limit 

point of z of f then f is identically 0 in B a, r. So, I will briefly provide a proof of this 

consequence. What this says is that well if a is a limit point of z of f. So, what that 

means, is that every epsilon neighbourhood so, every B a, 1 by n lets say contains a 0 of f 

an element of z of f. 

So, two cannot happen, two cannot happen which implies one has to happen. So, which 

means f is identically 0. So, next we will try to extend this theorem, this identity theorem 

for beyond a disc. So, obviously this is not true for the whole domain of analyticity. Well 

if the domain is disconnected I mean, if the region of analyticity of f is disconnected 

because f could be constant, 1 constant on 1 component and another constant on another 

component and so, you could have, you could have f not identically 0, but then you know 

all the derivatives are 0. So, here is actually a good extension of this theorem. 
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So, identity theorem, this is called identity theorem general form, it states the following. 

So, let G be a region so recall region is open connected set, the connectivity of G is 

essential here for this theorem. So, the proof as we can guess is topological hence. So, let 

G be a region and suppose that f is analytic on G. Assume that the set the set z of f i the 

zeros of f of the zeros of f has a limit point. So, there exists a limit point in G then f is 

identically 0 in G. 

So, if there is a limit point for the 0 set of f in the region G then, f has to be identically 0. 

So, the proof is as follows, first let E be the set of limit points of the set z of f z of f, E is 

the limit point set of the set of zeroes of f, E is non empty is given it we assume that the 

set z of f has a limit point, which means, E is non empty so, that is given to us. So, first 

we will note that, first we will note that E is contained in z of f. So, first let a belong to E, 

we show that a is in z of f then for each n belongs to N. 
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There is an n belongs to ball of radius 1 by n around a with with a n belongs to z of f. So, 

this sequence a n. Since, limit n goes to infinity of a n is equal to a by continuity of f. So, 

we I mean here is a note the limit definition of continuity is in order here. So, please note 

that if there is a, there is a sequence converging to a point and if a function is continuous 

at the point then the limit as a ,the limit of functional values on this sequence has to 

converge to the value of the function at that point, as long as the function is defined 

etcetera, etcetera at that point in a neighbourhood of the point. 

So, if the function is continuous of course, it will be defined so, all that is true so, that is 

the sequential definition of continuity. So, by continuity of f the limit as n goes to 

infinity f of a n is equal to f of a, but we know that f of a n is 0 because a n belongs to z 

of f. So, this is a constant sequence 0 on the left hand side, this implies that f of a is 

actually equal to 0. So, this implies that a belongs to the set z of f. So, if we start with the 

point in the limit point, set of the set of zeroes, then that point itself is contained in a the 

set of zeros. 

So, E is contained in z of f that is the first note. So, when what I am going to show is that 

this set E is both open and closed in the the the region G, what that will show is that is 

both open and closed and if G is connected there is only, there are only two sets which 

are both open and closed in G namely, the empty set the set g, but of course, is of non 

empty which will give us that E is the whole set g. So, the set of limit points of this zeros 



of f is the whole set G, which will mean that f is 0 identically on G so, that is the 

strategy. 

So, E first I will show is open, if a belongs to E. I will show that there is a 

neighbourhood of a which is contained in E, then by what we have just done by above f 

of a is 0 because E is contained in z of f also by previous theorem, there is an epsilon 

positive such that, f of z is identically 0 on B a, epsilon. Noting this consequence 

consequently, if a is a limit point of z of f then f is identically 0 in B a, r. So, we are 

using that so since a is in E, we should have by the previous theorem that f of z is 

identically 0 on B a, epsilon. Now, since we know something about B a, epsilon epsilon 

positive.  
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Now, since every point of B a, epsilon is a limit point of z of f. E contains B a, epsilon. 

So, f is identically 0 and this set is an open set. So, identically 0 on this open set and 

since every point of the open set is an limit point of z of f, E contains B a, epsilon. So, E 

is open likewise you can show that E is closed. What is the argument for E is closed, if a 

belong to the set G minus E, then we will do this in two cases.  

Case one if f of a is non-zero then by continuity of a of f rather, there is an r 1 positive 

such that, f of a, f of z is non zero for z belongs to B a, r 1 and so, this implies B a, r 1 is 

not in the 0 set of f. So, it cannot be in the set E so B a, r 1 is contained in G minus a. 

Second if f of a is equal to 0 then by previous theorem. Since, a is not the limit point a 



does not belong to E. So, a is not the limit point there is there is an epsilon positive such 

that, B prime f of z is not equal to 0 for z in B prime of a epsilon, that is by the previous 

theorem once again.  
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So, this tells us that, this implies B prime a, epsilon is disjoined from the 0 set and a is 

not in E. So, this implies B a, epsilon is contained in G minus E. So, in either case there 

is a neighbourhood around a which is contained in G minus E. If a is not in E so, this 

implies E is closed. So, E is both closed both closed and open in G and E is non empty. 

So, from previous topological considerations, we know that so E has to be equal to G. 

Since, G is converted that is the limit point set is the whole set G; that is f is identically 0 

on G. So, that is the proof of this theorem. So, we will continue with this in the next 

session. 

 


