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Further Properties of Analytic Functions 

Lecture - 3 

                      Taylor’s Theorem 

Hello viewers, in the last session, we have seen that power series are analytic, and also 

that their differentiation is obtained by differentiating that term of the power series, and 

then summing up.  
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So, if f of z, so recall that if f of z is equal to sigma c n z power n, power series of type 

one, n equals 0 to infinity. Then for, for mod z strictly less than r, here we will assume r 

is strictly positive. Then we saw that then f is analytic on B (0;R), and f prime of z has 

the form n equals 0 through infinity n c n, so n equals 1 through infinity, I apologise. 1 

through infinity n c n z power n minus 1 for r, for mod z less than r. 

So, the differentiation of the power series is differentiating it term by term, and in 

summing up within the radius of convergence. So, that we have seen last time. So as an 

example, as an example, we will see the following if we consider the power series f of z 

equals z power n by n factorial sigma n equals 0 through infinity. Then we will show that 

this is the power series expansion for the exponential function e raise to z. 



 

So, firstly there is one note, so within this example itself, I will make that note. There is a 

little ambiguity here, so when we write f of z, so when we write f of z equals sigma n 

equals 0 through infinity c n z power n for type one series. Then what we really mean is 

that, this is f of z.  
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So, for type one series, this is a split function f of z is equal to C 0 when z equals 0, and f 

of z is that series when z is not equal to 0. Since 0 power 0 is not defined, we split the 

definition of f of z. Note for type two series that, f of z is defined to be C 0 when z equals 

a for type two series, and f of z is sigma c n z minus a power n when z is not equal to a. 

one needs to make distinction because at z equals 0, and n equals 0, you have the 

ambiguity of 0 raise to 0, and 0 raise to 0 is not defined, 0 raise to 0 is not defined. 

So, there is that split form, and then, so having made that note let us look at this series. 

This series has the property that firstly the radius of convergence of f is by, by simple 

ratio test calculation, by ratio test the radius of convergence of f is infinity. Or you can 

use that Cauchy Hadamard formula either way one can get this. So, so we can 

differentiate this power series, so f prime of z for the same radius of convergence will 

looks like n equals 1 through infinity of the differentiation of z power n is n n z power n 

minus 1 divided by n factorial. 

So, I will cancel the n in the numerator and the denominator. So, I will cancel n in the n 

factorial to the get n equals 1 through infinity, z power n minus 1 divided by n minus 1 



 

factorial. By readjusting the index once again this is nothing, but n equals 0 through 

infinity z power n y n factorial which is your f of z to begin with.                 
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So, we have shown that f prime of z is nothing, but f of z for mod z, or for any z belongs 

to r, or, not r, I apologise, to C, because the radius of convergence is infinite. Not only 

that, observe that f of 0 is 0, so or rather 1 f of 0 should actually equal 1, because C 0, 

since C 0 for this series, since C 0 for this series is 0, is, is 1 rather. 1 by 0 factorial 

which is 0 factorial is defined to be 1, so you have 1, f of z, f prime of z is equal to f of z. 

So, f, so the given power series is a solution to the initial value problem f prime of z 

equals f of z and f of 0 is equal to 1. So, since we know that, or by the existence and 

uniqueness of solutions to differential equations, we know that the solution to this i v p 

has to be unique. 
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So, we know that e power z is also a solution, we defined in the solution to this i v p as e 

power z. So, e power z has to equal this power series sigma z power n by n factorial, n 

equals 0 through infinity. At z equals 0, we define this to be 1. So e power z is this power 

series has this power series expansion around z equals 0. For this is for a any z belongs to 

C, for z belongs to C, z naught equal to 0. So, I will split this, this is equal to 1, if z is 

equal to 0. So, that is the power series expansion of e power z, and it is valid all 

throughout the complex plane, all right. 

So, we see that e power z has a power series expansion for any complex number, 

modulus of this small, small change at z equals 0. So, now a question can be as follows is 

every analytic function a power series or, so to say every analytic function be expressed 

as a power series. Well, we already know that the answer cannot be yes, or we know that 

the answer is no, because 1 by 1 minus z is analytic on. So, let me write the question the 

question is every analytic function a power series on its domain of analyticity that is the 

question. 
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So, we know that 1 by 1 minus z is analytic on all of C except at one point at namely 

1.So, on C minus 1, on the set C minus 1, 1 by 1 minus z is analytic. But, but 1 by 1 

minus z is equal to one kind of power series which is the geometric series, z power n n 

equals 0 through infinity for, only for mod z less than 1. Beyond mod z less than 1, we 

know that we know at least that this power series is not correct for 1 by 1 minus z. So, 1 

by 1 minus z does not equal this power series for mod z less than 1, mod z greater than 1. 

Sorry. 

So, so the point is not all analytic functions are equal to a unique power series on the 

whole domain of analytic or their analyticity. So, that happens, so then one can ask the 

following modified question is every analytic function equal to some power series if not, 

if not on all of the domain of analyticity at least in a small neighbourhood around a point 

of analyticity. So, is every analytic function is equal to some power series locally i e in, 

in some b a r for r positive where, where a is a point of analyticity for f, for the given 

function. So, that is what locally means, locally means that there is a small disc around 

the point of analyticity of radius of positive radius such that you know certain property 

holds that is a local property and the property we are interested in here is whether every 

analytic function is locally an analytic power series rather. 



 

So, the answer to this question turns out to be yes and, and this is answered by Taylor’s 

theorem, the Taylor’s theorem tells us that every analytic function is locally a power 

series. So, let us see what is the Taylor’s theorem says. 
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So, here is the statement of Taylor’s theorem. So, let f be an analytic function on b a r, so 

since we are interested in expressing the analytic function as power series locally, 

although f could be analytic on a bigger set, we will only assume for the time being that 

its analytic on, on the disc itself b a r. Then, there exists or there exists unique constants 

C n such that, C n I should say n belongs to integers, n greater than or equal to 0, n 

belongs to integers and n greater than or equal to 0. There exists unique constants C n 

such that f of z is equal to sigma n equals 0 through infinity, c n z minus a power n z 

belongs to b a r, for any z belongs to b a r, f of z equals that power series on that disc.  
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The constant C n furthermore, so the constants C n or given by C n is equal to the n eth 

derivative of the function f at a divided by n factorial, which is actually equal to 1 by 2 pi 

i the integration over C r, I will explain what C r is. It is a circle of radius little r around a 

of f of w by w minus a raise to n plus 1 d w, where C r is circle of radius r, radius r 

strictly less than capital R. So, I will say 0 strictly less than little r less than capital R, 

oriented centred at a, and oriented in the counter clockwise direction, in the counter 

clockwise direction, that is the positive direction recall. 

So, firstly note that by, by what we have noted earlier by the theorems earlier we know 

that every analytic function is differentiable any number of times. So, the n eth derivative 

of an analytic function f exists in its domain of analyticity. So, this expression here f n 

the n the derivative of f at the point a is valid. Makes sense, and by Cauchy’s integral 

formula for the n th derivatives, we know that, we know that the n th derivative of f at a 

divided by n factorial is precisely the expression on the, on the right hand side. So, that is 

the statement of the Taylor’s theorem. 

So, it not only tells us that the, that an analytic function is locally expressible as power 

series, but also that the, the constants C n in the power series are given by the n th 

derivative of f at a divided by n factorial. So, in order to prove this theorem, we will 

prove this theorem, in order to prove this we first need a couple of lemmas. So, here is 

the first lemma, the lemma. So, I am following the development here in from one of the 



 

text books introduction to complex analysis by Pressley. So, lemma 1 is since I did not 

define what uniform convergence is, I will have to I will have to, I need a result which 

will tell me when I can exchange integration and summation. 

So, here is lemma 1, let gamma be a path, and let u, u naught, u 1. So, any u n for that 

matter, n belongs to non negative integers, so u be, be continuous on the trace of gamma 

in the complex plane, and assume that sigma k equals 0 through infinity of u k of z 

converges to u of z which is point wise convergence for all z belongs to gamma star trace 

of gamma in the complex plane. 
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Now, assume that there exist constants M k, k belongs to non negative integers, k 

belongs to z, k greater than or equal to 0, such that sigma M k, k equals 0 through 

infinity converges and this M ks are related to u ks as follows u k of z in modulus is less 

than or equal to M k for all z belongs to the trace of gamma. So, for any z belongs to the 

trace of gamma the modulus of u k of z is less than or equal to M k. Then, then this 

sigma then the collusion is sigma k equals 0 through infinity of the integration contour 

integration of u k of z over the contour gamma is equal to the integration over the 

contour gamma over summation of u k of z d z k equals 0 through infinity. 

So, we can exchange the integration and the summation. So, this is equal to integral over 

gamma of u of z d z by definition of summation. Since the summation converges to u of 

z, I am just replacing the summation by capital u z. So, we know that from our 



 

experience with functions of real numbers and series of, of real functions we know that it 

is not necessary that we can always exchange the integration and summation. So, under 

these circumstances this lemma gives us a sufficient condition under which we can 

exchange the integration and summation. Recall that the summation involves the limiting 

process, and if it were finite process, if you are taking finite sums you can always 

exchange the integration and summation because integration is a, is a linear operator. 

So, but when you have infinite sums you have to be more careful there is a limiting 

process and it does not commute very well always with integration process. So, this 

lemma tells us that if you have a convergent series of functions term by term series of or 

point by point convergent series of functions. So, for each point z this series of functions 

converges to u of z, and at least for all z belongs to gamma star, and if these u k of z in 

modulus are less than or equal to some fixed constants M k, and sigma M k converges, 

then you can exchange the integration and summation for this u k of z over the contour 

gamma. That is the content of this lemma. 
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So, here is the proof. So, first we will take finite sums of these u k of z, so for N equals 0 

1 etc. For any non negative capital N let U N of z capital U subscript of z be the finite 

sum sigma k equals 0 through capital N of u k of z, little u k of z. So, both U N capital U 

N and capital U are continuous  of course, capital U N is continuous, because it is a sum 



 

finite sum of continuous functions, and capital U is given to be continuous. It is 

continuous by hypothesis. 

So, capital U are continuous where hence integrable on gamma star on the set gamma 

star in the complex p. Now, also we know that sigma modulus of u k of z converges by 

comparison test that is clear, because sigma Mk converges, so the hypothesis of the 

lemma says sigma Mk converges, and term by term modulus of u k of z is less than or 

equal to Mk. So, definitely sigma u k converges for any z by comparison test for any z 

belongs to gamma star. 

So, now what we will do is we estimate u of z using the u capital  N of z. So, what we 

will do is that we will take the difference of u of z with u k of z but, what we will do is 

that we will take the difference of the integrals of these. So, and estimate them. So, 

contour integration of u of z d z over gamma minus sum from k equals 0 to capital N of 

the integration, the contour integration of u k of z d z over gamma in absolute value in, in 

the modulus. 
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This is nothing, but the modulus of the contour integration of u of z minus u capital N of 

z d z. One and the same, you can exchange the integration and summation here, because 

your, you have a finite sum here k equals 0 through n. 



 

So, this is less than or equal to, this is less than or equal to by one of the estimations we 

had on integration. This is less than or equal to the supremum over z belongs to gamma 

star of the modulus of the integrand u of z minus u n of z, times the length of gamma, the 

length of gamma star rather in complex, the length of the contour gamma. So, I will just 

say gamma, so this is less than or equal to, in turn this is less than or equal to, well the 

difference u of z minus u n of z is equal to, is equal to the tail of the series sigma u k of z. 

So, this is less than or equal to the supremum over z belongs to gamma star of the 

modulus of the tail, and in which turn by infinite version of triangle inequality is less 

than or equal to k equals n plus 1 through this is the tail of the absolute value of series u 

k of z. so I am using an infinite version of the triangle inequality here. So, then we, we 

get that the earlier is less than or equal to. So, this is actually equal to notice that this 

thing within the, within the absolute value or the modulus is equal to this stale k equals n 

plus 1 through infinity. Sigma k equals n plus 1 through infinity of u k of z. And then, 

and then you shift the absolute value inside like this by triangle inequality, and then you 

get this times the length of gamma. 

So, then this in turn less than or equal to the supremum well each of these u k of z in 

modulus, we know it is less than or equal to M k by hypothesis.  
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So, this is less than or equal to sigma k equals N plus 1 through infinity of M k times the 

length of gamma, and as, as N goes to infinity since M k, sigma M k converges as N 



 

goes to infinity sigma k equals N plus 1 through infinity M k tends to 0 since sigma M k 

converges. Right? If you have k equals 0 through infinity converges, if you have a 

convergent series the tail of the series we know tends to 0, so this, so this allows us to 

say that, so this estimate which we started of this as limit as N goes to infinity will be, 

will be tending to 0, will be tending to 0. So, the integration of u of z, the contour 

integration of u of z d z is equal to, so we have in modulus this is equal to zero. So, this 

is equal to sigma k equals 0 through infinity, limit as capital N goes to infinity, so we 

have infinity on the top of the summation, so its top bound of summation of the contour 

integral of u k of z d z. 

So, this i e gamma sigma u k of z d z, because that is what capital U of z is, k equals 0 

through infinity. This is equal to sigma k equals 0 through infinity, integral gamma, 

integral over gamma of u k of z d z. Or in short we can exchange the summation and 

integration under these circumstances, so it is a end of proof of this lemma and we will 

use this for the proof of Taylor’s theorem. So, this is the first result that we need, and the 

next result that we will need to prove Taylor’s  theorem is as follows. 
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So, this is about the co-efficients of power series. So, let f of z equals sigma k equals 0 

through infinity, c k z power k where the power series, where this power series has 

radius of convergence R strictly greater than 0, so positive radius of convergence. Then 



 

we know that capital little f is analytic, so its differentiable term by term or I mean its 

differentiation is the, differentiation of these terms and then summing it up. 

So, there is also the fact that then the coefficients of this power series C n are given by 1 

by 2 pi i integration over C r f of z by z power n plus 1 d z where 0 less than or equal to r 

strictly less than r n greater than or equal to 0, and and C r. So, I will write below and C r 

there is a flash of notation may be this is little c n and this is capital C r. So, and capital C 

r is a circle of radius r is the contour, the circle of radius r centred at 0, and oriented 

positively. 

So, this tells us that if you take a power series which ahs positive radius of convergence, 

then its coefficients are, then its constants are unique. And there is a specific formula for 

that constant, and the, the constants are given by C n equals 1 by 2 pi i, the contour 

integration of f of z divided by z 4 n plus 1 over the contour C r, where r is C r is circle 

of radius little r strictly less than the radius of convergence, and its oriented positively. 

So, let us see the proof of this theorem of this little lemma, and it goes as follows the 

integration of f of z by z power n plus 1. The contour integration over C r of f of z 

divided by z power n plus 1 d z; this is equal to the integration over C r of clearly sigma 

k equals 0 through infinity of c k of z power k divided by z power n plus 1 d z. 
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This in turn is the integration of C r sigma k equals 0 through infinity of c k. I will divide 

z power n plus 1 term by term, so I will get z power k minus n minus 1 d z. Then all this 

d z, and provided I can interchange the limit or, sorry the summation and integration. 

So, I get sigma k equals, so let us for the time being assume that I can interchange them, 

I will show that I can interchange them by the earlier result. So, then this is equal to 

sigma k equals 0 through infinity of the integration contour integration over C r of C k z 

power k minus n minus 1 d z. C ks are constants, so this is equal to 2 pi i. So, there is 

only one survivor for this integral as k runs from 0 to infinity, when k equals n you have 

this integration for small enough r, this integration is actually equal to 2 pi i times C n. 

So, this will give you 2 pi i times C n, then because of the survivor z power minus 1 

when k equals n. The other functions z power k minus n minus 1 for k naught equal to n 

give 0 upon integration by the fundamental integral that we calculated earlier. Since C r 

is a simple closed curve, the integration upon C r of these functions gives us 0. So, this is 

2 pi i times C n, and I should just now justify how I can exchange the integration and 

summation, 

So, by the way this tells me that C n is actually equal to, so C n is equal to 1 by 2 pi i 

times the integration of f of z divided by z power n plus 1 over circle of radius r. So, 

firstly notice that if I set, let u k of z equals c k z power k minus n minus 1, and capital u 

of z is z power minus n minus 1 f of z. So, then I know that, then u of z is equal to sigma 

k equals 0 through infinity u k of z on at least z belongs to C r star. It is actually true on 

all of the, for all z belongs to the disc of convergence. 
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So, but at least true on the trace of C r, also the modulus of u k of z, and all these 

functions are continuous. This is clear because that is what f of z is. So, this is clear, and 

these functions are continuous, u k of z is equal to M k, what is M k? This is modulus of 

C k r power k minus n minus 1. That is the constant we are looking at, and sigma M k 

converges, because little r is strictly less than capital R which is the radius of 

convergence; so this, this shows that the hypotheses of the previous lemma are satisfied. 

So, all the hypothesis are met, you, you have u k converging to sigma u k converging to 

u of z, and then u, and u ks are all continuous. Further you also have that, this modulus of 

u k of z is less than or equal to M k, actually it is equal to this M k and sigma M k 

converges. So, you can exchange the, the limit, sorry the, the summation, and the 

integration. So, you have this formula for C n the coefficients C ns in the power C s. So, 

that completes the proof of this second lemma and now we are ready to prove the 

Taylor’s  theorem. 

So, we will start by fixing. Let, let me revisit the statement of the theorem. So, it says 

that function f is, is assumed to be analytic on B a R, R positive then f is locally a power 

series. And, and the constant C n are given by moreover the constant C n are given by 

the n the derivative of f at a divided by n factorial. So, there are several things to prove 

here, so firstly you fix a certain z belongs to B a R. what we have to show is that the 

power series actually converges to f of z. we have to show two functions are equal. 



 

So, for z belongs to b a r we have to show that the values of the functions are equal. So, 

fix that, fix some z, and choose choose r little r such that, such that the modulus of z 

minus a is less than little r is less than capital R. So, we want a little r between modulus 

of z minus a and capital R now by Cauchy’s integral formula, we know that f of z, the 

function f of z remember we are trying to reconcile the power series the value of the 

power series and the value of the f of z. 

So, let me first look at the value of f at z, this is 1 by 2 pi i times the integration over C r, 

the contour integration over the contour c r, f of w divided by w minus z d z d w, so that 

much I know from Cauchy’s integral formula.  
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Now, since modulus of z minus a is less than modulus w minus a for all, w belongs to the 

circle of radius r centred at a. So, since z minus a, notice is strictly less than r, so the, 

what you can do is you can take 1 by w minus z which appears here in the integration. 

So, in the integration the integrand is f of w divided by w minus z, I will concentrate on 

the denominator or namely, I will concentrate on 1 divided by w minus z. I will multiply 

f of w later, so 1 divided by w minus z can be written as, 1 minus w by a times times 1 

by, this is a standard trick. We will write this as 1 minus z minus a by w minus a. And, 

since modulus of z minus a is less than modulus of w minus a, we can expand this piece 

within the square parenthesis; we can expand that as geometric series. I will write that 1 

by 1 minus z minus a by w minus a can be expanded as geometric series. 
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So, so 1 by w minus z, this expression here is equal to 1 by w minus a times that 

geometric series which is sigma, so sigma n equals 0 through infinity of z minus a by w 

minus a whole raise to 1 or z minus a power n divided by w minus a power n, so that 

much I can do. So, I have somehow got a power series within the value for f of z. Now, I 

will try to express f of z as power series itself. 

So, f of z from, from that Cauchy’s integral formula, I will say star, this is star, from star, 

did I use star earlier? From star or let me call it star star may be I have used star for star 

star. From star star f of z is equal to 1 by 2 pi i times integration over the contour C r of f 

of w divided by w minus z d w, and I have written w minus z in this fashion here.  
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So, this is equal to 1 by 2 pi i integration over C r of f of w, I will keep the f of w a side 

times 1 by w minus a times the sigma n equals 0 through infinity of z minus a raise to n 

divided by w minus a raise to n, then all this d w. On the compact set C r, on the trace of 

C r, the continuous function f of w, f is bounded it is actually analytic. 

So, it is definitely continuous and it is bounded, so there is an M such that modulus of z 

minus a power n divided y modulus, or modulus of z minus a power n divided by w 

minus a power n plus 1 f of w is less than or equal to M divided by r. So, for this f of w I 

am using, and then w minus a in modulus z equal to r and then I will have, I, I took 1 r 

for modulus of w minus a, 1 modulus of w minus a. And then I take n r raise to n for the 

other remaining n, and then I have modulus of z minus a raise to n. 
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So let me call this constant, as so since we have fixed z all the, all of the right hand side 

here is a constant, let me call that M n. The series sigma M n converges, because what 

we have is a, is a constant, is a, it is a constant times geometric series, when we, when 

we sum up sigma M n, we have a constant times a geometric series, and that converges. 

Now, by lemma 1 therefore, we have, we have sigma M n converges, and this thing is 

less than or equal to M n for, for all n. And, so in here, I can exchange the integration, 

and summation, so by lemma 1 what I have is by lemma 1 f of z is actually equal to 

sigma n equals 0 to infinity 1 by 2 pi i times the integration over C r of f of w by w 

minus a raise to n plus 1 d w times z minus a raise to n.  
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So, I put this in parenthesis times z minus a power n, and everything is in sigma 

everything is in sigma, and this much from Cauchy’s integral formula we recognised that 

to be the n eth derivative of f at a divided by n factorial. So, by this is equal to this by 

Cauchy’s integral formula for higher derivatives. So, we proved all our assertions and 

that proves Taylor’s theorem. So, we will see, we will see some examples in the next 

session, I will stop here. 

 


