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Hello viewers, in this session we will start complex power series. So, we will see 

complex series which will help us to explore the properties, the local properties of 

analytic functions even further. So, to begin with we will see power series, complex 

power series as an example of analytic functions, and later we will show that every 

analytic function can be expressed as a power series around its point of analyticity. So 

we will make that clear in due course. 

So, firstly to begin with, I will give a refresher on complex sequences and a series. So, 

the definitions and the some of the preliminary results in complex sequences and series 

are very similar to the results, in the corresponding results in real analysis or functions of 

one real variable real functions of one real variable.  
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Let me first define complex sequences, so complex sequences, so what are complex 

sequences? A sequence like in the case of a real numbers, a sequence of complex 

numbers is a function f from the set of natural numbers to the set of complex numbers. 



So, what that means is that assigned to each natural number or to each counting number 

there is a complex number. 

So, there is a first complex number, a second complex number etcetera that we can talk 

of via this function f, so that is a complex sequence. So, f of 1 is usually called is called 

the first term of the sequence etcetera, generally speaking f of n is called the n eth term 

of the sequence. So, we can also talk about convergence of the sequence, like we do for 

real sequences, so convergence, so a sequence, a complex sequence in this case. So, a 

complex sequence, a complex sequence, I am switching to the notation a n, so to say 

what this a n is, this f can also be denoted by, so f of n is also denoted by a subscript n 

sometimes the n-th term of the series and usually when one writes a n in soft parentheses 

like this that means the sequence f okay. 

So, that means this particular sequence f whose n-th term is given by a n a subscript n. 

So, a complex sequence a n is said to converge to a complex number L, if for each 

epsilon positive there is a corresponding n naught or n epsilon let me say in the counting 

numbers such that, for each n bigger than are equal to this particular n epsilon so again 

we will go back okay. 
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So, what happens is, the absolute value the modulus of a n minus L is strictly less than 

that particular given epsilon, so the number, number L is called the limit of the sequence 



a n. So, this definition is very similar to the definition of convergence of a sequence of 

real number to a limit L okay. 

So, the only thing to notice here is that, in case of real numbers we consider the absolute 

value of a n minus L, where a n is the nth term of the series and we wanted that to be less 

than epsilon for every n greater than or equal to a particular capital N depending on 

epsilon. In this case that absolute value is replaced by the modulus of the complex 

number a n minus m, so apart from that particular difference pretty much the definition is 

the same. So, we can use the modulus, in modulus of a complex number in place of the 

absolute value for real numbers, so for this that is the definition of convergence. 

Next, we would like to talk about a Cauchy sequence, so like in the case of real 

sequences we have we can call a complex sequence Cauchy, if a similar condition holds, 

so here is the definition a sequence, so this is the next point. A sequence a n of complex 

numbers, is said to be Cauchy excuse me, is said to be Cauchy. If for each epsilon 

greater than 0 there is a corresponding N epsilon belongs to the set of natural numbers 

such that for any m bigger than n epsilon and n bigger than n epsilon.  

The modulus of the complex number a m minus a n, the difference, the modulus of the 

difference like that is strictly less than epsilon. So, the condition for a sequence to be 

called Cauchy is very similar to the condition for real sequences to be called Cauchy, 

except that once again the absolute value in the case of real numbers is replaced by the 

modulus in the case of complex sequence. 
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Once again why is this Cauchy condition useful? Once again I will state that preposition 

here, here is a preposition. A complex sequence is convergent to some number L, if and 

only if it is a Cauchy sequence, so this preposition which I am stating without proof, 

proof is very similar to the real case. This preposition tells us that, complex Cauchy 

sequences can be judged to be convergent without actually knowing what the limit is, so 

just by considering the difference, the modulus of difference of terms eventually, you can 

you can conclude whether the sequence is convergent are not. So, that is the use of this 

Cauchy condition, so like you know from a real analysis and then we proceed to define 

complex series this line. 
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So, consider a complex sequence, so let a n be a, a sequence complex sequence and the 

formal sum a 1 or a 1 a 1 plus a 2 plus so on, a 3 plus so on, is called the series sigma a n. 

So, that formal sum where you add all the terms in that sequence is called a series, a 

complex series, all right this is very similar to once again a real series. 
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The series we have the notation convergence of series the series sigma a n is said to be 

con are said to converge to the sum S, if the sequence of partial sums s n given by, so 

you consider the partial sums s n equals a 1 plus a 2 plus so on, until a n or more 



formally sigma j equal 0 through are 1 through n of a j. So, the sequence of partial sums 

like that these s n’s converges to the limit s. So, consider the sequence of partial sums 

and if this sequence converges to a limit s you say that, the series sigma a n itself 

converges to the sum s okay. 

In this case, one writes s is equal to sigma n or I will use j, j equals 1 through infinity a j, 

so that is the notation, so in this case one, one defines are, one writes s that some s like 

that, so that is a notation for this sum s. 
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If the sequence s n does the of partial sums does not converge, then we say that the series 

sigma a n also does not converge and one can by splitting a complex number a and n to it 

is real and imaginary parts. One can conclude the following sigma a n converges if and 

only if the sigma of real parts of a n. The real part of a n and sigma of imaginary part of a 

n-th converge, that is just by splitting a complex number a n. The n-th term in the 

sequence again into its real and imaginary parts and then that that is used in the partial 

sums sequence and from there you can conclude this preposition. So, this preposition the 

proof of this preposition itself is not very hard it is just splitting a complex number into 

its real and imaginary parts okay. 
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So, we will now see some properties of series complex series. So, firstly if sigma a n 

converges, then the limit as n tends to infinity of the n-th term in the sequence from 

which we are constructing these series. So, limit as n goes to infinity of a n is has to be 0. 

So, although I did not introduced this notation, limit n goes to infinity a n, it is what it 

means in the case of real sequences. So, notice the definition for convergence, let me go 

back, so notice the definition for convergence.  
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In this case, we write we normally write we write limit as n goes to infinity of a n is 

equal to L, this complex number L. So, that is the notation like in the case of real 

sequences. So, the viewer might be familiar with it from real sequences and we are using 

a similar notation for complex numbers, limit as n goes to infinity of a n is has to be 0, if 

sigma a n, if the series sigma a n converges.  
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So, that is one that, I will call this as point 1 and the second of these is that, there is a 

number m. So, I should say this is there is a real number m or even further I can say there 

is a positive real number m such that, well maybe I should say there is a non negative 

because it could be 0, there is a non negative real number m such that, the modulus of a n 

is less than or equal to m. So, whenever the series converges sigma a n the series sigma n 

converges, the modulus of the n-th term has to be less than or equal to m, for every for 

every n belongs to.  

So, that has to hold for there is a fixed number m for which modulus of a n is less than or 

equal to m alright. So, this property is going to be used several times in the in this or the 

coming lecture, so this is important and then well. The proof of either of these is very 

similar to the corresponding proof for complex or sorry a real sequences and series, so I 

will omit the proof the proof is very simple. So, the viewer can treat it as an excise.  
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So, that’s property one and then property two, if sigma a n and sigma b n are both 

convergent complex series, then sigma a n plus b n or more generally, sigma a n plus c 

times b n is also a convergent series, complex series for any c belongs to C. So, for any 

fixed for any c belongs to C for any complex number like that, the linear combination a n 

plus c b n is also a convergent a complex series whenever, sigma n and sigma b n are 

convergent. Once again the proofs of these properties are very easy, absolute 

convergences, a series sigma a n is said to be absolutely to be convergent, if the series of 

absolutes values of the n-th term, namely sigma absolute a n converges okay. 
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So and then by applying triangle in equality one can show that, suppose that one can 

show the following suppose that, the real series notice that the absolute value series, 

where you take the modulus of the n-th term. Consider the series sigma modulus a n that 

is a real number, real series, series of real numbers and suppose that real series 

converges, then you can conclude that then sigma a n converges okay. 

So, this property can be proved using a triangle in equality, on the partial sums and 

notice that this is also summed up sometimes, as if a series is absolutely convergent then 

it is convergent. So, absolute convergence means the convergence of the absolute values 

series are the modulus series, in the case of complex numbers alright. So, now the fourth 

property is the tests for convergence hold are about tests for convergences firstly.  
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So, we can apply a comparison test, ratio test and row test Cauchy’s and row test. To test 

the convergence of sigma absolute n or sigma modulus n and if sigma a n is convergent, 

sigma absolute a n is convergent, then sigma a n is convergent by the above, by property 

three by what we have just said. So, since sigma absolute a n is a real series, we can use 

the usual comparison test, ratio test and the n-th row test and then accordingly, we can 

conclude if sigma a n is convergent. So, notice that in property three, notice that if sigma 

a n is convergent, it does not imply that sigma absolute a n is convergent, you of example 

is already in the case of real numbers. So, that that very same example applies for 



complex numbers as well. So, sigma minus 1 power n by n for example, is such a series 

which is convergent, but not absolutely convergent alright. 
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So, now we can proceed actually to define power series. So, power series, so that was a 

really crash course is short course on, what complex sequences and series are? But since 

the viewer is already familiar with real sequences and series, so one can immediately 

extrapolate what the corresponding things are for complex sequences and series. So, the 

power series, for complex numbers though take an interesting turn, one can see some 

important properties like, why the radius of convergence should be a particular number? 

In the context of complex series more clearly than in the case of real series, I will 

elaborate this at an appropriate movement. So, for now I am going to define power 

series. 

A series of the form is called a power series around 0, in the variable z. So, z is a variable 

and that is called a power series around 0. So, if you are wondering why it is called a 

power series around 0? So, like in the case of real numbers a series of the form more 

generally, a series of the form, so let me use c naught here, c naught plus c 1, z minus a 

plus c 2 z minus a square plus so on, where c i’s belong to complex numbers is called a 

power series around a, around the complex number a, in the variable z. So, that is 

complex power series and we will see that under appropriate conditions okay, sometimes 

the series converge. 
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Firstly note that the first series, if you have power series around 0. So, power series 

around 0 for example, or more generally power series around a converges for one 

number at least namely 0, converges for z equals 0 or power series around a converges 

for z equals a. So, the set of points where this series converges is at least is at least non 

empty. So, but more is true depending on the coefficient a naught or c naught in either of 

these cases, so we will see what happens. So firstly, the notice that the partial sums, so 

the partial sums of this series.  
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So, first let me call this series of type one and type two, I have to keep going back to 

these two types. So, I will talk about type one and type one series, power series and 

similar statements holds for type two series. So, here I am going to talk about this type 

one series the partial sums of series one. 
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What are they? They are s naught equals a naught, S 1 equals a naught plus a 1 z, S 2 

equals, I will just go until S 2 a 1 z plus a 2 z square. So, actually they are all the partial 

sums are all polynomials in z and the next best thing you can do to polynomials is sort of 

the infinite version of the polynomials, which are these power series a 1 z plus a 2 z 

square so on, until a n z power n. 
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A power series is said to be is said to be convergent, at a point z naught, at a point z 

equals z naught, if the partial sums s n evaluated at z naught converge to a limit. So, if 

for a fixed z naught these partial sums converge, then we say that the power series 

converges at that particular z naught. So, that is the convergence and then, we will now 

see examples ok. 
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So, like in the case of real power series, we have the following examples, the first one is 

the geometric series. So, what is the geometric series? This is 1 plus z plus z square plus 



so on. So, we know by simple arithmetic that 1 minus z times 1 plus z plus z square plus 

so on, until z power n is 1 minus z power n plus one. So, 1 plus z plus z square plus, plus 

z power n which is the partial, n-th partial sum of the a geometric series is 1 minus z 

power n plus 1 by 1 minus z. 
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If of course, we need that z cannot be equal to 1 and so since, the limit on the right hand 

side of n goes to infinity of z power n plus 1 is 0, if mod z is less than 1. What we can 

conclude is that, when mod z is less than 1. When the absolute are the modulus of z is 

less than 1, the series the geometric series sigma z power n, n equals 1 through infinity or 

0 through infinity in this case converges and it converges to 1 by 1 minus z okay. So, this 

term here up here, this term is and tends to 0, so this geometric series converges to 1 by 1 

minus z, when the modulus the of z is less than 1. 
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So, also sigma or z power n plus 1 diverges mod z greater than 1 and we know that. So, 

in summary, sigma z power n has two kinds of behavior, it converges to mod converges 

to 1 by 1 minus z, when mod z less than 1 and it diverges when mod z is greater than 1. 

So, we will not very worry about it is behavior, at the point mod z is equal to 1, I on the 

circle on the unit circle in the complex plane, but what is important is that the geometric 

series behaves in the following manner, there is this disk, there is this unit disk. 
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If there is this unit disk inside of which it converges and outside of which it diverges. So, 

everywhere outside mod z outside the unit circles mod z strictly greater than 1 it 

diverges. So, there seem to be a disk of convergence, in this case and we will see that this 

is typical of any power series. What I mean by that is, we will see that there is a certain 

round disk in the complex plane, in which given series converges. So, that is the 

preposition that I am going to present. So, here is a theorem to each power series sigma a 

n, z power n there exists a corresponding R with 0 less than are equal to r less than are 

equal to infinity, what I.  
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So, we will allow infinity to be 1 value of R, what that means is that R is unbounded 

called the radius of convergence, with the following properties. One sigma a n z power n, 

converges absolutely for every z with modulus of z strictly less than R and if mod z 

minus, if mod z is greater than R there is a different behavior. If mod z is greater than R 

the terms of the series diverge of the series a n z power n diverge are unbounded are 

unbounded and hence the series is divergent okay. 

So, this theorem, so what it is stating is that there is the behavior exhibited by the 

geometric series is typical, its telling that not necessarily the unit disk, but there is a disk 

centered at 0, for the power series centered at 0. In which inside of which the power 

series converges absolutely and outside of which the power series diverges and on the 

circle itself, on the circle of radius R itself, the behavior of sigma a n z power n is not is 



not told by the this theorem. So, what happens to sigma a n z power n is not predicted by 

this theorem. 

So, what is import is there is this number R, the existence of this number R to be small 

are it could be large, which is given in this bound. So, R can be anywhere between 0 and 

infinity. So, like I have already commented earlier R can be 0 and so we have seen that 

the power series of type one or type two converge atleast for one point namely, the center 

of convergence itself namely 0, in the case of type one and a in the case of type two. So, 

it could be 0, I mean that could be the set of convergent points for the power series and it 

could be as large as infinity. So, we will see some examples of where the radius of 

convergence is infinity okay. 
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So, first we will prove this theorem proof. So, this strategy is to, let R be the supremum 

of the modulus of all such z’s such that, sigma a n z power n in absolute value. So, the 

absolute value series sigma a n z power n converges. So, geometrically speaking, so if 

we know a bunch of points where around 0, where this series converges absolutely, you 

are picking the z, such a z which is the supremum of all, I mean such a z whose modulus 

is the greatest. If one exists or if you know if there are many of these points then we pick 

the supremum of this set, of this set of modulus of such numbers and that is the candidate 

for our radius of convergence according to the theorem. 



So, if the modulus of z is strictly less than R then, since R is the supreme of this 

particular set above, then there is a z 1, such that modulus of z is less than modulus of z 1 

less than are equal to r and by definition of R. There is this z 1 such that this a n z 1 

power n converges absolutely. So, the series sigma absolute a n z 1 power n converges 

and z 1 there is such a z 1 between mod z and r by the definition of r itself okay. So, 

since R is the supremum of such mod z’s for this for this series, here we can say that. 
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Now, there is an m greater than or equal to 0, such that the n-th term of this series is less 

than or equal to m, for every integer n every positive integer n or for every n greater than 

are equal to 0. So, this comes from the property that I have listed earlier for series. So, let 

me go back, allow me to go back here and point to this property here okay. 

So, if sigma a n converges there is a this property says that there is non-negative real 

number m, such that the modulus of a n is less than are equal to m for every n belongs to 

m. So, I am using that property for sequences or series rather. So, the n-th term is less 

than are equal to m for every n positive or n greater than are equal to 0. What happens is 

that, the modulus of a n z power n is less than are equal to is less than are strictly less 

than modulus of a n times the modulus of z by z 1 power n whole raise to n times z 1 

power n, in modulus. I will club these a n and this modulus of a n and modulus of z 1 

power n and use this star, here to say that this is less than are equal to m times modulus 



of z by z 1 power n and since by star this is by star since modulus of z is less than 

modulus of z 1 modulus of z by z 1 is less than 1. 
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So, this becomes a geometric series, this becomes the n-th term of a geometric series. So, 

since this is less than one sigma m times modulus of z by z 1 power n is equal to m 

times, sigma modulus of z by z 1 power n converges. So, by compression test, this real a 

number is lesser than this real number in compression. So, by compression test, we can 

conclude that sigma a n z power n converges absolutely right this is less than this. So, 

this converges absolutely. 
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So, we have proved part one of this theorem. Part two of this theorem asserts that if, mod 

z is greater than R and suppose and if sigma a n z power n is convergent for is 

convergent for that particular z with mod z greater than R. Then, there is what we can 

say is that, there is an m greater than are equal to 0 such that, the modulus of a n z power 

n is strictly less or less than are equal to m for every n greater than are equal to 0, that is 

once again by the previous property. 

So, for any complex number w with modulus of z greater than modulus of w greater than 

R, the modulus of a n w power n will be less than are equal to the modulus of a n. So, I 

will include the z power n here times. The modulus of w by z power n, which is less than 

are equal to by the above estimate, this is less than are equal to m times the modulus of w 

by z power n. So, it is a similar estimate to what we have done before in the previous 

case. 
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Since, sigma mw by z power n is a convergent geometric series, sigma absolute a n w 

power n is also convergent by compression test, but notice that the modulus of w is 

greater than R. We are saying that there is a number w, whose modulus is greater than R 

and sigma a n w power n is a absolutely convergent. So, this is a contradiction to the 

definition of R, R is the, what is R? R is the supremum of all such modulus z you know 

for which sigma a n z power z is absolutely convergent okay. 

So, here sigma a n w power n is absolutely, convergent an modulus of w is greater than 

the supremum of all such things. So, this is a contradiction to the definition of our, so 

this cannot happen. So what cannot happen that, this is convergent cannot happen, so 

sigma a n z power n is a divergent for mod z greater than R okay. 



(Refer Slide Time: 48:01) 

 

So, that concludes the proof of this theorem and I will remark that, a similar statement 

holds for power series of type two. What I mean that is, there is a disk of radius R around 

the point, a inside of which the power series converges, b the power series of type two 

converges and outside of which the power series of two diverges. So, that is that is a 

statement in the case of power series of type two. So, we will conclude this session here.  


