
Complex Analysis 

Prof. Dr. P. A. S. Sree Krishna 

Department of Mathematics 

Indian Institute of Technology, Guwahati 

 

Module - 3  

Complex Integration Theory 

Lecture - 10 

Problems Solving Session 

Hello viewers, in this session, we will solve some problems based on the theory covered 

so far. Like in the previous review problem session, please try to pause the video after 

the each question and try to solve it yourself before looking at the solution, which I will 

any way present here. So, let us starts with problems.  
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So, the first question is as follows. Question one - it is a very simple question. Let us try 

to look at a contour integral, so a very simple contour integral. So, evaluate integration 

over gamma e raise to z square by z minus i power 4 d z, where gamma is the circle. As 

the circle of radius 4 centred at the origin described in the positive direction that, is the 

counter clock wise direction once. So, that is the question. So, I will present the solution. 

So, this question is a simple exercise in Cauchy’s integral formula for higher derivatives 

of analytical function. So, clearly if you try to use the parameterization of gamma to 

actually compute the contour integral directly it will be rather tedious. So, it is easier to 

use Cauchy’s integral formula. That is the point of this exercise.  



So, you should recognise the integral as an of a integral of a certain form. So, if you 

consider f of z equals the numerator e raise to z square, then this integral, integral 

gamma, integral over gamma e power z square by z minus i power 4 d z can be thought 

of as an integral of the form f of z by z minus a power 4 d z by the Cauchy’s theorem 

version three. So, if you have or the deformation theorem of the integration over that 

kinds of curve gamma of f of z by z minus a power 4 d z is going to be the same as 

integration over the circle c a r f of z by z minus a power 4 d z. 
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So, you have the following situation you have i here and you have a circle radius 4 

around a origin that is not to scale, but that is the picture. So, this is circle of radius 4. 

That is your gamma, it is not a circle centred at i but, that does not matter. By Cauchy’s 

theorem version three we know that integration over gamma of f of z by z minus i power 

4 is d z is equal to the integration over a circle of radius r circle of radius r around i, r 

small enough say 1, f of z by z minus i power 4 d z. Once again this by the Cauchy’s 

integral formula for the derivatives is 2 pi i times the third derivative we have a fourth 

power in the denominator, so it is the third derivative of f at the point i divided by 3 

factorial. 
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For higher derivative, we have a following formula integration c a r f of z. There are 

constant here there are constants 2 pi i. So, n factorial divided by 2 pi i times integral 

over c a r of f of z by z minus a power n plus 1 d z, that is the Cauchy’s integral formula. 

So, here we apply with this with n equals 3 to get this. So, if you compute the third 

derivative of our f at i and substitute and substitute it here we are going o get value of 

this integral. So, the third derivative of f itself is easy to compute. Well, f is e power z 

square f prime of z is z square 2 z e power z square f double prime of z by the product 

rule is 2 e power z square plus 4 z square e power z square. 

So, the third derivative of f is 2 e power z square times 2 z 8 z e power z square plus 8 z 

cube e power z square. So, 4 plus 8, 12 z e power z square plus 8 z cube e power z 

square. So, f triple prime at i is 12 i e power minus 1 plus 8 minus i. So, this is minus 8 i 

e power minus 1 which is 4 i by e. So, that is your f triple prime of i. Substituting that in 

here we get 2 pi i by 3 factorial 6 times 4 i by e which is minus 4 pi by 3. So, that is your 

integration over here gamma of f e power z square by z minus i power 4 d z. So, that is 

the solution add to this problem. 
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The next question is as follows. So, let f of z be an analytical function or be analytic on 

the unit disk. Suppose that the modulus of f of z is less than or equal to 1 by 1 minus 

modulus of z for each z belongs to D. So, under these circumstances try to show that the 

modulus of the n eth derivative of f at the point 0 is at most n plus 1 factorial times e? 

So, the key here is to use an appropriate contour in the unit disk so that we can we can 

bound the n eth derivative. So, more precisely we will choose an appropriate a circle of 

appropriate radius so that the n eth derivative at 0 can be bounded by the values of the 

function f on that circle.  
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So, please pause here and try to see if you can come up with the solution. Here I will 

present the solution. So, as I said the idea is to choose the appropriate a circle. So, if 

gamma is circle oriented in the positive sense, so positively oriented mod z is equal to 1 

minus one by k, let us decide what this k is little later let us just to see. So then, what we 

get is, the modulus of f of z on gamma on the circle gamma modulus of f of z, we know 

is less than or equal to 1 by 1 minus 1 minus 1 by k which gives us a k. Cauchy’s integral 

formula for the n eth derivative at 0 is given by well, f n of 0 is a n factorial by 2 pi i 

times integral over a gamma this particular gamma will work, because f is analytic inside 

and on the circle of f of z by z power n plus 1 d z.  
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That is the Cauchy’s integral formula for the derivative n eth derivative f at 0. So, the 

modulus of the n eth derivative of f at 0 is less than or equal to n factorial divided by 2 pi 

integration over a gamma of the modulus of f of z divided by modulus of z power n plus 

1 mod d z. On gamma we have bounded f of z it is bounded by k will set this k shortly. 

This is less than or equal to n factorial divided by 2 pi times integration over gamma of k 

well divided by mode z is 1 minus 1 by k. So, I have 1 minus 1 by k power n plus 1 mod 

d z. So, on gamma z is equal to r e power i theta where r is equal to 1 minus 1 by k theta 

goes from 0 to 2 pi.  

 

 



(Refer Slide Time: 12:16) 

 

So, if that is the parameterization then d z will give us r i e power i theta d theta or mod d 

z will be r times mode d theta. So, this expression here is less than or equal to n factorial 

divided by 2 pi times integration over gamma. Now, we have converted everything n to 

theta so theta goes from 0 to 2 pi of k divided by 1 minus 1 by k power n plus 1 times 1 

minus 1 by k which is r here and then modulus of d theta. Well, we can take that to be d 

theta. I mean it is not modulus it is the absolute value. So, then take that to be d theta 

itself. 

Then this we see is after after some cancelation we see that this is less than or equal to or 

equal to in fact n factorial divided by 2 pi integration from 0 to 2 pi k power n plus 1 

factor here cancels the denominator. Something like this here one factor here cancels 

with one factor here. So, we get k power n going to the top so we have k power n plus 1 

which is k power n here times k divided by k minus 1 raise to n and then d theta. Then 

this is less than or equal to n factorial divided by 2 pi. Well, now is the time to set k so or 

lets still decodes this. This looks like k by k minus 1 power n times k times d theta.  
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Since we want to show that this is bounded by this n eth derivative at 0 is bounded by n 

plus 1 factorial times e. So, in order to get that n n plus 1 factorial probably correct to 

take k equals n plus 1. So, that k and this n factorial give us n plus 1 factorial. So, this is 

take k equals n plus 1 n plus 1 rather. So, this is less or equal to n plus 1 factorial divided 

by 2 pi times integration from 0 to 2 pi of n plus 1 by n power n and then d theta. This is 

of course this is constant which is clear of the integration. So, we can actually put it 

outside the integration. This is less than or equal to n plus 1 factorial divided by 2 pi 

times 1 plus 1 by n power n then 2 pi.  
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The integration from 0 to 2 pi of d theta gives us the 2 pi. So, you can cancel these and 

get this is less than or equal to n plus 1 factorial times this factor 1 plus n by power n. 

We know that this, this, this is the sequence 1 plus 1 by n power n is an increasing 

sequence of, of real numbers. One proves in a first course in real analysis that this tends 

to e. The limit of this increase in sequence either one defines that to be e or e is define 

otherwise then one proves that converges to e. So, in any case this is an increasing 

sequence. So, before we go to the next problem we will introduce some terminology 

namely convex set and the convex hull of a set of points.  
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So, let us starts with convex set. So, a set is said to be convex it has the property that if x 

and y belong to the set then line segment joining x and y belong to the set. So, set S is 

said to be convex, for simplicity we will assume this as sub set of c. So, set contained in 

c is said to be convex if whenever x comma y belong to S then the line sigma joining x 

and y is contained in S. So, another way to say this is well one can always parameterize 

line segment by t x plus 1 minus t times y. So, t between 0 and 1 will parameterize the 

line segment joining x and y. 

So, if this belongs to S this point belongs to S for t between 0 and 1 whenever x and y 

belong S then you say that s is a convex set. So, for example, convex sets could look like 

this. So, line segment itself is convex because if you take any two points on the line 

segment x and y the line segment joining them is a contained within this line segment. 

So, it is a convex set, so likewise if you take triangular piece like that and then the inside 

of this along with the boundary that is a convex set. So, you pick any two points x 

comma y inside the set they could be on the boundary for example, the line segment 

joining them is contained in the set. 

(Refer Slide Time: 18:39) 

 

So, this is a convex. In general the inside of the polygon along with the boundary of 

polygon if you wish is a convex set. So, that is the convex set and then there is the 

concept of a convex hull. So, in order to consider is convex set which is, which contains 

a bunch of points we can construct a convex hull which has a an additional minimality 



property as well. So, here is convex hull. The convex hull of a set k contained in c is a 

convex set S contained in c containing in k. So, it contains k. Not only that it is such that 

no proper sub set of S contains k.  

No proper convex set I should say no proper convex sub set of S contains k. So, such 

things are normally constructed as follows. Notice that, note the intersection of the 

intersection of two convex sets is convex. In general the intersection of a collection of 

convex sets is convex. So, since this happens what you do is you consider the set of all 

convex sets which contain a given k and you take their intersection. So, let G be 

collection of all convex sets containing a given set k. Then the intersection of all these, 

so intersection of S such that s belongs to g is a convex set by the above, above note is a 

convex set containing k.  

By construction this is the convex hull of k because no proper sub set of this you contain 

k. Because if there is a there were a proper sub set of this which contains k then it would 

belong to the sub collection then it would appear in the intersection. Then so it would be 

the intersection or else super set of the intersection. So, that cannot occur. So, there is no 

proper set of this which contains the convex sub set of this which contains k. So, it is 

how we construct a convex hull. So, and is a so I will remark here that this set 

intersection S belongs to G, S is a convex hull of k. That is how we construct convex 

hulls.  
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So, we will note one property of convex hull, it is as follows or couple of them. So, the 

convex hull of a finite number of points in C is a is polygon; so this intuitively clear. So, 

depending up on how many of them are collinear etcetera the geometry of the polygon 

differs. But eventually some or all of them are going to be the vertices of polygon. So, 

suppose some point is like this some point is like that then the this collinear etcetera. So, 

then eventually will get a polygon which will be the convex hull of bunch of this points. 

So, we will not prove this property but, this is true. 

And then it is one can actually try to prove this property by taking coordinates etcetera. 

So, this is easy to do. So, you just have to use the definition of a convex set and of a 

convex hull to prove this. Then, then next property that I want to state is that, let x 1 x 2 

so on until x n belong to convex set k. Then S 1 x 1 plus S 2 x 1 plus so on until S n x n 

belongs to k whenever 1 less than or equal to s i less than or equal to 1. The sum of s i’s s 

1 plus s 2 plus so on until S n is equal to 1. So, this is once again easy to prove using the 

definition of a convex set. So, one can show that all this point for any values of S like 

this is belongs to a convex set k. 
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Whenever these points starts, when you start with these points on a convex set k, in 

particular if you consider the convex hull of these bunch of points it is a convex set. So, 

then this kind of combination where S i’s are like this is also a point in that convex hull. 

So, with this we are ready to now state the next question. So, let z 1 z 1 so on until z n be 



zeroes be the zeroes of the polynomial P of z. Show that the zeroes of the derivative of p 

lie within the convex hull of these zeroes of the points z 1 through z n in the complex 

plane.  

So, consider using the quotient P prime of z by P of z to prove the same is a hint use P 

prime by z by P of z. So, try to solve this problem and I will provide this solution here. 

The statement of this problem is called the Gauss Lucas theorem. So, the solution is as 

follows. Let alpha be is zero of P prime of z. If alpha is one of the z i’s then it sure lies in 

the convex hull because a point themselves lie in the convex hull of those points. So, if 

alpha is one of the z i’s then alpha lies in the convex hull of z 1 through z n. Now, 

suppose that alpha is a not 0. So, if not a suppose now that P of alpha alpha is not equal 

to 0. So, alpha is not one of the z i’s now. 
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So, in this case let me first write P of z as some constant c times perhaps the constant c 

times z minus z 1 times z minus z 2 so on until the z minus z n. Because such a 

factorization is true for p of z because these are all the zeroes of p of z z 1 through z n are 

all the zeroes. So, perhaps there is multiplying constant c c belongs to c c not equal to 0, 

so belongs to c minus 0. Suppose P of z is like that then P prime of z is easy to calculate. 

P prime of z each time you take the derivative of one factor which is 1 and use the 

product rule. So, I can actually directly divide by P of z to get P prime of z by P of z is 

equal to 1 by z minus z 1. 



So, the factor which is missing in P prime figures in the in that reciprocal like this. Then 

there are P prime is the sum of all these factors so it is plus 1 by z minus z 2 plus 1 by 

etcetera so on until plus 1 by z minus z n. So, then since P of alpha we are assuming is 

not 0 now. So, then P prime of alpha by P of alpha is equal to 1 by alpha minus z 1 plus 1 

by alpha minus z 2 plus so on until 1 by alpha minus z n which is equal to 0 because the 

numerator P prime of alpha is equal to 0. Alpha is a 0 of P prime by assumption. So, so 

this is equal to 0 and then we will use this equation to do the following. So, we will use 

this particular equation. So, first multiply the numerator and denominator each of these 

terms with the conjugative of the denominator.  
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So, we get alpha bar minus z 1 bar divided by modulus alpha minus z 1 square plus alpha 

bar minus z 2 bar divided by modulus of alpha minus 2 square etcetera plus alpha bar 

minus z n bar divided by alpha minus z n modulus square is equal to 0. So, alpha bar 

times let me factor out an alpha bar. I get the 1 by modulus of alpha minus z 1 square 

plus 1 by alpha modulus of alpha minus z 2 square plus so on plus 1 by modulus of alpha 

minus z n squarer. This is equal to on the right hand side I will collect these terms z 1 bar 

divided by modulus of alpha minus z 1 bar etcetera. So, on the right hand side I get 

sigma i or k is equals 1 through n of z k bar divided by the modulus of alpha minus z 1 z 

k square. 



Now, notice that this is a real number. Let us call that A and the coefficient of z k bar is 

also a real number and so let us call that A k. so this is A k 1 by this is A k. So, alpha bar 

times A is equal to sigma k is equals 1 through n z k bar A k. where A k is equal to 1 by 

modulus of alpha minus z k square. Also notice that the sum of A k is actually equal to 

A. So, A k by a is such that A k by A is in between 0 and 1. These are all modulus of 

numbers complex numbers. So, they are positive or 0. Since the sum is equal to A sum of 

A k’s equal to A, A k by A is in between 0 and 1. Sigma A k by A is equal to 1. So, this 

is where the second property of the convex hull that I mentioned is coming into picture. 
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Let me go back, so this S i’s so these are the candidate A k by A’s are candidate for S i’s. 

So, alpha bar so I will conjugate on both sides of this equation A and A k are real 

numbers. So, the conjugation does not affect them. So, what I get is alpha is equal to 

sigma k is equals 1 through n of z k times A k by A. Now, we recognise that this is a 

combination like in the property two. So, this is a combination which lies in so this this 

lies in this complex number lies in the convex hull of z 1 through z k or z n rather by 

property two above. So, which is what we want, so alpha like in convex hull. So, alpha 

lies in the convex hull of z 1 through z n.  



(Refer Slide Time: 34:59) 

 

So, in either case whether alpha is 0 of P of z or not alpha lies in convex hull of z 1 

through z n which proves the problem. This like I mentioned this is called the Gauss 

Lucas theorem. So, the next question is as follows. This is an application of the Gauss 

Lucas theorem. Show that the zeroes of the polynomial P of z is equal to 1 plus 2 z plus 3 

z square plus so on until n z power n minus 1 lie inside the unit disc b 0 1 bar. So, the 

solution is as follows so try to see if you can work out the solution and then represent the 

solution here. 

So, notice that P of z looks like the derivative of z plus z square plus so on until z power 

n. So, that prime means derivative. So, P of z can be thought of has the derivative of that 

polynomial and then we will use the Gauss Lucas theorem which says that the the zeroes 

of P of z lying on the convex hull of the zeroes of this polynomial. So, let us concentrate 

on this polynomial within the parenthesis. So, this polynomial can be factorised as z 

times 1 plus z plus z square so on until z power n minus 1which is z times in recognize 

that z power n minus 1 divided by z minus 1.  
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We recognize that the this z power n minus 1 the roots of this polynomial z power n 

minus 1 precisely the n through roots of unity and when we divided by z minus 1 we 

forget the root one itself. So, if zeta k is equal to e power 2 pi i k by n 1 less than or equal 

to k less than or equal to n minus 1 then zeta k is a root of this polynomial z plus z square 

plus so on until z power n. And notice that 0 itself is the root of this polynomial. So, 0 is 

also root of z plus z square plus so on until z power n. Now, the zeroes these are 1 minus 

1 number. 0 is including 0 we have n roots an n th degree polynomial have at most (( )) 

roots. 

So, we know all the n roots. These are all distinct (( )) the point. So, we now know all the 

roots of this. So, the zeroes of the given polynomial of P of z lie in the convex hull of the 

set zeta k which is e power 2 pi i k like I am mentioned here. So, this is zeta k such that 

one less than or equal to k less than or equal to n minus 1 union 0, but now what is the 

convex hull of these? Well, the roots of unity lie on the unit circle. So, they divided the 

unit circle to equal number of circular pieces. So, these zeta k lie they look like e power i 

theta for some theta and lie on the unit circle. 0 is in the centre.  

So, the convex hull of the roots of of this set the roots of z plus z square plus so on until z 

power n is the unit disc. Actually is a sub set of unit disc b bar 0, 1. So, if k equals 3 for 

example, we are looking at the thirds roots of unity and when you forget 1 itself when 

you have this this and 0 the roots of z plus z square when n is equal to 3 we have z plus z 



square plus z cube. So, this is an example z plus z square plus z cube when n is equal to 3 

you get this is z times 1 times z plus z square. The roots of these this are omega and 

omega square. The cube roots of unity, which are here and here and then you have 0 

itself which is the root here. 
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So, the convex hull is going to be this triangular region. So, this is an example. So, 

likewise you are going to get a sub set of b bar 0 b 0, 1 bar the closer of b 0, 1. That is 

the convex hull, so the zeroes of P of z definitely lie in b 0, 1 closer. So, that is the 

solution add to this problem. This kind of questions are standard. So, suppose f from G to 

C is analytic. I should start with let G b a region. So, G is a region and suppose f from G 

to C is analytic. And suppose that and f of z is a real for all z belongs to G. Then show 

that f is constant. So, a real value analytic function has to be a constant function. So, 

there are other versions or kinds of problems which look like this.  
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So, one can ask that show that if modulus of f of z is constant then f is constant. Or one 

can ask that if f of z is purely imaginary always then show that f is constant. And one can 

more generally ask that if the value f of z lie on a line passing through origin for example 

or on straight line then show that f is constant etcetera. So, all these will will follow from 

a theorem which we will do in the next few over the few next session called the open 

mapping theorem which says that an analytic function should take open set to open sets. 

So, or a non constant analytic function should take open sets to open sets. So, f were to 

be non constant it will take G which is the region it is an open set to an open set.  

So, what that means is that well, so it cannot take in particular it cannot take c two the 

real axis which is not open in the complex plane. Or a part of real axis any part of real 

axis which is not an open set the complex plane. Likewise it cannot take the complex 

plane to a particular circle for that matter where the modulus is fixed. Now, we can use 

the Cauchy’s Riemann equations directly to show that f is the constant. For now since we 

do not have the open mapping theorem at hand you can use the Cauchy’s Riemann 

equations to show this problem. So, here is the solution. Let z naught belong to G. Let so 

f of z is equal to or f of z naught is the real number that is given f of z naught f of z is 

real. 

Let S equals the set of all z belongs to G such that f of z is equal to f of z naught. We will 

show that S the whole set G. So, firstly let us look at f of z which is which looks like let 



me separate into its real and imaginary part. It looks like u of x y plus i times v of x y and 

u and v satisfy the Cauchy’s Riemann equations. It is given that f of z is always real 

which means v of x y is identically the zero function, so on G. So, u of this is u of x y 

plus i times 0. By the Cauchy’s Riemann equations we have, what do you have we have 

v of x y is 0 implies u x the partial of u with respect to x is 0 and the partial of u with 

respect to y which is minus the partial of v with respect to x that is also a 0. 
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This is 0 because u x is equal to v y and v y is 0. So, both these are 0. Since G is a region 

there is a rectangular path connecting there is a r path connecting z naught and z. So, 

using that rectangular path you can try to recover u of x y by integrating along by 

integrating along the line segments parallel to x axis. So, on x axis line segments parallel 

to x axis. So, I will just not say that I will just say on z naught z this is to indicate the 

rectangular path connecting z naught and z. Then you can integrate with respect to y 

partially so d x. Then on the line segments connecting z naught and z on the rectangular 

path connecting z naught and z on the on the line segments which are parallel to y axis y 

axis rather.  

U can integrate with respect to u i with respect to y. But the these both both of these are 

zeroes so which means both are these are given to be 0 and u x any way is 0 on on 

vertical line segments. And then u y likewise 0 on horizontal line segments. So, actually 

identically 0 in the whole region. So, this gives you the constant of integration that is all. 



So, two constant of integration, so u of x y is constant. So, likewise so, well that that 

already shows that f of x y is a constant, the real constant. So, that is solution to this 

problem alright so then next problem is as follows. 
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So, let u from C to r be a bounded harmonic function. Hence suppose that u is a real part 

of some analytic function f on all of C. Then show that u is bounded, u is constant rather. 

So, what that means is show that u further constant function. So, u is the real part of f for 

every complex number z. So, try to solve this problem and I will present the solution 



here. So, let me first remark that it can be shown that this supposition is unnecessary. 

What I mean by that is this is the additional, but since the we did not shown that in the 

theory we will assume this in addition to u being a bounded harmonium function.  

Since u is the real part of f for every z belongs to C what you can do is you can consider 

e arise to f e arise to f is analytic. Or in fact it is entire because f is entire, since f is 

entire. This f here in the problem is entire. So, the modulus of e arise to f is going to be e 

raise to the real part of f at every point z and that is e raise to u. So, since it is given u is a 

bounded so this is less than or equal to e raise to m where u is bounded. So, the modulus 

of u or the absolute value of u is less than or equal to m. It is bounded function so there is 

such m. 
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So e raise to f is bounded entire function. So, by Liouville’s theorem we know that e 

power f is a constant function. That immediately implies that f is the constant function 

and which in term shows that the real part of f u is the constant function. So, that is also 

an easy exercise. So here are few more problems. So, here is the question. Find all z for 

which cosine z is real. So, the solution well, you just have to look at the expression for 

cosine z this is e power i z plus e power minus i z by 2 and then this is real number. So, 

we have to use the fact that real number is equal to its conjugate. So, we will use that 

fact, let us first see what this is. e power i z plus e power minus i z by 2, this is equal to e 

power i x minus y plus e raise to minus i x plus y divided by 2. 

 

 



(Refer Slide Time: 52:56) 

 

This is equal to well, this is cosine x plus i sine x divided by e power y plus cosine x 

minus i sine x times e power y divided by 2. So, this number should be equal to its 

conjugate for the above condition. So, so this number cosine x plus i sine x divided by e 

power y plus cosine x minus i sine x times e power y divided by 2 is equal to its 

conjugate. The conjugate of this is going to be cosine x minus i sine x divided by e 

power y plus cosine x plus i sine x times e power y divided by 2. So, up on simplification 

well these cosine x’s cancel these cosine x’s is cancel. Then you are left with 2 cancel of 

course, so you are left with 2 i sin x divided by e power y is equal to 2 i sine x e power y. 

(Refer Slide Time: 54:16) 

 



So, you end up with the equation sine x times 1 minus e power 2 y is equal to 0. So, well 

either sin x can be 0. So, this is 0 this product is 0 if sine x is 0 or if e power 2 y is equal 

to 1. Sine x is equal to 0 has the solution x equals n pi where n is an integer. Then e 

power 2 y is 1 implies 2 y has to be 0 which implies y is 0, which is the real axis. We 

know that cosine is real on the real axis. And whenever x is n pi even then your co cosine 

z is a real. So, these two give you the set of all points where cosine z is real and we will 

end this problem session with this problem. 

 


