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Cauchy’s Theorem for a Rectangle 

Hello viewers, last time we stated the important theorem of complex analysis namely the 

Cauchy’s theorem and in this section, we are going to prove the Cauchy’s theorem. So, 

let me give the statement of the theorem once again. 
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So, 1 version of Cauchy’s theorem is, Cauchy’s theorem says that, let r be a rectangle or 

rectangular region. R equals to set of all x plus i y is such that x is in between a and b and 

y is in between c and d. We will assume that a is not equal to b and c is not equal to d for 

non triviality. So, it is really a rectangular region with some area and let f be analytic on 

an open set containing this rectangular region R. 

The conclusion is that the contour integration of f of z d z on the boundary of the 

rectangle R oriented in the positive sense is equal to 0. Once we prove this theorem, it 

does not matter how you orient boundary of the rectangle, because once its 0, then the 

rectangle boundary oriented in the opposite direction will also give you a contour 



integral equal to 0. So, the orientation really does not matter after we prove the theorem. 

Hence, this notation is being casual about the orientation. 
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So, here is the proof of theorem. Let us start with a notation, so here is a notation just to 

avoid writing too much. Let me give you a notation eta of some T, where T is the 

rectangle. Let us say it is essentially the contour integral along the boundary of T f of z d 

z for any rectangular region T. So, that is the notation I will use, okay. So, let us start 

with a picture. So, here is the rectangular region R and let us subdivide this rectangle into 

4 equal pieces in terms of area, let us say. So, here is the contour del r, which appears 

here in the contour integral, the statement of the theorem.  

So, like I mentioned last time what we do is that we take these contours, that is the 

rectangle R or the rectangular region R, which is divided into 4 rectangular regions and 

then we take these contours, okay. So, this is just a picture. What are these 4 contours 

actually? They traverse the sides of the rectangle and those inside lines. So, just for lack 

of space, I am drawing a slightly smaller rectangle inside to indicate that the contour is 

going on the rectangle and on the lines which are a part of those subdivisions. So, for 

example, here is a contour like this, which actually should have been this contour which 

is wriggly right now, okay? 

So, instead of drawing such wriggly things, I just drew them inside, so R is now union of 

four rectangular regions, R 1 union R 2 union R 3 union R 4. So, I am naming them R 



super script parenthesis 1, 2, 3, 4 etcetera. Since, when you consider the boundaries of 

this R 1, R 2, R 3, R 4, you see that the inside lines have contour integration of f in 1 

direction and then in the opposite direction. So, for example, this line right here has a 

contour integration along this and along this. So, they cancel each other. 
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So, what I mean is that when you consider the contour integral of f of z d z on del R, this 

is equal to the contour integral on del R 1 of f of z d z plus the contour integral on del R 

2 f of z d z. I apologize that I am taking R 1 on top, R 2 like that, del R 3 like that, and f 

of z d z plus integral dou R 4 f of z d z. Since, like I mentioned the contour integral on 

the inside cancel due to opposite directions, all we are left with contour integral along the 

boundary of R. So, it is easy to see why this equality is true from the above picture and 

from our notation we had up there, eta of R is eta of R 1 plus eta of R 2 plus eta of R 3 

plus eta of R 4. 

So, we can conclude that there is some i, 1 less than or equal to i less than or equal to 4. 

So, essentially 1 of this is at least one forth of eta of R in terms of absolute value. 
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So, there is some i, such that the modulus of eta of R i is greater than or equal to one-

forth of modulus of eta R. That is clear because if the modulli of any of this is strictly 

less than one forth of modulus of eta of R. Then you get a contradiction from triangle 

inequality. So, there should be 1 i, such that this should hold. 

So, we will preserve this inequality. So, let us call this R i as R 1. Now, I am saying that 

that particular R i for which the above holds, will call that rectangle R 1. Now, there 

could be more than 1 rectangle for which this holds among R 1, R 2, R 3, R 4. There 

could be more than 1 for which this holds, and in that case you just choose 1 of them. 

You can randomly pick 1 of them and call that R 1. So, in case there is more than 1 i. Let 

me call this inequality 1, for which 1 holds, then choose 1 of them arbitrarily. It does not 

matter. So, we will call that R 1 and then let us pretend that the top left rectangle was R 

1. So, let me go back to this picture. Let us pretend that there is R 1. 
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So, in that event you take R 1 and do the same. Divide it into 4 equal pieces and continue 

the process. So divide R 1 into 4 equal rectangles. By equal, I mean equal in terms of 

area. Let us say so, and call this R 1 1 R 1 2 R 1 3 and R 1 4. Once again, there exists for 

the same triangle inequality, there exists an i 1 less than or equal to i less than or equal to 

4, such that the modulus of eta of R 1 i is at least one fourth of the modulus of eta of R 1 

this time. R 1 was chosen, so that it is modulus was greater than or equal to one fourth of 

modulus of eta of R, rather. So, this is greater than or equal to one forth times one forth 

of modulus of eta R, okay? 
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So, call this R 1 i as R 2, so once again in case of more than one such i etcetera etcetera, 

do the same. You just pick 1 arbitrary and then you have R 1 R 2, which is produced like 

that. So, continue this process to obtain this sequence of rectangles R 1 R 2 etcetera. So, 

R 1 of course, it contains R 2. Initially R 1 was contained in R, and then R 2 contains R 3 

etcetera. So, continue this process now. So, we get this nested sequence of rectangles. 

What is nice about this is that, we have an estimate that eta of R n of the next rectangle is 

at least 4 power minus n times the modules of eta of R.  

So, for example here you observe that eta of R 2, you are going to call this R 2. So, eta of 

R 2 in modulus is greater than or equal to 4 power minus 2 modulus of eta of R. So, 

continuing this you get eta of R n is at least 4 powers minus n in modules of eta of R. 

Then, we will preserve this inequality. We call these, let us say 2, okay? Now, then these 

are nested sequence of rectangular regions R 1 R 2 etcetera. So, from theorem in 

topology, we know that the intersection of this is non empty and these rectangles are 

shrinking in area each 1 is one-fourth of the previous 1.  

So, they converge to a certain point because their intersection is non empty. So, we will 

say that these rectangles converge to a point z star. The star of course, is the inside the 

rectangular region R. It is in the following. So, given a delta positive, there is a natural 

number capital N such that R capital N is contained in set of all z, such that the modulus 

of z minus z star is strictly less than delta. 
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So, if you consider z star which is the point of the convergence of this rectangles and you 

consider a delta ball of radius delta around it, then there is a natural number n such that 

the nth rectangles contained in this ball, R capital. Once R n is contained in there, you 

know that R n plus 1 is which is contained in R n, is also contained in them. So, I notice 

R n is contained in z such that minus z star is strictly less than delta for all n greater than 

or equal to capital N, because these are nested sequence of rectangles. So, if capital R n 

is in there then, all rectangles are in there. So, the convergence of these rectangles to the 

point z star is in this particular sense. 

So, now we are free to choose a delta and given any delta positive, we know that there is 

going to be some rectangle such that all the rectangles from thereon, in that above 

sequence will be in this delta ball. Now, we are going to choose this delta in a certain 

way. So, here is the way we choose delta. So, we know that the f is analytic in an open 

set containing the rectangle capital R. So, given epsilon greater than 0, there is a delta 

positive such that whenever the modulus of z minus z star is strictly less than delta, the 

modulus of f of z minus f of z star minus f prime of z star times z minus z star is strictly 

less than epsilon times modulus of z minus z star.  

This is because the function is analytic at z star, by using the definition of analyticity or 

differentiability at z star. So, whenever given epsilon is greater than 0, there is a delta 



greater than 0 such that whenever this z are in a delta neighborhood of z star, this 

inequality holds. So, we will call as inequality 3.  
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It is clear from definition of the differentiability that f of z minus f of z star divided by z 

minus z star, the limit of this as z approaches z star is equal to f prime of z star. So, from 

this, we get this same equality or this is a limit, means the above inequality. Now, let 

epsilon greater than 0 be given. Choose delta positive such that 3 holds and given that 

after choosing this delta, obtain a natural number n such that this here holds. So, the set 

R n is contained in set of all z such that mod z minus z star is strictly less than delta. We 

saw that given any positive delta this can be done. So, now after choosing this delta we 

can get such a containment, such a natural number. 
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We will make some observation by the fundamental theorem of calculus, the complex 

version. So, by the fundamental theorem of calculus we know that the the contour 

integration of 1, the complex function 1 d z on the boundary of R n is 0. Because 1 is the 

derivative of z on all this complex plane, in particular, on an open set containing this 

rectangle R n.  Likewise, the contour integration of the function z d z on the boundary of 

R n is also 0. So, we will need these 2 pieces, which are conclusions from the 

fundamental theorem of calculus.  

Of course, the second equality or the second value of the integral follows from the fact 

then z is the derivative of the function z squared by 2 on all of the complex plane. So, we 

will use this 2 and notice the modulus of the contour integral on the boundary of R n of f 

of z minus f of z star minus f prime of z star times z minus z star d z is less than or equal 

to the modules of the contour integration on the boundary of R n of epsilon times z 

minus z star d z.  
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This inequality is right from here 3. I am using 3 and then I can conclude this thing here. 

So, what I get is the contour integration of f of z d z minus the contour integration on the 

boundary of R n f of z star d z minus the contour integration of f prime of z star times z d 

z plus the contour integration of f prime of z star times z star times the contour 

integration of 1 d z, that is in the left hand side of this inequality. 

So, you notice that f prime, I mean this way because, the prime of z star is a constant and 

z star is a constant. So, you notice that this one and this one and this one, all this 3 are 0, 

because the contour integration 1 or z on the contour boundary of R n are 0. So, this is 

less than or equal to epsilon times the contour integration R n of the absolute or a 

modulus of z minus z star times modulus d z, okay? 

So, these are zeroes. These yellow things are zeroes. So, what I get is that the modulus of 

contour integration of f z on R n is less than or equal to epsilon times. Now, I am going 

to use the estimation theorem, we solved in the last session. Let us say that the modulus 

of z minus z star in R n is at most the length of the diagonal. So, here is the picture. So, 

you look at z star and here is R n containing z star, z star could be anywhere in R n. 
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So, the maximum value of the modulus of z minus z star as z varies from the boundary of 

this R n is essentially the length of the diagonal because z star. For example, could be a 

point on this diagonal itself that is at one of the corners. If this is the point z, then z is the 

diagonal length away from z star. So, that is the maximum distance. So, this is less than 

or equal to z minus z star is at most d n, where d n equals the length of diagonal of R n. 

So, this is d n and then I am left with the integration of mod d z on boundary of R n and 

we know that it is the length of the boundary of foreign, which is essentially the 

parameter. So, let me write that as l n. So, l n equals the parameter of the rectangular 

region R n. The way we have chosen these rectangles by subdividing them into 4 pieces 

of equal area, we have the following. This d n will be 2 powers minus n times d where d 

equals length of the diagonal of R and l n, which is the parameter of the nth rectangle is 

going to be 2 power minus n times l where l equals to the parameters of r. 
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So, what we get is the modulus of eta of R n is less than or equal to epsilon times d n 

times l n, which is 2 power minus n times d two power minus n times d, which is 4 

power minus n times d. So, this we will call as inequality 4. May be, I use 3, so I am 

going to call this 4. So, from 1 and 4, I will allow me to go back to 1. I remind you about 

1 or may be 2. So, 2 tells us that the modulus of eta of R n is at least so much. 4 tells us 

that the modulus of eta of R n is at most so much. So, you can compare these 2 

quantities. 
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From 2 and 4, we conclude that the modulus of eta of R n, that is 4 to the power minus n 

is less than or equal to modules of eta of R n is less than or equal to epsilon times 4 to the 

power minus n times d l, okay? So, we will ignore the middle part namely, the modulus 

of eta R n. We conclude that the modules of eta of R, which we are interested is less than 

or equal to epsilon times d l. So, this tells us that since epsilon is arbitrary, that modulus 

of eta of R is actually equal to 0. Here, d and l are fixed constants. We have started at a 

rectangular region. So, the modulus of eta of R has to be 0, which implies eta of R itself. 

So, this proves the Cauchy’s theorem. 

So, before proceeding further, let us see the interpretation or 1 physical interpretation of 

Cauchy’s theorem. So, I am going to give the fluid mechanics interpretation of what 

Cauchy’s theorem is telling us. There is an equivalent version for electricity or electric 

field that 1 can construct. 
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However, here there is physical interpretation of Cauchy’s theorem. So, few sessions 

earlier we saw that when one considers that a 2 dimensional fluid flows then 1 can use 

complex analysis. Then, the velocity function at each point is the conjugate of the 

analytic function, if we assume that the fluid flow is irrotational and does not have 

sources or sinks. 

So, irrotational just means that the fluid is not just rotating around a point roughly 

speaking and then it is not stagnant anywhere. Likewise the source or sink tells us that 



there is no fluid produced anywhere in the flow or there is no volume of fluid which 

disappears during the flow. So, if you make this assumptions then we get that the 

velocity field of a fluid flow is the conjugate of an analytic function. So, let us first start 

by interpreting what the line integral means, in this context. 

So, let me draw a picture first. So, here is a certain conduit of a deep channel perhaps and 

then we can assume that if we consider parallels strips along this conduit anywhere, then 

the flow is 2 dimensional. So, here is a point x y, let us modulate it as x y. Then, there is 

a certain velocity vector based at the point and there are points everywhere. At each 

point there is certain velocity to the flows. Here, v of x y denotes the velocity of the fluid 

at a point x comma y and we write v of x y is p of x y plus i times q of x y, where p 

indicates the fluid velocity parallel to the x axis.  

So, we will have some imaginary or we will imagine some axis here. This is an x axis 

and this is the y axis etcetera in that conduit. Then we have t is the velocity along x axis 

and q is the velocity along y axis. Then, v of x y is a conjugate of z, where f is an 

analytic, provided that the fluid flow is irrotational. This is, to say that the curl of the 

velocity field is 0 and does not have sources or sinks. The fluid flow does not have 

sources of sinks sources or sinks, says that the divergence of this field is 0. 

These two we saw now. These 2 conditions actually allow us to form the Cauchy 

Riemann equations. They allow us to conclude the Cauchy Riemann equation holds for 

the function v bar which is f. So, with these conditions, we have v is the conjugate of an 

analytic function now. 
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We will first start by interpreting a line integral. So, let us for simplicity, assume that the 

gamma is a certain arc like that, it is a curve. So, in terms of what we have been 

describing as gamma, what I have a drawn here is the trace of a certain gamma, which is 

a parameterized curve. So, remember that the interpretation of line integral is 

independent of how we actually parameterized the curve itself, okay. 

So, I will just call this piece of string and this piece of curve here as a contour gamma. I 

am keeping it simply and I am not allowing it to self intersect or intersect anything. So, 

here is a simple piece and let us now assume f of z is p of x y minus i times q of x y from 

above, because v is p plus i q. So, the contour integral of f of z d z along this kind of 

smooth curve is the integration from a to b, where gamma is parameterized from a to b to 

c of f of gamma of t gamma prime of d t. So, if I call gamma of t as x of t plus i times y 

of t, so, gamma after all has its image in c, then I can write this line integral as a to b s is 

p of gamma of t gamma of t is a point in the complex plane.  

So, strictly I should be writing x of t comma y f t. So, p of x of t comma y of t plus or 

rather minus i times q time q of x of t comma y f t. Then gamma prime so times gamma 

prime, where gamma prime is x prime of t plus i times y prime of t d t. 
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So, I will write this for simplicity. I will ignore it. I will drop writing x of t y of t etcetera. 

I will simply write this as p minus i q times x prime plus i y prime. Since, what each 1 is 

a function is clear from the context. So, let me multiply this 2 so that a to b p x prime 

plus q y prime plus i times of p y prime minus q x prime times d t, all this is equal to 

integral r f of z times dz. 

So, we can write this as or split this into integration from a to b p x prime plus q y prime 

plus i times integration from a to b of p y prime minus q x prime d t. Now, we will 

interpret each of these integrals to understand what this line integral is doing.  
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So, here is curve gamma and at a point in time t here is a point gamma of t. Let us say 

that gamma prime of t gives you the tangent vector to this curve at a point gamma of t. 

So, here is a gamma prime of t which is the tangent vector to the curve and v, which is 

let us say, the velocity vector based at this point gamma of t, is somewhat that, this is d t 

here. Then, you notice that the integrand here in the first integral t x prime plus q y 

prime, which can be interpreted as the dot product of v with the tangent vector gamma 

prime of 3. 

So, here is the velocity vector v. So, v dot gamma prime of t is a first integrand. So, the 

real part takes the dot product of the tangent vector with the velocity vector and plus i 

times the imaginary part. The imaginary part is the dot product and can be interpreted as 

the dot product of the vector p q. Let us say, with the vector y prime minus x prime, now 

y prime minus x prime is the vector, which is perpendicular two x prime comma y prime. 

So, it is a vector perpendicular to the tangent to the curve which means, it is a normal to 

the curve and from the direction of y prime minus x prime, we can make out that it is a 

pointing inwards. So, it means that it is pointing from the left of the curve to the right of 

the curve. So, from the region left of the curve to the region right of curve, starting from 

the point gamma prime of t. This integrand in the imaginary part can be interpreted as the 

dot product of v with the normal in that particular direction d t. So, what is the physical 

interpretation of these two?  
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Velocity when integrated along a direction, if we assume the displacement of the fluid or 

the amount of fluid, then this integrand in this integration actually gives you the 

displacement of the fluid along the curve gamma. This imaginary part stands for the 

displacement of fluid into this. I mean this into does not make sense for a non closed 

curve, but let me just write it is into the inside of gamma. So, after writing it let me 

explain that, it is called the flux of this velocity vector with respect to this curve at the 

point gamma of t.  

So, it is the component of the velocity which is perpendicular to this particular R. So, for 

a simple closed curve contour or somewhat, we have a proved it. So, this is more 

general, but for a rectangular region at least, we proved the Cauchy’s theorem. So, for a 

rectangular region Cauchy’s theorem says that the integration of f of z d z where f is 

analytic is equal to 0, where f is analytic on and inside the contour R. 
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So, from the fluid flow interpretation, what we have is, if the fluid flow, I mean if the 

velocity field v is f of z bar for an analytic function f on and inside this rectangle region 

R, what we can say is that, there is no amount of fluid. This is telling you that the 

integration of f of z d z on dou R is equal to real part of the integration of f z d z on the 

boundary of R plus i times the imaginary part of this which is given to be 0, by Cauchy’s 

theorem. 

So, since the real part and the imaginary part are both 0, what this part is telling to you is 

that, the fluid displacement or fluid displaced along the curve along the closed curve is 0. 

So, there is no fluid which actual keeps flowing around a contour. So, there is no 

stagnation in that sense and the imaginary part being 0, tells us that once again there is 

no fluid trapped inside the rectangular region. 

So, whatever fluid crosses the boundary of the rectangular region or into the rectangular 

region has to come out. So, there is no fluid which remains trapped. That is what this 

says because when you add up the normal components of this velocity, they give you the 

total fluid which remains inside, so that is 0. It tells you that there is no fluid which is 

trapped inside. So, this is the physical interpretation of Cauchy’s theorem.  Next, let us 

consider the following extension of Cauchy’s theorem, a mild extension of Cauchy’s 

theorem.  
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Let, f of z be analytic on and inside on an open set containing a rectangle R. By 

rectangular region R, I mean the rectangular region R except at a point zeta which is in 

the interior of this region. So, if it is true, that is, if the limit as z goes to this point, that is 

the special point z minus zeta times f of z. If this limit is equal to 0, then the integration 

on the boundary of this rectangular region R of f of z d z is still going to be 0. So, this is 

the modified Cauchy’s theorem. So, we have a similar setting or almost the same setting 

except that there is a special point zeta, where f is not exactly analytic.  

Here, f is not analytic perhaps it is not even defined, but what is important is that it 

satisfies this mysterious condition. Then, it still says that the integration on the boundary 

of R of f of z d z is going to give us 0. So, we will decode this later, but for now this can 

be considered as a slight extension of Cauchy’s theorem. Let us see how or why this is 

true? 

So, what we do here is the schematic. So, here is the rectangular region R and then there 

is a special point zeta, which is in the interior of R. So, what we do is that we subdivide 

this rectangle into further rectangles and then we consider a small enough rectangle 

around the special point zeta. So, we will use the contour integration on the boundary of 

R in the contour clock wise direction. So, this dou R is the boundary of R in the positive 

direction. Then using the Cauchy’s theorem, we will use contour integration like that.  
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Using the Cauchy’s theorem, we just proved that we will see the integration on any of 

this R 1 R 2 etcetera any of this rectangle, I will be a little informal about this. I will 

suggest the a boundary of any of R i is the integration of f of z d z, which is equal to 0. 

That we know, because f is analytic on an set containing this whole rectangular region, 

perhaps except on this little which surrounds the special point zeta.  

So, for that special point zeta, I am going to make a special adjustment. So, firstly notice 

that the integration on the boundary of R in the contour clockwise direction is now equal 

to of f of z d z is equal to the integration on this smaller rectangular region, I can assume 

that to be a square. I can adjust these sides so that that small rectangle is actually a square 

so that I will say that it is R zeta, which stands for the rectangle containing zeta. So, the 

integration is equal to the integration of the boundary of the rectangle R zeta of f of z. 
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So, we will say that this equation 1 and with the given condition, given that epsilon is 

greater than 0 since limit as z goes to zeta of minus zeta times of f of z is equal to 0. 

Given that epsilon is greater than 0, there is a delta positive such that whenever modulus 

of z minus zeta is strictly less than delta, the modulus of z minus zeta times the modulus 

of f of z is strictly less than epsilon, because the limit as z goes to zeta of this quantity 0, 

the modules of this is arbitrary less as z goes to zeta.  So, I can do this and what this is 

telling me is that the modulus of f of z is strictly less than epsilon divided by modulus of 

z minus zeta, whenever this occurs. So, given epsilon, I can choose this delta so that two 

occurs.  
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The Pre estimation theorem that we have in the last session, the modulus of the 

integration over dou R zeta of f of z d z is less than or equal to the integration over dou R 

zeta of the modules of f of z modulus d z. This is now by 2, strictly less than epsilon or I 

can say this less than or equal to epsilon times integration over dou R zeta of modules of 

d z by modules of z minus zeta. By choosing R zeta to be small enough, I notice that I 

can adjust these vertical lines to make this R zeta as small as possible, that is here R zeta 

is rectangle R zeta. I can make it is as a square centered at zeta and I can make it as small 

as I like. 

So, then I have this estimate. So, when R zeta is a square centered at zeta and your z 

varies on the boundary of R zeta, what we have is the modulus of z minus zeta for z 

belonging to dou R zeta is such that the modules of z minus zeta is greater than or equal 

to s by 2, where s is the side of length of the rectangular region R zeta, okay? 

So, when this occurs, 1 by modules of z minus zeta is less than or equal to 2 by s. So, the 

modulus of d zeta d z on the boundary of R zeta divided by modulus of z minus zeta is 

less than or equal to 2 by s times the integration over dou R zeta of modulus of d z. This 

is nothing but the length of this curve dou R zeta, which is 2 by s times 4 s, so this is 8. 

So, this quantity is less than or equal to 8. So, this is less than or equal to 8 epsilon. 
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Since epsilon is arbitrary, so, epsilon greater than zero is arbitrary. So, given any epsilon 

I can do this. What I conclude is that the modulus of this integration is 0. So, the only 

complex number with 0 modulus is 0. So, the integration over dou R f of z d z is actually 

R zeta, but this is equal to integration over dou R of f of z d z by the equation 1. So, this 

is equal to 0. So, that proves the condition. So, with this I will stop this lecture here. 

 


