Formal Languages and Automata Theory
Prof. Diganta Goswami
Department of Computer and Engineering
Indian Institute of Technology, Guwahati

Module - 15
Chomsky Hierarchy

Lecture - 01
Chomsky Hierarchy

In today’s lecture, we will discuss Chomsky Hierarchy.

(Refer Slide Time 00:34)

Already, we have seen a few classes of the languages: a regular language context free
language and recursive language, and then recursively enumerable language. We have
character, characterized all these class of languages grammatically, and also using
automata. We have found that a regular language is a proposes set of context free
language, because every regular language can be generated by using context free
grammar. But there is a language like say, a to the n b to the n and greater than or equal
to 0, which is not regular that we have already proved, but this is a context free language.

Similarly, every context free language is recursively enumerable language because every
context free language can be generated by using some arms structure grammar and is
accept by some turning machine, but there is a language a to the n, b to the n, ¢ to the n,

which is recursively enumerable. But not context free, so that way regular language is

properly contained within context free language, context free language is properly

contained within recursively enumerable language.

Then, we will introduce some more clause in between, which is called context on
language these four classes. These four classes of languages are said to be Chomsky
Hierarchy, his name doctor the famous language known Chomsky, who proposed these
languages as natural model for natural languages. So, this is confinement, we can show it
regular language, it’s properly contained within context free language, context free
language properly contained within recursively enumerable language.

(Refer Slide Time 02:45)

Clownmh vy ther ari by - Wankows hawnsd -~ :lg’-g

P O Ve et Ataw Tak o

2P P

FA — RL — PYROPE
—_— —
PDA <> CPL -~ ('Arokfnavnw

e .
———
Leb ws veeall Vo deftuiln 4 Struchured poma

-
{ %

-S&
e N

Poel 4 s [[ETe—rar——— «RUA0 HUREE.. >um

ts o iuﬂdw& (N,T; P,S) , Where

And we have introduced that regular right linear grammar generates regular language.
That means, the regular language generated by regular language and final number
accepts regular language and finite automata, and regular grammar. These are equivalent
that we have already shown. Similarly push down automata and context free language
context free grammar they are equivalent. So, p d a accepts context free language and a

context free grammar generates a context free language.

Similarly, a turning machine accepts recursively enumerable language. And similarly, a
recursive language enumerable language is generated by an unrestricted grammar or
structure grammar, same thing. Now, let us recall that the definition of structure

grammar, a structure grammar is a quadruple N T P S, where n is a finite set of non-

terminal symbols T is a finite set of terminal symbols, and S which is a non-terminal. It

is called a start symbol...

(Refer Slide Time 04:12)

£2-7-2-2Q%- —
S& tsa Ct’w\dw-ﬂt (NTLES), where

N isa e sk & vwolomand ybels,
T xa Rulle 2 4 tewdnd bpubols,
SeN elld G gvat “1‘“"’{
?
and P tca Ruls fubi 4y
vy x vt wie V= NUT
Colled W@ 2% }rom rwles.

(/;)vam; vules o wrttew o —» l

L R T R || [T —a—r—— «~RUAD HJRME.. 3o

And P is a finite subset of V' n, V star n, V star cross V star, where V is basically union
of non-terminal terminals is called sub set of production rules. That means production
rules is written, basically by this notation, alpha goes to be beta over alpha is from is V
star n V star, beta is from v star that means beta maybe epsilon. But the left hand side
alpha must contain at least one non-terminal symbol. Now, if left hand side of each
production is a non-terminal.

Simply, then we say that the grammar is a C F G. So, this structure grammar is said to be
c f g, if the left hand side is a single non-terminal symbol in addition, if the right hand
side of each production rule is a terminal string 1 by at most one non-terminal symbol.

Then, the grammar is said to be a regular grammar.

(Refer Slide Time 05:09)

P Ommmdr e aiir - Wekem deemd =lox

P O Yo bt A Tok '

2:-2-2-2a%- — _ _
Mol wainal L\-A.vt, Uhew W grammer tsa RG.

_Seril
e

) L —» <) type-0 gramwars
& ¥

Gv) TN \p\ c° t\“u-.\ VomMmMars .
@) :c_e_:J’ Typez grammaere 6}'

(1
Pl 4 _av'l;¢-unn- | (YT we—remy—"rem ~RUA0 HNUANE.. o

So, based on this we can have a classification of grammar, so alpha goes to beta, if there
is no restriction other than the rule that you have already given is said to be type 0
grammars, if we keep on imposing some restriction on both sides. Then, we get some
other kind of grammar, if the length of alpha left hand side is less than or equal to the
length of the right hand side.

Then, we say that this grammar is type 1 grammar, and if the left hand side is single 1
terminal, it is called type 2 grammars or context free grammar, if beside this, if the right
hand side beta is either the sequence of terminal symbols or a sequence of terminal
symbols followed by a non-terminal, then we say that it is type 3 grammar. So, already
we know that the type 3 grammar generates regular language, type 2 grammar generates
context free language, type 1, type O grammar generates recursively enumerable
language. But we had written mention, so far these type 1 grammar, we see that the type
1 grammar is nothing but it is called context sensitive grammar, and it generates context
sensitive language context sensitive language. So, we will first introduce this context

sensitive language. We will characterized this context sensitive language.

(Refer Slide Time 07:01)

L T m
PAR AP A A -
(") (CANES \P\ (o Bype-1 Frommars . T
G) XKEN 'E\,pv.—z Frammare &

[I T WPV | [T vy ve——"r " «RUA0 HURE. 2em

Then, we will show that context sensitive language properly contain within this
recursively enumerable language, in fact recursive language and there at least one
context sensitive language, which is not context free. So, this shows the proper
containment of C S L within recursive language, and C F L within context sensitive

language.

(Refer Slide Time 07:24)

P omminreaie b end

P Gl Ve beet Atre Tl g

2P 7P
(oo - Somdive \Languaqes
Examples
L 3 KJ..L“C‘\"}‘-%
S abe | aXbe
X = axec \u.c
P- Ch > ¢
Ce > ce

@» N 1sxel Te3akdd e

[B T S R, | (YT vy e——r——" wRUAS HREE . som

-~

Just consider an example of context sensitive language say, this is the language L equal

to, equal number of a 4 by number a 4 by same number of b 4 by same number of this,

where n is greater than or equal to 1. That means n equal to a to the n, b to the n, ¢ to the
n, n greater than or equal to 1, now we can generate this grammar using generate this
language using the following production rules is a set of production rules. For the first
one says that S goes to a b ¢ S, is start symbol or a X, b ¢ x is a non-terminal x goes to a

x b capital C, capital C is non-terminal or a b capital C.

Then, C b goes to b C and C ¢ goes to ¢ ¢, now we can show that this grammar can
generate this language, we know that this language is not a C F L, but this production
rule set of production rules, which follows the restriction imposed by its context free
language in no production rules. The left hand side length of left hand side is more than
the length of right hand side. It is at most equal at this point C b equal goes to b C, but in
other cases it is less than the length of the right hand side. So, it is basically the type one
grammar, which is a context sensitive grammar, it is context sensitive grammar now.
Therefore it is set of non-terminal S is S X C and a set of terminal symbol is a b c. So, it

is quite clear that this is a context sensitive grammar C F G.

(Refer Slide Time 09:21)

P Omubn meuy - wabem end BLL

P I Yo bt Abw Tolh W

1./‘. /.'?, P.

a',‘L,“c:\ , W=, Com be ac.mml'd \-7 wo fremman
Ty way S =b abkc
—_—
1\’ wed, S _) bec
= aakChe

= aabelc
= oaabbce

Y = (G2) S = axbe
= oo XM b

! o
% 2 abCe) ve

Powtl A e || TS ——— «hUAO HJIRME. 2am

Just have a look at how can derive the string of the form a to the n, b to the n, ¢ to the n
for some n greater than or equal to 1. So, if n equal to 1, we simply generate here is a

first rule S goestoab cto getab c, if nequal to.

(Refer Slide Time 09:42)

P Ommir rtmeir ek aend BLE

Fle O Vew et At Tol b
Z:P-2-PQA¥-
S — ake l aXbe

2 o N /S"s)v

P-_- i %g \;Cﬂ- \/
Chb = oC
Cc = ce
S W= 1S6el Te3andd
and gl Wb (N,T, BS) i a CS86.

CP0E , w1, cambe gonbd by IS groo |

Poetl A4 et e 1[5 Onamers toevarshor - “RUAD HJ R e

We first use the second rule for S that means S goes to a X b ¢, and then this X will be
terminated by one of these. We can be terminated by one of these, if we keep on
continuing with terminal using this one. We will keep on generating more and more a S
b, a S b and ¢ and whenever we use this one, we stop there generating anymore a, and
once we used this production S goes to a b capital C. Then, we keep on shifting the b,

which is there to the right hand side. We will keep on shifting towards the left hand side.

So, that all b appear immediately after the group of a, and eventually all capital C will go
towards the, towards the n excrement. Eventually all capital C is using kind of rule
capital C goes to C, capital C is C goes to C ¢ small ¢ c. We can use or we can have, we

have converted all capital C is to small c.

(Refer Slide Time 10:49)

M Dl Vew best Alw Tk o
27 P
ad adle LaF (N, T, VS) Ka C5&. B

a‘_‘l,“c': , M, Com be ac.mul'd L)’“:M
Iy wal\ 2 S =b akc
.———‘/
1k w2 s =» aXbe
: =» o.ébcbc d,d\‘cc/
= aabvCe ;fb
= asatwe 7

W ek (32) s = axie
(; - a. o Xl e

[T RPN | [T Wy —"—" ZRUAD NSRS rom

So, this is what you have done for n equal to a X b ¢, so this X is replaced by a X a b
capital C. Now, using the rule ¢ b goes to b ¢, we have shifted this b towards the left
hand side by one symbol. And we have got this string and eventually capital C C goes to
small c c, we have used the last step to get the c. Similarly, if you keep on continuing to

use the production X goestoa X b c.

(Refer Slide Time 11:36)

by s ey Wb hoawved

M G Vew Deet Adw Tok tep

2-7-2-P2a%-

= aabvCe = 2
gy
Y rok (G2) S = axbe

EN oo XMW b CL,.(-"
3 Y
= Q'f_'a.‘CSK'.Z ve
2 & pChC---bChe
S a-be bl - buCe

oxk
N P
o2 S o s D T

_—

[R RS PSR | (YT vy ——"—" “RUAO NURME sem

Then, we will have this kind of derivation S derives a X b c, then replace this x by a X b
¢ keep on continuing to replace this X by a X b c. Then, after large number of steps, we

will have this kind of string a quadruple k minus 1 ab C b C quadruple k minus 2. Then,
b C and eventually shifting this b in X in right towards the left hand side by using the
rule C b goes to b C b capital C number of times.

We can shift all the b towards the left hand side getting a power k b power k. And then k
numbers of k minus 1 numbers of capital C and small c at excrement, and eventually
using the rule capital C small ¢ goes to small ¢, small ¢ k numbers of step k numbers of
times. We eventually get this string a quadruple k b quadruple k ¢ quadruple k. So, this
grammar generates the language a to the n, b to the n, c to the n.

(Refer Slide Time 12:53)

Clamenh 7 e ar vy - Wnhowrs el BLE

P O Ve baet Alew Tok o

Z.{. /-\?,'”.

Livesr Bounded Mﬁg
A Lwear bouwdd aubwaton (LBA) ixa
Mandleker w i wisléc Tums\z. mackione. l-xuh»?
e Follnowmg Lo candidlin.
4) Dhe gt adphahel vicludes G fpecal
&auuh S u}?, (G febt audvcau
wd Wkusj-(arul:‘;c, .
@ The LBA hat mo wore woves Jebt fram (
'/) or Yight frow), wer way it pok anobir

[B S T PP [T VS—rer—— ~RUAD HUBEEC seom

So, this is an example of context free grammar, we will introduce kind of automata
called linear bounded automata. And we will show that the linear bounded automata
accept context free languages. Now, linear bounded automaton is a nondeterministic
turing machine satisfying the following conditions: the first one is that its input alphabet
includes two special symbols: one is left angular bracket. And the other is right angular
bracket the left and right.

There are left and right end markers respectively, the L B A has no moves, no more
moves left from the left end marker and or right from the right towards the right end
marker nor may it print another symbol over left end marker, right end marker. That

means left end marker and right end marker cannot be erased or cannot be replaced by

any other symbol, and head readied head cannot move left towards left end marker. And

right towards the right end marker.

(Refer Slide Time 14:17)

A B
22 2-2a® |
- et LE LQlY, A,Q);) he an LBA. B B
%—

The ‘”1‘“‘7" alcefhed b M,

100 = el 49]| v 9) e

e — L ——

We wor how (& aquivaluxe ob LBA% ok C3G4
a8 Pollowe .

1) Gwn a C8G, G, M tcan LBA,M,
() racr L0 LW,

Boetl A e e | [R)Te—rer——— ~hUAO HJAEE L s

Now, consider a linear bounded a linear bounded automata automaton M, where Q is a
set of states and input alphabet transition moves and q 0 is the start state. Say, this isan L
B A linear bounded automaton, the language accepted by this linear bounded automaton
M. The set of all strings w over sigma other than, what which does not contain left end
marker, right end marker or head symbol such that it starts with this configuration
initially. That means it starts with the start symbol g naught. The input w is placed
between the left end marker and right end marker and the head readied head is reading

the right end marker.

Initially, eventually from this, if it moves to this configuration, where it enters in a state
to its halting state. And in that case that outcome maybe anything, it maybe may have
any content within this left angular bracket and right angular bracket alphabet at any
strings over string of terminals or any non-terminals. Then, it reading some symbol a
since it has eventually entered the halt state for this string will be w will be accepted. We
will now show that the L B A linear bounded automaton automata and context sensitive

grammars are equivalent. This equivalence is shown as follows. ..

(Refer Slide Time 16:15)

P G vew bust A Tk b

2P 2P

;w|] -_[I'_EK‘ -_[‘\‘ 7_ VTC'}“\ ‘7]"_(-

_—— @ —

We woe ghowr & aquwivaluns, o LBAY onl C3G4
s Jollowe.
0) Gven a €C8G, G, M tcaw LGA, M,

Szl G LC(x) - L(W). —
(2 M“LAH s Wk a cB8G, G,
Zzs = L(!\)‘;l.t

f2) o 0

Pawml 4 wm [[7) v «RUAG N R

be a Cs

Given a C S G context free grammar context sensitive grammar G. There isan L B A
linear bounded automaton a such that L G equal to L M. Similarly, given an linear
bounded automaton M, there isa C S G, G such that L G equal to L M minus epsilon.
So, here since the L B A might accept epsilon, but since in the C S G the left hand side of
the grammar is less than length of left hand side of grammar is less than or equal to the

right hand side.

Therefore, this context sensitive grammar cannot generate epsilon, so epsilon cannot be
generated by context sensitive grammar. Therefore, it will be equivalent in that sense that
it generates any string accepts by the linear bounded automaton except for this string

epsilon.

(Refer Slide Time 17:28)

——r————— BLL

M G v bt Alew Tok oy

2-P-7-Pa¥-

M [G bea €36,
c,huk‘ G U oa Shouckoed grawmen
Conthroal & TM, M, aqwnded G i exady
S waawner Wb wer Akcuced carler, excer
G vabead A madh bade |, Conttlr &
wlke ok i

fr we llQ), et 3= 0w, 200
(’f)m\. (R P PR IC A WPRSSEPI (O IS I

10
[B ST R 1[5 s toevarch .. «RUAD F R 20

Now, we will first show that, if there is a C S G, there is equivalent linear bounded
automaton M accepting the same language generated by the grammar G. Now, clearly G
is a structure grammar special case of structure grammar. Now, we will construct turing
machine M equivalent to G in exactly the manner. That was discussed earlier except that
earlier that in the in the context of showing that a turing machine and structure grammar
are equivalent already. We have shown that turing machine and structure grammar are
equivalent in that context whatever construction we used. We will use a same
construction except that instead of multi tape; consider it, in the multi track, in such a

case.

(Refer Slide Time 28:30)

P Ommmir e b e L

e G Vem bt Alw Tok e

2-?-7- P

TSIy Yy

for wel(Q, tk 5= 2w, W00
O TR T PR [A AR (OR TR)
e — = =

Gve Y \:.‘..a-ar. M e ha forw
(WY
—

. S emcde fewlaulied form 9, whih s
i,_f) Qoarakd over variow Me Sy H, swd 5

w0
[IR ST R PSSR | (YT ey re——" wRUAO HJ R e

Suppose, w belongs to L of G, then there is a derivation like this, S derivesw 1, w 1
derives w 2 eventually w n minus 1 derives w n, which is equal to w. And in every steps
since, we are using the production rules of the context, of the context sensitive grammar.
Therefore, the length of S must be less than or equal to length of w 1 because of the
restriction that we have for context sensitive grammar and length of w n is greater than
length w n minus 1 and length of w n is basically w. Now, give the input w to linear

bounded automata in the form w, within this left end marker and the right end marker.

(Refer Slide Time 19:20)

Irmwsnh y s ter ari by Wamhemws howvied
P OB Ve bt Adew Tods o

2?7 Pl

SLL

b lovpis greake e (3],

M does wt wie amy Cahe colle W Wy
endworkevt .

Wone, M behawo at an LBA, s Besivel.

Since each sentential form w i, which is generated over various steps of M is not of
length greater than w, that greater than length of w M does not use any tape cells beyond
the end marker. So, this is for sure because in every step the length of w or w i, which
not greater than the length of the final string that will be generated. Therefore, at in no
step the deterministic, we will use any cell towards the left side of the end marker or
towards the left side of left end marker or right side of the eight end marker. Therefore,
M behaves as a linear bounded automaton as desired, therefore M is an L B A, which
accepts the language generated by the C S G, G. Let us now see, the other derivation that

means, if thereisan L B A...

(Refer Slide Time 20:22)

A ————— ioix
FAR A8 4474 A === , ==
bwosh S (2 i

let M= (Q,Z,5,%) be an LBA
Wle To= 2-3¢,2¢.
Ser- =G,; (U,T,%S), wWheve

Gy T ts e %+ & 'h.ku!luanh(a A

@) N = { [1,«3‘ aeT ad dec}\)fs,ﬂ

o {X, {x, %, 00, WX, xe,)/wj\'iiz.}
' ¥) X, 200, @D, OO

,45 @) Edﬁ'f‘% (6 Doy produda

Paetl 4 emessesn [[FT—e———— ~RUAD MR

M accepting some language, say L M. There has to be an equivalent C S G except
accepting the same generated in a same language. And that is your L G that means L M
equal to L G, consider that the linear bounded automaton is M with the elements Q sigma
delta and g naught. We write sigma naught to be sigma minus, these two symbols that
means sigma naught does not contain that 2 end markers. Now, construct grammar,

which is, which is a required context sensitive grammar from this L B A.

You will see that T is a set of terminal symbols of sigma, whatever terminal symbols is
there in sigma will have in T and N, is a set of non-terminal S. We have 2 special non 2
non-terminal S S and a beside that we will have, we use some composite symbols to

represent the non-terminal S A composite symbols of the form a alpha is a pair.

Basically, within square bracket a alpha, where a is a terminal symbol, and alpha is from
this set C. So, it maybe X for X in sigma 0 or it may contain angular bracket, left angular

bracket.

Then, X or X left angular bracket or it may contain both the angular bracket. And X, X
maybe any symbol from sigma naught or it may contain some states symbol g q belongs
to capital Q and it may contain both states symbol, and angular bracket along with this
X. So, C maybe anyone from this set alpha maybe anyone from this set C and P consists
of the set of the production rule, consists of the following productions. We will now see

what the production rules to be used?

So, first production rule is that S goes to capital A and then this composite symbol a a q
naught, a comma a g naught or S goes to the single symbol non-terminal. That is a
comma within bracket with bracket a g naught. Here, q is a terminal symbol and this a
for I can generate this kind strings A a, a and a left bracket a, in fact using this 1 and 2,

we can generate the input string.

Here, once we generate a string using S, and a the first component, if you collect the first
component from each of the composite symbols. That will give us the exactly input
string and the second component, basically represents the tape con component, and while
deriving during derivation this grammar will simply simulate the moves of that turing
machine linear bounded automaton M. Suppose, that the automaton contains A move
like this delta g x equal to p Y. It is in state q, if it reach a symbol X, then it goes to state
p, and Y may be a print or Y maybe lefts left move or Y may be a right move, if Y is a

print from some symbol from input alphabet a prints.

Then, what is done? If, currently suppose that turing machine or linear bounded
automaton are using symbol x, it was in state g reading symbol x state. That is, what
given by this move. Then, it simply sends the state from g to p and x is sends to Y. That
means, it prints a new symbol Y. Here Z 1 and Z 2 maybe any symbol, it maybe epsilon
or it may be left angular bracket or a right angular bracket. Therefore, Z 1 and Z 2 will

remain same.

(Refer Slide Time 25:21)

P Ommad s ety - whnkems deurmd BLL

Fie G Vem buet Alew Tak oy

2?7 P

[ai <‘-] # >

Ja. A= Alad]

B (@),) €5 wuw x§1473
X. ik YeZ, I VaeZ,
{a, 2932l >[a, z§yz] 4
vhave 2,,2, € 1401016,
b % YeR, ha VN abeZ,
W (g, ”;‘qib,bz'[»[a,z*][y,,g‘é]

() o (masdl = (o=l & 200,]

Poetl 4 e e [| [T ————— “RUAD HJRE L

Now, if suppose that turing machine or the linear bounded automaton in state g reading
X goes to state p. And it moves towards the right hand side, head is move towards the

right hand side that means Y equal to R in such a case.

Suppose, this is a last this represents, this is a last symbol; last non-terminal in such a
case, this angular bracket will appear at the end. Therefore, it will simply reading g
reading terminal symbol X at state g. It will simply go to the right side of the symbol X.
That means, it is now reading the right end marker p. Otherwise, if this is not the last
symbol, then there will be some other symbol towards the right hand side.

So, it is in state g read symbol X, then it will simply move over the symbol X. That
means, it will read the next symbol. Therefore, it will go to the symbol b, so froma Z g
X, next symbol is b Z dash, where Z maybe any right angular bracket or epsilon, it may
be empty also, just as symbol g. It will move towards the a right side to indicate that it is
now reading the next symbol b. So, itis P b Z dash Z dash maybe empty, and here this Z
maybe the left angular bracket or it may be empty as well. Similarly, you can see the
moves when it goes towards the left side. These are exactly similar to the previous 2, and
a special case, when it is reading the left end marker.

(Refer Slide Time 27:22)

LTTTUETTEEE—— BLL

e G Vew buet Ataw Tok o

ZA. re /.?, '~.

5. i Y=L, Gaw VabeZ,
d) Ebj;] (a, 4xZ] > Z’N] [a, xz-_]/
\\ Gy Co, 0xz) = (o p&xz] by zedee
ol Z=K~E
Fe (4,0, (7)) €8,
6. (o, o¢az] = (@ @oz] | & 22 Yk
for ((3,2), (V) €5,
:’;) 1. [a, 2x3)) — [a, 2p®], & z'<‘1£'

et A4 e || T ey re—"r— «RUAD R o

W ale

It simply goes towards the right side, it moves towards right side, so this is right side.
And it maybe changes a state to p. So, a q left angular bracket a Z, it is reading the left
end marker. So, there is no move towards the left side, it has to move towards the right
side, so that can now read the symbol a. Similarly, we can write the rule for, when the L
B A is reading the right end marker in such a case. Of course, there will be no right
move, so it has to go towards the left side to read the symbol, which is their towards the

left of right end marker.

Finally, when the L B A enters in a state, which is a halting state is h, is a halting state.
Then, simply we reduce this composite symbol to a, where a is a symbol that is there
towards the right side. Then, from then onward we, can reduce this combination some
composite symbol and terminal symbol to a b. Say, a comma alpha b will be; now a b
taking the first terminal symbol and these are the terminal symbols.

Similarly, b a alpha will be converted to b a, so we see that each of the production is
follows the rules of a context rules of context sensitive grammar. That means type 1
grammar. So, this grammar that we have constructed from the moves of turing machine
is exactly is a context sensitive grammar. Now, it is a routine verification as in the case
of turing machines that this grammar G generates the language accept by linear bounded

automaton except for epsilon.

(Refer Slide Time 29:17)

B vt yy toer i by Wanbews hawnd

P T vesm bt Abow Tok 1w

2?7 P)W-

Nelza W & ks « CSG.
T 15 a voulde wenficdow az & WL wie
d THs G G gewnda 10-Toh

® : PRI %

Eaetl 4 s e | [Ty we—re—rr—"—" “RUAD B o

Suppose, W is a string which isa 1 a 2 up to a n accepted by the automaton M. So, using
rules 1 and 2 we can simply generate in a few steps square bracket a 1 comma left
angular bracket a 1. Then, square bracket a 2, a 2 square bracket a 3, a 3. Finally, square
bracket a n comma a n q naught left angular bracket.

You see that, if you collect the first symbols from every composite symbol, it constitutes
the string a 1 a 2 up to a n, which is the input string a 1 to a n. And then we can use the
other symbols following the moves of the grammar, we can use other rules of the
grammar eventually to generate the string eventually; this can be converted or

transformed to this string.

So, we can transform this string from side, we will get generate this string. Eventually,
we can transform it to this string provided that turing machine M accepts this particular
string. That means we can have, we have some moves to accept this string by linear

bounded automaton, we will illustrate this by an example.

(Refer Slide Time 30:44)

P e o

P G vem et Alew Tods ey
2?7 P

(3, a2) + (%, @)+ (,429)

o \-(b\ {ak)
®» —

Pnetl A4 et e 175 Onmervalers 1es aratvr “RUAOS R o

Say, this is an linear bounded automaton, which generates accepts all string containing
an a. Any string containing a will be accepted by this linear bounded automaton, which is
shown in that table the moves of the linear bounded automaton is shown in that table. So,
g 0q 1 q 2 order states of the linear bounded automaton a b are terminal symbols. And
left angular bracket and right angular bracket are two special symbols that we have at left

end marker, and right end marker.

Here, in this capital a shows some arbitrary moves, you can choose anything there,
because that situation does not arise since g naught in the start state. It always read the
left right angular bracket, so in such a case we will enter in a state q 1, and go to the left
side because the string will be given like this a 1 a 2 up to say, a n within this. We will be

reading this left end marker at state g 0.

Therefore, first we have to move towards the left side. That means we will move towards
this side and enter in state q 1. Now, we will read the symbol a n that is the first move
and once we at there in the state q 1, we will keep on skipping the symbols until we see n
a. Once we see n a, if at g 1 we see n a, we enter in the halting state. We move towards
the right side or left side it does not matter, but if you see any other symbol b, other

symbol b, then we are in the same state g 1, but moves towards the left side.

We keep on skipping symbols, but if we see the left angular bracket, then we enter in a

state q 2 and move towards the right. And in g 2 again, if we see n a, we enter in a

arbitrary state because that situation does not arise. Otherwise we have to enter in a
halting state earlier in the state g 1, and if in state g 2. We see, a b you enter in a state q 1

and move towards the left side, therefore at that point it will keep oscillating.

So, just consider a move of turing machine, it starts input string is a b whether the turing
machines are indeed, which in L B A whether it accepts a b or not. So, q naught a b is
that 2 end markers currently reading. This indicates the currently reading symbol right
angular bracket. So, in the next move following this one, q O right angular brackets goes
to q 1 L. So, it will enter in a state g 1 and it will move towards the left hand side, head

will towards the left hand side, so it is now reading b.

So,onqg1lhb,qglbitwill again skip and move towards the left hand side. The head
moves towards the left hand side, startle remains same. Now, g 1 a, q 1 a it will enter in a
halting state, it halting state, it will move towards the right hand side. So, since now it
has not entered in a halting state, this string a b is accepted by the linear bounded
automaton. Now, let us see whether this C S G, which is constructed using the rules of

grammar, generates the string a b or not.

So, the if we apply the first rule, so S derives A b b g naught for every for all a belong to
T. We have this kind of rule S derives a S goes to A small a a g naught. This is rule, we
can apply and then this a goes to a a, this rule can be used in the next step to terminate
the non-terminal A. So, once we have this, we see that the first the symbol a b represent
the input string a b, and the others the second quart can be used to simulate the tape of
the L B A.

(Refer Slide Time 35:13)

P (b itmaity weke end 18]
/_A/./.), ol |
~Yp <
el oa W
s=5 ale, b%.ﬂ N
2 A»4(:' L‘j
> (g,)b b0)
= [_w th) %\"\7]
= [a. ; %a} [b '\37]
= [a, <) b) "
> (a, 4alb
:’9 > ab | =
[~ -3
[I T RS | [F YT werwmyramr ey «RUAG HJREERL i

Now, this g 0 right angular brackets, in this case you simply move towards the left hand
side following our rules of the move of the turing machine g 0 right angular bracket. It
will move towards the left hand side. So, we will use the rules of the grammar
corresponding to the rules of the grammar, so this is b g 0. And then q 1 b in this step
since q 1 b, we have this rule q 1 b, it goes to towards the left side. Therefore and it

remains a same set g 1.

So, in this case, so since there is no way to go, here in the left side. So, this g 1 will move
towards the left this symbols, towards the left side composite symbol towards left side.
So, to have to read the symbol a that means it will be now left angular bracket q 1 a. And
similarly, now q 1 a since we have the move q 1 a, q 1 a is halting state in r. Therefore, in
the corresponding rule in the grammar C S G will be according to our construction, so q
1 a will go to the right side and to read out symbol b, and on the halting state, so this

will, this will a new station.

So, since it has entered in the halting state. So, this now will reduce to b according to the
rule, this rule that we have so according to the rule X, rule on the context free context
sensitive grammar. So, whenever we have halting state, it will reduce to the symbol that
is there towards, which is the left component. Therefore, in this case, so this will reduce
to b. So, that is how we have used over here, and now b allows this. Now, we will reduce

to a b, so this is a b. Therefore, S derives a b, so this is how this corresponding grammar

generates the strings. Therefore, we have shown that context sensitive language context,
sensitive grammar and linear bounded automaton automata are equivalent. And the
language generated by context sensitive grammar, is said to be context sensitive

language.

(Refer Slide Time 37:47)

Y <ioi

e 0 v bt A Tk v
P4 £ S .

‘Ecsu“' Eau.vua CSL s vewwsive. L

M.LA'L&A gLade%m
csqg G+ ONZLES).
—_—
NQ cmdirut an 4| . A N\uxjh-ala% L./
\,e./ ‘am weZ
A st v &> wel.
Given wez', A }a»{mu \C.{)o\lno\?_

- Contht a vhoe VodZie ave

(%) Ko 470 free (WVZ) o} lems €l

82w .:!
el 4 Owmiauesn (D Oumtrs tsevari «RUAO HUUREE L e

Now, we will show that context sensitive language is properly contain within recursive
language first. We will show that every context sensitive language is recursive. Let L be
a context sensitive language is generated by the grammar context sensitive grammar G.
We will construct an algorithm A, which accepts L that is given any string w from sigma

star A accepts w, if and only if w belongs to the language L.

So, it goes to like this given w belongs to sigma star the algorithm performs the
following steps. It constructs a graph whose vertices are the strings from n union sigma
star whose length is less than or equal to w, length is less than w. So, here the vertices
represents the strings over n union sigma star, but the length will be must be less than or

equal to the length of the string w.

Now, for vertices say, alpha and beta are vertices of the graph, it can show. We know
that alpha; there is beta in the grammar G, if and only if there is an arc from alpha to
beta. So, this is quite easy or you can just see that alpha. Now, A simulates the method,
which finds the path from S to w, if exists and there algorithms, we can do it easily to

find out the path from one vertex to another vertex in a graph. And it reports yes, if there

exists any such path to indicate that S derives w over means w is actually generated by

the grammar G.

There is beta, if and only if there is an arc. There is an arc from alpha to beta, now that
the paths in the graph represent derivation in G. Therefore, w belongs to | of G, if and
only if there is a path in the graph from vertex S to the vertex for w. So, if you can find
somehow find out a path from the vertex representing S to the vertex representing w.

Then, we know that S derives w.

(Refer Slide Time 40:27)

P by temaity Wk vend BLL
Z-'/'/'Qw‘." _
LD B w & hy Vaetsanar
— eund.k}/
N, Sk Pd% o Ga graj Yepresenl”
devivakont w G .
Hons, wWellh) oy Maw e pot & W
quph Arow W verls, tw S b Vo vz dr.
- 9\ Biwdads, a welied whath fods
o pie trew Sk »&J\\.o&,/ w
and v«.{\ﬂ\i Yeg or No. -

%) :
\ S e
Pl 4 e [T v— e RUA0 HJREE. cem

Otherwise, it says that no it is exist. Therefore, we know that there exists such an
algorithm and hence every C S L can be shown to be recursive, now we will show that
there is a recursively language. That is not context sensitive that show that proper
containment, whose shows that there is a recursively language that is not context

sensitive.

(Refer Slide Time 41:02)

P b ety Sk deemd BLE

P G Ve bast Alw Tolk o
Resull "Theve s o Yewvsve Taw?«f W e w3

Conloed - Lemsilowe -
AT A0 -

vﬂiwwa.b&wmlh,‘b all csGa.
Lek @ Yepresenk AMQMA»?A—&C_SG &.

Delive a lmﬁm-.u
& tse. C3& 2
= { <2\ L 4L® S © CLE

We fhow Wb L& veawsve Wb wt a cst.

(%)
— et
[RS [L PR | [rYT ey r—"—" CRUAO NS RER L e

To show this, we will consider a binary encoding binary encodings of all C S G context
sensitive grammars, we will just consider some binary encoding. Suppose, this G in
angular bracket represents the binary encoding of a C S G, now we define the language L
like this L is a set of all binary encodings of all the C S Gs within G. We will make it a
binary encoding binary encodings of all the C S G s such C S G. And this encoding is not
accepted or not generated by the grammar G, now this L. Of course, it belongs to 0 1 star

because this is a binary encoding.

So, here G must be a C S G, and this is the binary encoding and this is not accepted by or
generated by the grammar G that means this encoding does not belong to L G. Now, we
will show that L is recursive this language, L is recursive, but it is not a context sensitive

language.

(Refer Slide Time 42:31)

P mtrremaii ke aend BLIL

M Gl Vem buet Atrw Tk o

Z.,. /-?";]".

Lot vewrswe:
Gans sy pit gezo.\lj
~ Check Whelsr w Jebiwao o CsG. T w8, WX
w¢L.,/
=% 7 defra CSG G, Mo wng
W ,}1,(;!\&.. e e WL &.‘m vesdk,
decide wheWw o we L(&). i

Boetl 4 et s | (YT wermrrm—"r—" «RUAO R e

To show that L is recursive, if any inputs is given. Say, any w belongs to say, 0 1 star is
given, we will see whether w defines the C S G, if it does not define C S G. Obviously,
w does not belong to L that is quite clear now, if w defines the C S G, then using the
algorithm just you have described above in the given the previous result. We decide
whether or not w belongs to L of G. So, that we can always do by constructing the graph,
and then looking for a path, if there exists. Therefore, we can show that L is recursive

because we can decide whether or not w belongs to L G.

(Refer Slide Time 43:22)

ATETITY T SUL |

P G vew buet Adew Tolk 1o

2-7-7-2at-

Now, wWe oo Wk L s mnd a CSL.

On%h-uv\z' aMMuwme L fca CSL. Than Ko

Gicli &« cs& G M LC&)= L.
e —

Ques\om : vhetts or it (&) €L? &
Ty (&> €L na (&> ¢L&)
— ie.’-:('qb & L, «catndals
Mo % (@S EL, i Are @ a Cuc, (@elE) 4
;{f‘j Ther is, (d) %L A?‘.\. o Catvadialad

4 =is
[T I T R Pe— | [Ty e—rw—rr—"— «RUAD MU o

Now, we show that L is not a context sensitive language. So, assume for contradiction
that L is context sensitive language. Then, there exists a context sensitive grammar. Say,
G dash such that L G dash equal to I. There must be some context free grammar, now we
pose a question equation whether the encoding of that grammar G dash belongs to I. This

is a question that we asked.

Suppose, that this encoding belongs to |, then according to our definition the this
encoding does not belong to L of G dash. Therefore, this encoding does not belong to L,
so this is a contradiction that we have got. Similarly, if we assume that this encoding
belongs to I, encoding of this grammar that we have assumed belongs to I. Then, since G
dash isa C S G, then encoding of this belongs to L of G. That is encoding of this belongs
to L, again we have arrived at contradiction by this argument.

Therefore, our original assumption that L is a C S L must be wrong. Therefore, such a
grammar context sensitive grammar generating L does not exists. Therefore, it is not
context sensitive language. So, hence | is a there exists, | mean to say, L isa L is a

recursive, but it is not context sensitive.

(Refer Slide Time 45:10)

Olwwwh yy Poer ariley - Wankows hasned = :MH

Fe G vew bt Alw Tolkh g

2-?-7-P&¥-

\‘I Y'-I

Neo ik (@ L, Mo e @ica CSG <Q>6L@)
Thek is, QGL Ae..\. o C.Jvu
o, ouwr allu-w*\-ﬂ L c & CSL. i u)ruha,//

Hewte , we hawve (W Po“ovo\a_ Bevic Comlalmment
bebwene UL QAv\%wq(, clasren.

The clacs A Coddnt . tengioe, Laruagn (s
(';Jh-x){} Conlaoned vn UG dass Se yecumive W

Enetl 4 e e |7 —— «RUAO H R 0

=

So, hence we have the following strict containment between the, between the language
classes. The class of context sensitive language is strictly contained in the class of
recursive languages and hence we have got this hierarchy. In fact, we have some other

classes. Say, so the first step | have got this...

(Refer Slide Time 45:35)

BLIL |

P G v et Adw Toh 'we
2P 7P
Hewie , e haove (W ‘Fo“a»a Bovicl Comlaiument -

bebwatne @ Wﬂhﬂc leszen.

The class s Coddn tonsibe, Somguame (s
U'r;d{-} Coalooned v G elass 5 w_wlu}uft

p= ¥
(%)

j D8k

Bomtl 4 w5 Ouirs teevareir ~RUAD HJREER . e

Containment say, regular language is properly contained within context free language,
context sensitive language is properly contained. And C F L is properly contained in the
context sensitive language, and C S L is properly contained within recursively

enumerable language. So, in fact we have some other classes.

(Refer Slide Time 46:00)

Mo G Ve buwt Adew Tk tep

2-9-72-Pa¥-

-
[B R TR PR | Ty e—remyre—r——" «RUAG HUREE L e

For example, this C F L deterministic context free language, so regular language is
properly contained within deterministic context free language that results. Also we have

shown earlier to determine context free language purposes set of context free language,

context free language purposes set of context sensitive language, and context sensitive
grammar is purposes set of recursive language. In fact recursive language is purposes set
of recursively enumerable language. So, these are hierarchy, which is called Chomsky
Hierarchy.

