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 In the previous lectures, we have already introduce the concept of NP completeness. 

And I have talked about the importance of NP complete problems or NP complete 

languages. In this lecture, I will now formally establish some of the NP complete 

languages systematically, and as I had mentioned that the first problem in the history, 

which was observed that it is NP complete was satisfiability problem is so called Cook’s 

theorem, Stephen Hook he has established this theorem. This result, so I will be proving 

this Cook’s theorem in the sequel, what we do, although satisfiability problem was the 

first one to establish that it NP complete.  

I will take a class room approach, we will systematically develop the proof of that may 

not be the original. The proof, but we will systematically develop using the techniques, 

and the approach that we had adopted. In this course, and give an elegant proof I mean a 

proof that, it is very quickly understandable based on the previous lectures, we give in 

this lectures on NP completeness. 
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Let me just recall, what is NP complete language, what we have talked, A language L in 

sigma star is said to be an NP complete language. If it is an NP language, and you take 

any language in NP the class NP, there is a polynomial time reduction from that 

language to L. And also, I have mentioned about you know, establishing NP complete 

languages. In this, you know you look at, if you are knowing an NP complete language 

say L dash, and to establish a language which is in NP as NP complete.  

If you can polynomial time reduction from that language L dash to L that is sufficient, 

why because to L dash thus if you take any L double dash, an NP language from L 

double dash to L dash you will have a polynomial time reduction, because it is NP 

complete, because L dash is NP complete. And now, from L dash to L if you have a 

polynomial time reduction, you know the transitive property of this polynomial time 

reduction. This reduction in polynomial time, this less than equal to p what we are 

writing this relation, this is a transitive thing. 

So that, you will have L double dash is reduce to L in polynomial time this is you take an 

arbitrary L double dash in NP. So, take an arbitrary L double dash in NP, since L dash is 

NP complete, you have this and since this is given, you get the transitivity L double dash 

is less than equal to p L. So that, every NP language can be reduced to L in polynomial 

time. So, we have already discussed this theorem, but anyway I wanted to just recall this. 

So, this one that will be useful, if you are already knowing an NP complete language, 



because you see to establish a language is NP complete, you have to observe that this is 

NP.  

And second thing what we have to observe is, for every language in NP we have to give 

a polynomial time reduction to a, so this is a hard problem. So, and the complex and you 

see, we have to give such a polynomial time reduction from every language to the 

consider language L. So instead, what can be done, if you are already knowing a 

language is NP complete, then you can establish a new language. If you NP complete by 

give a polynomial time reduction from that language to this, but observing one language 

is NP complete anyway requires all these, you know thing to be look into. 
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Now, when we are talking about languages in NP to prove this thing, let me first give a 

criteria here, a language L over sigma an alphabet of size at least 2, and resume dollar is 

not a symbol in sigma. Now, if there is a polynomially balanced language L dash in 

sigma star dollar sigma star, so L dash how does an element in L dash look like, that is 

every element is of the form x dollar y for x and y in sigma star.  

So, if you can have a polynomially balanced language L dash, such that this L dash is in 

p, this is there is a polynomial time deciding algorithm for L dash. And this L is just you 

know a coefficient of L dash with dollar sigma star, that means in the language L dash 

the polynomially balanced language L dash. If you just remove all the things from on 

and after dollar, whatever is there, if that is L then we can observe that this L is in NP, 



what exactly is this L dash. So, L dash what we are trying to give here after dollar, 

because you know what is language in NP a language is in NP. 
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If you have a polynomial time verifying procedure, polynomial time verification 

procedure for the language, and given a certificate. So, for the language L if you want to 

look at a language L, if you want to see this is in NP. So, suppose these are the strings in 

L, etcetera. Now, any string you take, if I give a certificate y and if there is a polynomial 

time procedure to verify this, but how to give this certificate this certificate we give non 

deterministically. 

So, that is why this NP you know this non deterministic turing machine, which verifies 

that x is in the language L or not in polynomial, I mean x is in the language in 

polynomial time. So, given a string x in sigma star, say L is a language in sigma star, 

now you given a string x in sigma star, what you require a non deterministic turing 

machine. You take x as the input, and this non deterministic machine you know has to 

check whether x is in L.  

So, if x is in L, this non deterministic machine halts, and the time it takes should be a 

polynomial time, that is what is the definition. So alternatively, you know I can say like 

this, if checking non deterministically means, given a certificate say I will give that on 

the input itself, I give non deterministically a certificate, a solution you know this, and 

then this x y. If I have a polynomial time decision for this, polynomial time decision for 



this, then I can say the language L is in NP, that is what is exactly we are trying to look 

at in this criteria.  

So once again, now here the y what you are we are taking the language L dash, what we 

are creating that is subset of sigma star dollar sigma star. So, what are the certificates we 

are going to give, that we should be able to give in polynomial time with respect to the a 

string x. So, that is what is the essentially the language is polynomially balanced, the 

meaning of polynomially balanced language is exactly this. 
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So, let me look at that, L dash in sigma star dollar sigma star is polynomially balanced, 

what is the meaning of that means there is a polynomial p, such that x dollar y is in L 

dash, then the length of y is less than equal to p of mod x, that means with respect to x, 

you know the length of y is in the polynomial bound. So, that is the polynomially 

balanced language.  

Now, what is another point in the hypothesis, this L dash the polynomially balanced 

language L dash is in p that is also given to us. The meaning of this is there is a turing 

machine M dash that decides L in a polynomial time. Let me say that is q time, now what 

I want to look at that this L is in NP. So, to show L is in NP, I have to give a non 

deterministic machine, which accepts L in a polynomial time. 
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Now, the following non deterministic turing machine that accepts L, what is L, L dash by 

dollar sigma star in non deterministic polynomial time, we are constructing it here, how 

do we construct. You just take the tape, and the x is given as input to you from sigma star 

to accept L what I am going to do, first you print dollar here, so that is what is this p 

dollar, this component of the turing machine. And then here, non deterministically 

generate the possibilities of certificates. 

So, this y it is from sigma star, so if I assume sigma is a 1 a 2 a k, I have the possibilities 

of you know printing a 1 or a 2 or and so on I have here k loops, printing the connecting 

to a printing machine, printing a 1 or a 2. So, whatever is the certificate, I mean what are 

is the string from sigma star, I should be able to generate following this loop, this 

particular portion of the this thing turing machine. And since this is non deterministic 

machine, you know whatever is you want, whatever is that you want you can print using 

this loops, and then once you print a certificate y you know you connect it to M double 

dash.  

Now, you ask me what is M double dash, the M double dash here this is a simple variant 

of M dash, because this M dash you know, because L dash is in p, we have a turing 

machine M dash, which decides L dash and polynomial time. Now, what I am doing this 

M double dash is just a simply variant of M dash, which would loop forever, when M 

dash halts with no, because M dash is an algorithm you know one when you give an 



input to that, it will say yes or no. If it whenever it is saying no, this variant M double 

dash will simply loops forever may it is not going to halt.  

In all other respect, you know M double dash is just identical to M dash means, 

whenever it is halting by saying yes with all the aspects. So, we will just leave it that 

way, so that is what is M double dash. Now, you look at once again the turing machine 

M, so this M th turing machine what we are doing in the beginning, what are is input that 

you are taking x. We first print the dollar non deterministically, you will be able to print 

any string y from sigma star.  

And then this input will be given to M double dash, aware M double dash is simply M 

dash, except that whenever this is saying no, it is not going to halt, it will go simply you 

know it will loop forever. So that, you know the no case will not be accepted, because 

we are constructing a non deterministic machine here. 
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So now, you look at this x is in L, if and only if, there exists y in sigma star with you 

know length of y is less than equal to p mod x, because it is such that this x dollar y is in 

L dash. Because, you see the language L is equal to L dash by dollar sigma star, since L 

is equal to L dash by dollar sigma star, whatever is x is in L, you know you will be, you 

will have some y with this kind of property. Now, you look at, because this x dollar y is 

in for some y this is in L dash, there is an halting computation of M with no more than 

this many steps.  



Now, you look at how many steps you would require, because to print dollar as the given 

position one step, and then take a right move, and whatever is y that you want to print, 

every time you will be taking a right move and print it, All right. And thus, see whatever 

the length of y you know it is bounded by p mod x. So, printing that many 2 p mod x this 

many printing steps for that, and then printing dollar is one step. And finally, you will be 

taking one more right move to go to this position, so printing dollar is one step, going to 

taking a right move one step here.  

So that, now there are two steps here, printing y which is of length maximum p mod x, so 

that is 2 p mod x number of steps to print y, two steps for this purpose what I have 

mentioned dollar and taking a right move there. And once you have this input, since the 

machine M, M dash is taking the polynomial time q, and now the what is the input size 

here, this is mod y mod x plus 1, and mod y is less than equal to p mod x. So, this is the 

total, now input length for M dash, so now it is to M double dash, so that is the 

polynomial time with respect to q here. 

So, this is the total number of steps that this machine takes, and you see this is the 

polynomial. Because p is a polynomial; q is a polynomial with respect to the length of x, 

what you are having this is you know in a polynomial time, hence M accepts L in a non 

deterministic polynomial time T n, where the function T is given by the expression 2 

times p n Plus 2 plus q times p n Plus n Plus 1 this is the polynomial, you compare with 

this, and thus you can understand that L is in NP.  

Once again we look at the statement, what I what we are trying to see here, to observe a 

language is in NP, if you can identify a polynomially balanced language is nothing else, 

but you know given a certificate given a certificate, which is which within polynomial 

time, you should be able to decide whether that you know is in p. So this, with this 

criterian, we can cross check the given language is in NP. 
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And where is this small remark, but of course, very interesting that converse of these 

statements in the above result is also true, what is the meaning of that, if you take a 

language L in NP, you will be able to identify a polynomially balanced language L dash, 

in which is a subset of sigma star dollar sigma star, such that L dash is in p. And the 

given language L which is in NP is equal to L dash by dollar sigma star. So, we will be 

able to identify a polynomially balanced language L dash always, so polynomially 

balanced language means the one which satisfies this criteria.  



(Refer Slide Time: 17:13) 

 

So, this is also true, that is this there exist a polynomially balanced language L dash, 

contained in sigma star dollar sigma star such that, L is in p and L is equal to L dash by 

dollar sigma star. You can try this as an exercise, because what is the language L dash 

that you wanted to identify. So, simple hint can be you know, what are the certificate 

corresponding to the given input, you have to append those certificates. Then you are 

creating this L dash, when it is in NP you know, you are non deterministically accepting 

it non deterministically accepting in a polynomial time. 

Now, when you want to have a polynomially balanced language this L dash, how do we 

construct, next to the input x you have to give a certificate y, and this y length should not 

be more than you know for some polynomial p mod x, the length of x. So, that kind of 

language we have to identify. So, this is in fact, you can use the what is called the 

computation history of this machine the machine corresponding to L, you can make use 

of that and you can create the certificate, this is a hint here we can try this is an exercise.  

Now, to prove to establish a language NP complete, you see we have two conditions. 

One is to observe that the language is in NP, and the other is you take any languages in 

NP you have to give a polynomial time reduction to the language, what you are targeting 

to show that is NP complete. For both the things I have mentioned like you know, what 

is the approach that we will be following, this is a necessary and sufficient condition 



corresponding to NP to observe that language in NP. And thus more or less you know 

you can consider this technique, and understand that a language is in NP.  

So, you have to essentially give certificate in a polynomial time, and verify in 

polynomial time, that the string is in language L dash or not. And second thing is, if you 

have already established some language is in a language is NP complete, then we know 

that you just give from that language to the targeted language, a polynomial time 

reduction these two things I have just mentioned. Now, what do we do any way first we 

have to establish some language is NP complete, then that kind of reduction just single 

reduction will be sufficient, how do we do that what is the approach.  

Now, again you look back, when we are talking about undecidablity, we have first 

established that halting problem is undecidable. So, once we have established the halting 

problem is undecidable using that halting problem, we have reduced many other 

languages to show that they are undecidable language. So, in this course particularly, if 

you just look at, whenever we wanted to show some language is undecidable, either 

directly from halting problem or some variants of the halting problem or you know 

whatever that we have already established there undecidable from there you know, we 

started reducing the targeted problem. 

And establish that they are undecidable, here also we will go in a similar approach what 

do we consider, and a variant of halting problem in the present context, what is the 

halting problem, halting problem ask you to verify I mean to decide whether given a 

turing machine M and an input string w, whether M halts on w, where there is an 

algorithm for that. So, that decision problem, you know we have observed that it is 

undecidable, All right that is an unsolvable problem.  

Now, a variant of that in the present context means, what do we consider in case of a 

turing machine, I consider a non deterministic turing machine. So, now you see, the 

system is going even more complex, and so the question is not you know given an non 

deterministic turing machine input string w, whether M halts on w it is not the question, 

because even if considering a standard turing machine you know the problem is 

undecidable.  

So, when I am looking at this, of course I ask you, I give you some other parameter, 

there what is the time, the what is that time parameter that means I ask you to see, 



whether this M accepts w the non deterministic machine M accepts w in so many steps, I 

give you a fixed number of steps. And the corresponding to give a turing machine and a 

string, and I ask you this question.  

Now, this is the first language this is I can call it as a non deterministic quantitative 

analogous problem to the halting problem. So, such a variant we consider, and I will 

establish first that this problem is NP complete, to when what are the definition we give. 

So, we will verify both the conditions and establish that this particular problem is NP 

complete, for halting problem we would have written h h naught or whatever, halting 

problems similarly, we are since it is non deterministic machine. 
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Let me start writing N 0 the problem, let us look at this problem this a variant of halting 

problem for non deterministic turing machine, which includes time parameter. Formally, 

the language, when I am looking at you see we are considering a non deterministic 

machine M, and a string input string w, of course we are considering the encoding of 

that, because I am giving you a language. And then of course this ambrasend symbol that 

at the right 1 t, that means you know this is the time that this many steps.  

Because we are giving this in the unary representation, you know that M and w, we 

would have given that using the alphabet 0 and 1; you know that we have considered an 

encoding of a turing machine using a sequence of zeros and ones. Similarly, a non 



deterministic machine also, we just encode it the give the input and M, so this is 

encoding of that.  

And then this separator tells you after this what are the, so many ones I am giving, that is 

the number of steps that I am expecting, that M should accept w in that many steps All 

right. So, this problem N 0 is what, given a non deterministic turing machine M on a 

string w, whether M accepts w in t or fewer steps. So formally, we write a language 

concerning that is this way. 
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So, we prove that this language is NP complete, to show the language is NP complete N 

0 I give you a polynomially balanced language N 0 dash, and observe that this is in p, 

and moreover this N 0 dash quotient with dollar sigma star, whatever is the underlying 

alphabet of course is N 0. So, that is how we consider this N 0 dash, we look at this how 

do we defined. So, define the language N 0 prime, N 0 is what is that, what we are going 

to give this M w that t the time of course, 1 power t we write that means so many ones, 

but there with respect to time.  

Now, the dollar is a separator for the certificate, and what is the certificate we are I am 

going to give here is, encoded configurations of M and w you look at. So, all this C 0 C 1 

C t dash is a this string satisfies, you know the following five as statements what is that, 

M is an NTM non deterministic turing machine Q sigma delta q naught and w is their 



input. Now, what are these c i (s), c i (s) are configurations of M, so all these c i (s) and 

C 0 is the initial configuration of M with w as input, that is what is written this way.  

So, q naught blank w blank, so this is what our initial configuration, and this C t dash is a 

halting configuration, that means you are in a halting you are in the halting state h, and 

with something on the tape with x a y for some x and y in sigma star a in sigma, the 

current reading symbol is a. And more over, what is this sequence C i, C 0, C 1 and so 

on, when from C 0 in one step you are getting c 1, from c 1 you are getting in one step C 

2 and so on. So, c i gives C i plus 1 in M in one step for all these.  

And then the number of steps here the number of configurations that I am writing it here, 

the number of steps here the t dash is less than equal to t, whatever is that number t we 

are given. So, let us consider this language, so you look at once again, what we are what 

is the certificate we are going to give, we are giving the computation history of M on w, 

and we are considering all possible configurations, which leads to a halting configuration 

from the initial configuration within you know t steps, that is what we are considering in 

this language.  

This exactly gives you the hint of the exercise I have I had given you, this kind of thing 

you consider, and then you can observe that for the converse of the previous result. Now, 

you look at this N 0 dash is the polynomially balanced language and is in p, how do we 

say that, why this is polynomially balanced, because any string you consider here as of 

the form x dollar y is in this N 0 dash, what is x here it this encoding of M and w at the 

rate 1 t, so that is what is x.  

Now, x dollar y is in N dash, then what do we require what is the condition, the length of 

y should be less than equal to some polynomial time by the polynomial of the length of 

x. Now, you look at this configurations, how many configurations we have, t number of 

configurations, how I am and go going to encode the configurations, you encode 

appropriately like you know the turing machine the transitions are un coded as blocks of 

zeros and ones.  

And similarly, you know in a configuration, you know that there is a state component, 

and the input that is what is essentially a configuration, and always the input w it changes 

what, say for example w a 1 a 2 a n in each step, what increment of at most once a 

symbol, like if I go towards and I may increase by one more symbol, if it is the case. So, 



in each step either you are going to take a right move, you know or making a printing 

step, so each step with respect to w, you know I am not making any larger change as 

where as the configuration this thing concerned the length of the take concerned.  

And then you see this transitions from with respect to this, so a state component is there 

if you look at a configuration, the state component is there and the input. So, w is a input, 

and the change what we are going to have, whatever is the way that you encode each 

symbol, you know this is with respect to the w. This C 0 is in a within a polynomial time, 

with respect to what is called the length of x, because the entire thing as x we have.  

And how many such configurations that we are going to give? We are going to give 

configurations which are less than equal to t the number of configurations. So, since this 

parameter t is part of x, you see this configuration let me say, each configuration with 

respect to w is of maximum, say k length. And now, you have k t dash this and once 

again deemphasizing that this configuration with respect to w, I would have may be, let 

me put a parameter this is k mod w.  

Suppose, this is how when we have encoded which is coming up, and then since t is 

already a parameter inside x you see, I am taking t dash steps, so this is also with respect 

to that a polynomial times. And thus, whatever is the certificate we are going to give 

here, that means x dollar y is in N 0 dash, then the length of y what we are going to give 

the certificate, it is less than equal to you know with respect to the input that x, it is a 

polynomial I would say polynomial bound with respect to the parameter mod x. 

So, this is therefore polynomially balanced and it is in t also, why this is in t, because 

everything is available now, only thing what I have to verify you know once I have 

printed this certificate, that this is a non deterministic turing machine w is in sigma star. 

So, these are the things that you have to look at, and then since these are the 

configurations of N, you have to just cross check that once this C 0 is of this form, this C 

0 whether you are gain to get C 1 or not, how do we know this that is from the machine 

M, because the transitions of M are also available. 

So, C 0 to C 1 whether you are going to get or not we to have see C 1 to C 2 you are 

getting or not you have to see and so on C t dash, this is the step that you have to verify. 

So, on this input when I am going from C 0 to C 1, I have to carefully verify whether this 

is following the transitions of M or not, that is what I have to cross check. And if this C 0 



is the initial configuration and C t dash is the halting configuration that way, and the 

number of such configurations whether they are less than equal to t or not.  

So, all these conditions that we have to verify, for x dollar y the string which is in N 0 

dash, so you can do this in polynomial time, because this is just we have to go back and 

forth on this and that how many times, because the number of transitions that you have to 

verify here. 
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So, you can observe carefully, you can give little more details and observe this N 0 dash 

is the polynomially balanced language and is in p. And moreover here, the way that we 

have constructed is N 0 is N 0 prime by dollar 0 1 star, and writing 0 1 star here with the 

assumption that, and encoding these configurations using the sequence of zeros and ones 

again, like the way we have encoded turing machine. So, dollar 0 1 star that is what is N 

0. So, this will be in p, because once there is a polynomially balanced language in p, I 

will use that result, and observe that this N 0 is the language in NP All right. So, the 

language N 0, we have observed that this is in NP using that result.  

Now, the second thing what have to observe, you take any language in NP, I have to give 

a polynomial time reduction to N 0 that means I have to show this L is less than equal to 

p N 0. Let us see, how do we do that, since L is in NP there is a non deterministic turing 

machine M L, and a polynomial p L such that M L accepts L this is a definition of NP 

language, All right excepts L. Of course, in non deterministic time p L, because the 



polynomial p L for an non deterministic machine, we say this is a non deterministic time, 

so this is a definition. 
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Now, what do I do, I give a polynomial time reduction here, so reduction means what I 

have to do, I have to give a turing computable function that reduces L to N 0, I to give a 

turing computable function which reduces L to N 0. And that computable function, we 

should be that reduction should happen in a polynomial time, these two things that I have 

to look at, how do we do that. I define the function f L from sigma star to 0 1 at the rate 

star, because the encoding of turing machines that we are doing with 0 and 1.  

And anyway we are separating the time with respect to this at the rate symbol. So, 

therefore these three are taken into count, All right. And now, how do I define that, you 

take any string w and sigma star, first I simply print M L, because M L is in my hand. 

So, for L there is corresponding non deterministic turing machine M L, so there is a 

constant that is a with me. So, I print M L encoding of that and whatever is the w that 

you are giving me, the same w you know encoded. So, this ((Refer Time: 34:51)) we 

consider encoded.  

And then what do the time I give associate to this is, because this M L accepts w in non 

deterministic polynomial time p L, I just give that much time the time here is p L of mod 

w, so this is the time we are associating to this. Now, let us look at this, f L can be 

prepare this, so given w as input to a turing machine the turing machine you give, can we 



create such an output in polynomial time with respect to the length of w. You look at, 

what we have to do here, what I have to essentially do is I have to print the encode of M 

L.  

You can consider may be two tape turing machine, further time being say I will just print 

this is a constant one, I have printed encoding of this, then the w encoding you will also 

print, because w is available here. So now, this M L for every string this is always 

constant, this w corresponding to that I have to print. So, this is say for example, printing 

M L for any w, say for example k number of steps. And now, this w you encode it for 

example, you know depending on the type of coding that you have for each symbol that 

is with respect to length of w.  

You will have some polynomial; say some polynomial time length of w that is how you 

will be coding this. And after this what I have to do, I have to print so many ones, which 

are you know how many ones I have to print p L mod w, this what I have to print. You 

see clearly p L is a polynomial, I have to print that many ones, so that means, printing 

that many ones means twice p L mod w steps, you would require. So, some constant 

number of steps to print the encoding of M L, and then some polynomial you know 

bound with respect to mod w to print the encoding of w. 

And thereafter I have to print at the rate symbol that means, again two steps there and 

then to print this many ones I have to take these many steps. You look at, this is a 

polynomial p L is a polynomial, p is a polynomial, this k is a constant. So thus, you can 

see, this can be done in polynomial time, and this you can manage using a turing 

machine, what is the meaning of that this f L the function f L, given w on the tape of a 

turing machine.  

You know, you creating this f L w that you can manage using a turing machine, in 

polynomial time, that means this f L is a turing computable function and can be 

computed in a polynomial time. So, now you observe the w is in L, if and only if, this f L 

w is in N 0, so string w is in L then f L w is in N 0, because there this will be accepting 

that is what is exactly this. Since, L is in NP there is a non deterministic turing machine 

M L, you know that accepts L in non deterministic polynomial time p L. 

So, this f L w is in N 0, and whatever is that we have created here, if this is in N 0 then w 

has to be, you know w is accepted by M L in non deterministic time p L. So, w is in L, so 



we have this situation; that means what, this is a turing computable function. And you 

are computing this in polynomial time, moreover this condition is also satisfied that 

means this f L is a polynomial time reduction from L to N 0, that means L is less than 

equal to p N 0.  

Now, what is L? L is an arbitrary language in NP. So, you take any arbitrary language in 

NP, this procedure there is a very elegant simple procedure, you see that can be that L 

can be reduced to N 0 in polynomial time, so what is that. So, this is the second condition 

for NP complete to establish a language is NP complete, so combining is to, now we can 

conclude that N 0 is NP complete. So, if you look at the way that we have handle this 

undecidablity some in certain language are undecidable, we have started with halting 

problem.  

Now, analogous problem of that halting problem that we have introduced and 

established, that it is NP complete. Now, as an exercise, what we have done that certain 

variance of halting problem that we have considered. So, those variance that you could 

establish that they are undecidable, how did we do that, so halt from halting problem, 

you have reduced to those variants. The halting problem, you give a polynomial, you 

give a reduction to the targeted problem that variant, here what we are going do, that 

reduction we have to verify that it in polynomial time. So, this polynomial time reduction 

is required here. 



(Refer Slide Time: 40:13) 

 

So, now I give you such similar exercise, we look at given an non deterministic turing 

machine M, whether M halts in t steps, when started on a blank tape. So, this kind of 

problem we have considered in undecidability also, given a turing machine M whether M 

halts, when you start that in a blank tape. Now, an analogous problem here, what is that, 

I give a non deterministic turing machine M, and of course a time parameter also. So, it 

say t in t steps, whether you know M halts, when you start that machine you know blank 

tape.  

How do I write the corresponding language, say let me called it as N 1, N coding of M 

and the time and separating that there its symbol. So, this is the string, where M is an non 

deterministic machine and when you start this on the blank tape, that means this is initial 

configuration. And in t s there steps, it will halt in something on the tape that x a y for 

some x and y in sigma star a is sigma, and this t this t dash should be less than equal to, 

so within t steps. So, I am this writing t dash within t steps, All right. 

We can observe that, again N 1 is also NP complete, you see if you look at the history of 

NP complete problem; no there are very important problem several you know, decision 

problems concerning certain optimization problem. Although since, that we are going to 

discuss, but you look at for the classroom concerned, we look at such a nice simple 

languages that anyone can sit and establish that they are NP complete.  



And they approach is also, you know what you have practiced, the reductions in 

undecidability. So, what I what you have to do here, first we have to establish that N 1 is 

in NP, that is in NP language. And then now since we are already knowing that N 0 is 

NP complete, you can make use of you know that N 0 ((Refer Time: 42:22)) now it is 

sufficient to give a polynomial time reductional say from N 0 to N 1. 
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So, you can target to do this, thus an exercise to establish that this is NP complete, 

regarding polynomial time reduction from N 0 to N 1; I give you a small hint here. So 

that, you know you can complete this problem by showing that there is a polynomial 

time reduction from N 0 to N 1, so that N 1 is NP complete, what do I suggest you look 

at in N 0, what do we have in N 0 we have you know encoding of non deterministic 

machine and a string. And then you know the respective number of steps within that you 

wanted to pursue.  

So and corresponding to this, what we have to assign? We have to assign a non 

deterministic turing machine, which when you start on empty tape it has to finalize, 

whether this is N 1 within the given number of steps, what do we suggest here. You take 

a string, because the encodings I am just assuming, you will be able to make with 0 1 

here, because as earlier in the turing machines what we are writing this at the rate symbol 

is extra that we are using, just to separate between the turing machine code and the time.  



So now, you take a string x in this 0 1 at the rate this star take any x, if that is of the form 

some non deterministic turing machine M, and string w input string w, and sometime 

you said the rate un powered t. If this is not of this form, then you simply assign somes 

and some the string which is not in you know in N 1 form this. In N 1, we know that at 

least at one once at the rate symbol has to come, when I he assign someone or whatever, 

it is not clearly in N 1. So, what I am doing, if a string if a string x is not of this form that 

M w at the rate 1 power t, then I will simply assign some string which cannot be in N 1.  

And if that is of the form, then what do we do some for some non deterministic turing 

machine M w all these, I will assign the string, I will tell you how what is this string, just 

what do I suggest. You construct, you take it turing machine non deterministic turing 

machine M dash, what we what is our desired intention. Because, when you start on 

empty tape then given number of steps, whether this will halt or not that is what is our 

this thing question.  

So, you simply from the current cell, because you are starting on the blank tape, so the 

current cell, you take a right move and print a 1 here, and take a right move print a 2 here 

and so on a n, what is this a 1, a 2, a n that is the string w, because this is x is the form M 

w form, M w at the rate 1 power t what do I suggest. First you print this string a 1, a 2, a 

n and take a right move, so now the reading and writing at position is this, so this part 

can be managed by this portion of this M dash, and then simply you connect to the 

machine M.  

So, if you consider this non deterministic turing machine M dash, what exactly we are 

doing, whatever is the part of input w that you will first prepare it on the tape, and then 

connect it to M. Now, to prepare the string, how much time you would require the length 

of x length of this w of course, this is w. And you know plus one more step essentially, 

so 2 mod w plus 1 steps that this will take, you 2 mod w plus 1 steps this will take to 

prepare this a 1, a 2, a n. And then when you start M here this will pursue this input 

within this t time or not, that is what we have to cause.  

So, the total time we are giving here is 1 t plus 2 mod w plus 1 time. Suppose, if you give 

this, now you can observe that whenever this is in, whenever this M w at the rate on 1 t is 

in N 0, if and only if you know the f of x. So, whenever x is that means x is in N 0, if and 

only if, you can see f of x is in N 1. And you can observe that these reduction is in 



polynomial time, because you can look at with respect to input size, how much this is 

coming N. So, with this hint you know with this kind of function, I can ask you to 

complete this exercise that to show that N 1 is NP complete. 


