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Complexity theory, today we will be discussing one of the important problems in 

mathematics and computer science. So, in connection to that, first let me overview and 

what we have already discussed about you know regarding time bounded turing 

machines. And in that context, we have talked about class of languages, which are 

decidable in time t the class time t. We have introduced the notation, which is 

representing which is to denote the class of turing decidable languages, of course 

decidable languages, which is the time parameter t. So, in decidable in time t, that we 

have introduced.  
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Now, let me just quickly review, some of the fundamentals related to the polynomials. If 

I consider a polynomial say a 0 plus a 1 n plus a 2 n square and so on, plus a d n power d, 

where d is the degree of this polynomial. I will assume a d not equal to 0, if I call this 

polynomial say f n you know clearly that, f n is in the class n power d is big o notation, 

you all might know. Now, more over you can see that this is in the class theta n power d, 



so this is of this polynomial f n is of same rate of growth with the polynomial just n 

power d, in so…  

In fact, you can look at that this class, theta n power d you know in this class you have 

those polynomials of degree d. And in this context, you may understand that the 

polynomial f n is in the big o class of n power d plus 1 or may be higher number than d. 

But this, if you take a polynomial say for example g n, which is of degree say d plus 1, 

you can see that say let me the simply take this polynomial, n power d plus 1 this is a 

polynomial, we can see that this is not in n power d class.  

So, here what I wanted to just quickly mention that, if you take those polynomials of 

same degree, whatever the lower order terms; what are the coefficients that you have. 

You can quickly understand that I hope all these things that you would have learnt, and 

you have done in other courses, particularly in algorithms also you have used all these 

things. You can say that a polynomial of degree d is of same rate of growth with any 

polynomial of degree d, what are the coefficients at the lower order terms, and what are 

the coefficients… 
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So, that is a theta class of n power d that you have, now using this I will define an 

important class called P. So, what is this, this is I will define it as, now union time n 

power d, d is a natural numbers running over natural numbers. So, what is the meaning 

of this, this is P is that is P is the class of languages, which are decidable in polynomial 



time, because if you take any language which is decidable in time t; which is the 

polynomial you know that is in time t class. 

 Now, that t if it is a polynomial, it is in the class of time n power d, where d is the 

degree of that particular polynomial. Now, we have taken union of all those languages, 

even all those classes. So, this P we are defining the script to be I am writing, 

distinguishing between some other you know normal letters are wherever I would be 

using. So, this class P I have defined to be the class of all those languages, which are 

decidable in polynomial time. Now, if you ask for examples, of course there are what are 

the examples in the previous lecture that we have discussed.  

They are all clearly in polynomial time; I have given some linear time languages, which 

are decidable in linear time particularly, regular languages which are decidable in 2 n 

plus 4 time. And we have some example discussed, that is working in quadratic time and 

what are all the languages, many languages so for we have discussed here, they are all in 

clearly in P, because what are the deciders that we have constructed. You can verify that, 

they are working in polynomial time; there is a polynomial time decider to compute to 

decide those languages.  

Now, so thus for the class P I am not giving any more examples, because we have we all 

are already equipped with many of the examples. Now, I will talk about a new concept 

called NP, what is that NP this is essentially non deterministic variant of the class P, P 

we have just defined. Now, I will look for the non determinism, when I am looking for 

the non determinism, particularly non deterministic turing machine. The way that we 

have introduced that is not a decider, so it is not actually taking a decision on the inputs, 

and in contrast with the standard turing machine.  
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So, we will include that feature, when I am talking, when I am introducing the time 

bound on non deterministic machine, and accordingly we will define the class NP. First 

let me start with associating time to a non deterministic machine. So, for that let me start, 

so let T from natural numbers to natural numbers, this is the time function be a function, 

and consider a language L over some alphabet, let me say sigma naught star a language 

as earlier. 

Now, I will start with the non deterministic machine instead of standard deterministic 

turing machine. We say a non deterministic turing machine, non deterministic turing 

machine, say I may call it as M Q sigma, this is the transition relation there q 0 the initial 

state with the alphabet under consideration is subset of the sigma, alphabet of that. This 

accepts L in non deterministic time, I have do not want to call it as time, because the 

variants is there I call it as non deterministic time T.  

So, this time what we are associating for a non deterministic machine, we call it as it is 

accepting this machine is accepting L in non deterministic time T. If the following holds 

following holds, what are the conditions I write now is holds. So, what is that for all x in 

sigma naught star, you take any string x is in L. If and only if, if you give that as input to 

the mission, so in this format we give, it will halt in time t in within t number of steps, of 

course when it is halting, what is there on the tape it is not decider.  



So, I do not expect any yes or no sort of thing, but it will leave some something on the 

tape, that means for some y z in sigma star something and of course, a in sigma and this t 

what it has to maintain, it should be less than equal to T mod x. So, the number of steps, 

it takes to compute on it by the time it halts, you know the number of steps it takes is less 

than or equal to T mod x with respect to with input parameter mod x, the length of x.  

So, what we have defined essentially, this is a non deterministic variant of the earlier in 

the earlier lecture whatever that we have defined about time bounded turing machine. 

Here, when you are considering non determinism, we know that there is no decision 

here, which is something like saying yes or no on a given input. So, if it is halting it has 

to halt within the required number of steps that is with respect to the time, we are 

associating t. 
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So now, as earlier we say this is a continuation of that definition, we say that L is 

acceptable in non deterministic time T in non deterministic time T. If there is a non 

deterministic turing machine, there is a non deterministic turing machine that accepts L 

in non deterministic time T. So, we know just we have defined, when do we say a non 

deterministic turing machine accepts a language in non deterministic time T.  

Now, if you want to say a particular language is acceptably non deterministic time T, you 

should have one non deterministic turing machine doing this performing that. So, in 

connection to that as earlier, now I introduce this notation N time a class, so N time T I 



mean all those languages L, which are decidable else, because this is non determinism 

here which is acceptable, because there is no decision here, acceptable in non 

deterministic time T.  

So, as earlier when we have talked about time t, those are the languages which are 

decidable in time t is that is deterministic turing machine. Here, we are having a non 

deterministic version, so N time T is all those languages which are acceptable, because 

non deterministic machine would not take a decision. If the string is in the language, it 

will simple accept, so within the required time it has to accept. So, acceptable in non 

deterministic time t, NT 

So, extending this now, let me introduce the class what I was talking about NP, I am 

((Refer Time: 12:44)) script letter to distinguish from other classes, that would be talking 

about union N time n power d. So, d runs over natural numbers, so what is the meaning 

of this, this is all those languages which are acceptable in non deterministic polynomial 

time, because n power d when I am writing. So, N time polynomials if you look at you 

know this class is essentially same as N time n power d, where degree is of that 

particular polynomial.  

So, we know this, so if you if I am considering union of all those languages on all those 

classes. So, that is what I am calling NP. So, in words I can say that these are those 

languages, which are acceptable in non deterministic polynomial time. Instead of this 

saying non deterministic time that time I am associating it should be a polynomial. So, 

NP is the class of all those languages which are acceptable in non deterministic 

polynomial time t.  
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Now, you can quickly see that, we know that every deterministic turing machine can be 

seen as a non deterministic turing machine. So, that is the restricted version, and so 

clearly as time t or in particular I can write n d, it is a subset of N time n d. We have this 

class P is contained in NP is very quickly to see, because every deterministic turing 

machine can be treated as a non deterministic turing machine, and thus I can say that P is 

contained in NP. 

Now, the question is whether this two are equal, so the question is whether or not equal 

to NP. Now, this particular problem in mathematics and computer science, this is one of 

the you know toughest problems and this problem has such an importance, the 

importance of with respect to the importance of this particular problem. You know, this 

is one of the seven problems listed for million dollar prize by clay mathematical institute.  

So, clay mathematical institute just to give some you know importance of this with 

respect to that, clay mathematical institute has announced million dollar prize for one for 

each of the seven problems. And only one problem so far is settled, and this is one of the 

problems among those seven problems. And if one settles this that means, to prove 

whether P equal to NP or P not equal to NP it is very clear, that P is contained in NP.  

Now, the point is whether there is a language in NP which is not in P, so that is the 

question. So, if one can address this problem, who will get; he will get; he or she will 

get, 1 million dollar prize as per the announcement of clay mathematical institute. So, 



this is one of the important and long standing problems in mathematics and computer 

science.  
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 Now, in order to talk about more details about this particular problem, whether P equal 

to NP I will little more create some background to understand about this. In this lecture, 

that is let me start with this particular concept, a function f from sigma 1 star to sigma 2 

star is said to be computed by a deterministic are computed in time T by a deterministic. 

Because now, I have to mention earlier I used to simply say turing machine, because now 

we are talking about non determinism also simultaneously, I will now mention that 

deterministic turing machine M.  

So, let me write Q sigma delta q 0, if and only if for all x in sigma 1 star, if you give that 

as input. So, the number of steps I am counting that is the main variant here, f x the 

output that you are getting with T number of steps for some T, T less than or equal to 

mod x. So, in connection to this definition, I will now make as earlier that we say f is 

computable in time T. If there is a deterministic turing machine, I will simply write a 

turing machine M that computes f in time T. 

So, look here whatever the earlier procedures or you know concepts that we have 

discussed with respect to turing machines. We are now quantifying them, for example in 

the previous lecture, when I am talking about time bounded turing machines. First 

standard turing machine I have taken there, I have consider only the so called a decider 



and a quantifying method of that, that means we have the decision we are quantifying. 

So, with respect to a particular number of steps, the particular number is associated 

through a function, so we are calling it as a time function.  

Similarly, when I am talking about non determinism, so for non deterministic machine 

also, we have associated the number of steps, because when it is taking, when it is 

computing certain thing. So, the number steps that we are counting and with respect to a 

particular time function that we are with respect to which we are talking about, we are 

associating a time function. Now, when I am talking about standard turing machine, you 

know there is a concept a turing machine computes a particular function.  

Now again, in that particular context also we are quantifying it, that means we are 

associating a time function to that particular concept. Now, in the similar thing I need not 

actually, I need not introduce, but as formalism I am introducing here. So, if you take a 

function a computable function that means, a turing computable function means there is 

a turing machine, which computes that particular function. Now, if you want to associate 

time to that how many steps it is taking to compute, whatever the on the input that you 

are giving.  

You know, in a if a turing machine computes a particular function on every input, it will 

leave certain some output. Suppose x is given as input f x, if f is the particular function, it 

is halting by printing f x as output. Now, when we are associating time to that as earlier, 

now here you will count the number of steps and the number if you want to say, it is 

computing in particular time capital T, the time function. So, the number of steps it is 

taking should be less than or equal to capital T of that particular string length, in terms of 

that. So, that is what is the variant now we are discussing here.  

So, a function f from sigma 1 star to sigma 2 star you take a function, which is the 

computable function, if you say there is a turing machine which is computing this. But 

now, when I am associating time to this, it is computed in time T by a deterministic 

turing machine M, if for all the inputs that is from sigma 1 star, when you take the 

number of steps it is taking if I write T, so it should halt within T number of steps, where 

T should be less than equal to capital T mod x. And now, a function f is computable in 

time T, if there is a turing machine that computes in time T, so this is the variant that we 

have defined.  



Now, whatever the concepts that is associated to turing machines. We will now, in this 

particular topic complexity issues when we are discussing. We will give the parallel 

formalisms and discuss with respect to the quantifying that, any way this concept I am 

introducing, because we have just mentioned, we have just talked about a problem 

whether P is equal to NP what I will do, I will introduce an important class of languages, 

which are actually very much useful in order to understand, well about the problem P 

equal to NP. 
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So, in that direction I will introduce a class called you know NP complete languages, NP 

complete the class NP complete. So, for which you know I will just build up the 

background. Now, through this concepts and now we will talk about the NP complete 

languages. In this particular context, in case if you have the T to be polynomial, in case T 

is a polynomial, in case T is a polynomial. We say that function f is polynomial time 

computable say this is polynomial time computable, so just we have mentioned when do 

we say function is computable in time t that we have mentioned.  

Now, if this particular time what we are associating, if this time if it is a polynomial, then 

we say it is a polynomial time computable function. Now, just to look at examples, if you 

take a language, which is already in P that means there is a polynomial time decider for 

that if this is if you take a language in P, then this is simple example straight forward 



example. Then the function, if I consider the function f L defined by I define naturally 

this way Y N, if x is in L otherwise, suppose if you define like this.  

You know the corresponding turing machine on x, it prints Y if it is in L, if x is not in L 

it prints N, you know this thing. Now, since this is in P there is a polynomial time 

decider, so the same decider you know computes this particular this thing is clearly. And 

thus clearly, this is a polynomial time computable function a polynomial time 

computable function. This is clearly a polynomial, so f L whatever we have defined here, 

so the same decider will be useful. 
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Let me give some other example, which you may understand better of course, that is a 

trivial and straight example, what I have discussed now. Let me take this take sigma 1 to 

be say singleton a very simple example, so that you know you will understand this 

concept better. Consider singleton b, if I define the function f from sigma 1 star to sigma 

2 star, you know strings of sigma 1 star there simply ((Refer Time: 25:38)) a power n 

form, what do I consider f of a power n, I will simply send it to b power n, n greater than 

or equal to 0, so I will just define like this.  

Now, you can give a decider for this, you can give a turing machine which computes this 

function. As earlier our input format this is we have fixed, so certain number of a (s) that 

you will give on the tape, we are starting here. So, what do you do, you may simply go 

through this and replace each a by b this what you will print, and you come back to this 



position and halt. So, either you ((Refer Time: 26:21)) going you can print b (s) are while 

coming you can print b (s), whatever your wish take a left move.  

If you have a print b there, and take a left move keep doing this, when you receive blank 

here you may simply take R hash, that means you will come to this end from here you 

will come to this end. So, because you have to halt finally here, by that time you know 

you would have replaced all the a (s) if they are available with b (s). Now, you can ask 

me, because when I am constructing this particular turing machine. The alphabet can be 

can have this blank a (s) and b (s), because b needs to be printed. Now, in this particular 

context, if you received say for example b you can define arbitrarily, because we do not 

want to handle that here.  

So, you define arbitrarily whatever that you want, because particularly when you take the 

input which is in sigma 1 star, because look at the definition the way that we have 

defined. If you take x in sigma 1 star, if you give that as an input what are the number of 

steps it is taking to halt with the output f x, because x we are taking from sigma 1 star 

only. So, I am not worried about if there is b, so you define arbitrarily. So, this particular 

decider, what is doing if you have input a power n, then it will print b power n on the 

tape, and it will halt how much time it will take?  

Suppose, if you look at that, look here you are starting from here, you take a left move, 

you take a left move here, and then left move and so on. So, if you have n number of a 

(s) here, you take n number of left moves and one more left move to this. So, there are n 

plus 1 left moves and while coming you are replacing each a by b, that means there are n 

number of printing steps, because each a (s) so n number of printing steps. So, from this 

position, when you want to go here again you have n plus 1 right moves, the total is 3 n 

plus 2 steps that you are taking. 
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So, you can quickly see that this particular function, if you consider T n to be 3 n plus 2, 

this function f I have considered, f is computable in time t in particular this t is a 

polynomial. And therefore, is a polynomial time computable function, likewise you 

know just to make this concept familiar, you know you can consider several examples of 

this sort and practice and see this say some more let me just give you here.  

If I consider say sigma 1 equal to sigma 2 equal to say a b, I may consider a function, say 

for example g from sigma 1 star to sigma 2 star, I give like this. If you take any string x, 

I give x dash where x dash is obtained from x, which is obtained from x by replacing a 

by b and vice versa. Suppose, if you consider this function, what you are supposed to do, 

wherever a (s) there on the input tape you have to replace it by b; wherever b (s) there 

you have to replace it by a, that is what you have to do. You will scan through that once, 

and you will come back and halt the original position.  

Because, the output format is when you give x, you have to print f x on the tape and halt 

at the right blank. So, this kind of function also you can quickly realize that I hope you 

can observe that it will, you can make it in 2 n plus 2 time. So, 3 n plus 2 is a 

polynomial, this is also a polynomial time computable function. And there are several 

such, you know deciders that you have several such turing machines that you have 

constructed to compute functions. So, you can now cross check like, where whether it is 



taking polynomial time, what is the polynomial that you are getting, accordingly you can 

report that some of the examples which are computable in polynomial time. 
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Now, let me give another definition here, let L 1 a language over sigma 1 and L 2 a 

language over sigma 2 be languages. I am defining this now, what I am defining a 

polynomial time computable function f from sigma 1 star to sigma 2 star is called a 

polynomial time transformation. So, I am introducing this technical term here, 

polynomial transformation from L 1 to L 2; if and only if, for each x in sigma 1 star the 

following holds, what is that x is in L 1; if and only if this f of x is in L 2. 

Now, can you guess what is the corresponding concept without talking about the time 

here, look what is the concept we have talked about. If you consider language L 1 over 

sigma 1, L 2 over sigma 2, we are talking about a computable function from sigma 1 star 

to sigma 2 star satisfying a particular property, what is that particular property x is in L 1, 

if and only if, f of x is in L 2 what is this particular concept, thus when you want to talk 

about this you have we have discussed in the context of undecidability.  

The reduction, this is a reduction mapping as we say a language L 1 reducible to a 

language L 2, when do we say that if there is a computable function from sigma 1 star to 

sigma 2 star satisfying this condition x is in L 1, if and only if, f of x is in L 2. So, this is 

essentially quantitative version, this is quantitative version with respect to time of 

reducibility concept. So, I can also say this particular thing, because in which case what 



we have written, the notation L 1 less than equal to L 2 that means L 1 is reducible to L 

2.  

So, corresponding to that now this in this particular context, I will put a p here which 

means that L 1 is polynomial time reducible to L 2, so we know you know already the 

concept L 1 reducible to L 2, that means there should be a turing computable function 

from sigma 1 star to sigma 2 star satisfying this particular condition, whatever I am 

marking here. Now, we are associating to the computable function, it should work in 

polynomial time, so it should be a polynomial time computable function f.  

And therefore, corresponding to that polynomial time, I am just subscripting this p also 

here in this notation. So, we call this as L 1 is polynomial time reducible to L 2. You can 

now say, instead of calling this polynomial time transformation, if you want you can also 

use this is called polynomial time reduction is also, you can call it as also called 

polynomial time reduction. So, that you are taking the reduction takes place from L 1 to 

L 2 more over this reduction takes polynomial time. 
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So, the notation that we have introduced is this. Now, using this particular concept, let 

me give the definition of NP complete class, what we are looking for this is for NP 

complete language, a language L say over some sigma, over some is said to be NP 

complete, if and only if. The first condition, we put is that language should be in NP, 

number 2 for all L dash.  



If you take any language in NP, what do I require this L dash should be reducible to L in 

polynomial time. So, that is for every L dash in NP there is a polynomial time 

transformation. Let me write short cut, polynomial time transformation from L dash to L. 

So in other words, every language in NP is reducible to L in polynomial time.  

(Refer Slide Time: 37:03) 

 

So, the class NP complete we define like this, clearly this is a subset of NP. We are now, 

we can you know suppose if this is NP class, we have already observed that this is you 

know P is contained in NP, but we do not know whether there is whether there are some 

elements here or not in this gap. And now, this statement which is given in number 2 is 

also people call it as NP hardness, what is the meaning of this that means the problem L 

is as hard as any NP problem that means, if you reduce a problem in NP to this. You 

know the statement, that if L is solvable then L dash is solvable, so that means this 

problem L is as hard as any NP problem, therefore this is called it as this condition is 

also called it as NP hard. 

So, this if I write like this NP hard, this intersection because a problem which is in NP 

and NP hard, this is what is NP c, these are what NP complete problems NP c. Now, I 

have drawn purposefully, you know by just with marking like this. Now, I will present to 

you one important result as follows: anyway let me just illustrate that once again 

reemphasis a language L in sigma star is said to be NP complete, if it is in N, if it is NP 



as well as NP hard, that is how this diagram is clearly showing this intersection of NP 

hard is essentially NP complete problems. 
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Now, the following result will be helpful to understand the big picture about the problem 

with respect to NP complete class. The theorem is this, the theorem is let L be an NP 

complete language, then P equal to NP, if and only if L is NP you see the statement. If a 

language is NP complete and if that language is also in P, then P equal to NP and P equal 

to NP is possible, if L is in P, that means to get that million dollar prize, what you have 

to do, if you can identify an NP complete language which is in P that is all.  

So, understanding this particular concept you know through NP complete is giving some 

characteristic property, about the problem P equal to NP. First let us prove this, because 

one side is very obvious very clear that is this portion. Suppose, L is in P this implies 

there is a deterministic turing machine. So, this side is obvious, the forward direction is 

obvious, let me consider that first. Suppose, P equal to NP then it is very clear, that since 

L is NP complete from the definition, you see this L is NP complete, L is in NP from the 

definition of NP complete L is in NP.  

So that, and since P we have assumed P equal to this P equal to NP, we can say that L is 

also NP. So, this side is very obvious, from the definition of NP complete. Now, let us 

consider this part, suppose L is in P this implies there is a deterministic turing machine, 

say M L this implies there exist a deterministic turing machine, let me write simply 



turing machine M L, that decides L in polynomial time. So, let me say that is P L the 

polynomial corresponding polynomial let me say it is P L.  
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Now, what do you have what we have to show P equal to NP, we know clearly that P is 

contained in NP. Now, if you choose an arbitrary language in NP, we will observe that 

that is also in P, so that means let me start with an arbitrary language. Let L dash in NP 

be arbitrary, let us take an arbitrary language from this the arbitrary language, so let us 

consider an arbitrary language since L.  

Now, let us use the hypothesis that L is NP complete, since L is NP complete what do we 

have, this L dash should be reducible to L in polynomial time, that means we have this L 

dash is less than equal to P L. So, that is there is a polynomial time transformation f from 

this is a polynomial time transformation. Let me write like this, say there is a polynomial 

time transformation under consideration say sigma 1 star to sigma 2 star, because L is an 

NP complete language I said. So, L is subset of sigma 2 star if you assume. 

So, there is polynomial time this is a polynomial time transformation, which reduces L 

dash to L, so that means this is a turing computable function, that computes that is 

computed by some turing machine M f in polynomial time, say let me call it as say P f. 

So, I have if I am clear here, you start with an arbitrary language L dash in NP take an 

arbitrary language. Now, since L is NP complete we have L dash less than or equal to P 



L, that means L dash is reducible to L in polynomial time, that means there is a 

polynomial time transformation f from the underlying alphabets.  

So here, I am assuming that L dash is subset of sigma 1 star L is subset of sigma 2 star. 

So, f is a computable function, which is computed by turing machine, so this is turing 

machine, so this is computed by turing machine M f in time P f. Now, what do I do I will 

give you a turing machine, which computes L dash in polynomial time, which decides L 

dash in polynomial time. So that, this is a arbitrary language L dash goes in P, and thus 

you will have that P equal to NP.  

So, what is that turing machine, you can also quickly see this if you consider M f M L, 

what is M L? M L is a turing machine that decides L if I compose this two turing 

machines M f and M L. So, in this form now, you observe that if you give any input to M 

f, what happens from sigma 1 star, whatever that you give by that time. So, let me draw a 

small picture here, what I am the composition you know this kind of construction. So, 

the input x, say for example, if you give to this what are the output, because this M f 

produces f x this f x will be given as input to M L, and M L is a decider it says yes or no 

this is the idea.  

Now, you observe that if you give x 2 M f, it gives f x and f x is fed to M L, if it says 

yes, what is the meaning of that f x is in the language L; if it says no, f x is not in the 

language L. So, now using this condition, since f is a polynomial time transformation 

from sigma 1 to sigma 2 star, what is the condition associated to this here, whatever that 

x is in L dash; if and only if, f of x is in L this is the condition associated to this 

Polynomial, it is a polynomial time transformation.  

Now, it effect is in L then corresponding to that it says yes, if f x is not in L, then it says 

no, that means if and only if, this particular turing machine this M f M L says yes y on x. 

I am just marking here once again, if you give an arbitrary input x from sigma 1 star 

from this alphabet, M f will compute and gives f x as output. So, with the condition that 

x belongs to L dash; if and only if f x is in L with this condition. And now, f x when you 

give input to M L, it says yes only when f x is in L otherwise it says no. So, what is the 

condition we have f x is in L; if and only if, this M f M L this particular turing machine 

says yes on x. 
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So, that means clearly this M f M L this turing machine M f M L decides the language L 

dash. So, what did you I get, we have got a decider to decide the language L dash. Now, 

how much time it takes, if you look at that since M f M L how much time it is taking if 

you look at, this particular one by that time it finishes, as we have assumed P f is that 

particular function polynomial. So, it takes this much time to get the output here, f x and 

what will be the length of f x. If you look at, the length of f x will be maximum this 

much, this is the maximum length of f x. 

Now, on this particular output f x will be applying this M L, where P L is the polynomial 

that much time it will take, so sum of these two. So clearly, sum of these this is a 

polynomial with the parameter mod x, and this is the polynomial composition of a 

polynomial. So, clearly this is a polynomial, so that means for L dash we have got a 

decider, which decides in polynomial time and thus L dash is in P. So since, L dash is 

arbitrary we have P is equal to NP. So, through this result you understand the importance 

of NP complete languages.  

So, if you know some just look this statement, if you know some NP complete language. 

If you can obtain a polynomial time decider for this, then P equal to NP. The problem 

will be settled, but of course getting such a language, NP complete language. And in fact 

observing a language is NP complete is very difficult, because if you look at the 



definition, you have to reduce every NP language to that in polynomial time, so that is 

one hard condition to observe.  

And you know, even if you get an NP complete language in hand, observing that it has a 

polynomial time is even tougher task, so that means to show that P equal to NP, we have 

a characterization here. So, through this I am just presenting, you know the concept of 

NP complete through the concept of NP complete, and we have observed the importance 

of NP complete languages as well. We will continue these discussions in the future 

lectures, you know by identifying certain NP complete languages, etcetera. 


