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Undecidability Part 2 

 

We have already proved that the halting problem is undecidable. Now we will discuss 

some more problems which are undecidable, and we give some important results which 

can be used to prove that some problems related to languages accepted by Turing 

machines are undecidable. 
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Thus consider the following problem given a Turing machine M whether or not the 

language accepted by M is empty, whether or not the language accepted by M is finite or 

recursive or this context free what is regular and so on. 
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The corresponding language for this problem can be written as say E TM is a set of all 

Turing machines solves that L M equal to phi. So, F TM a set of all Turing machines and 

coring of all the Turing machines M, such that L M is finite or say L M is recursive and 

so on. 

Now, we want to know whether these problems are decidable or undecidable, what you 

can do is that, for each of the cases, we can reduce halting problem to this problem, and 

we can show that all these problems are undecidable. But their interesting result that 

shows that or which can be used to show that all the problems related to languages 

accepted by a given Turing machine is are on undecidable, and that is stated by the 

theorem called rice’s theorem. 
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So, once you have the rice’s theorem, we can show that, so many problems related to 

language accepted by the by a Turing machines; that means, recursion any more 

languages are undecidable. State the rice theorem, we consider a property, so a property 

that describes a proper non empty subset of recursively enumerable languages is 

undecidable; that means, suppose that p is a property that describes a proper subset of 

recursively enumerable language and there is a non empty subset of course.  

For example, say if S is a non empty subset the set of all recursion enumerable language 

L; that means, some languages accepted by Turing machine such that this L satisfies P, 

so L is recursively enumerable and that is that satisfies the property P delta f that we 

have considered. So; that means, S in a proper subset of all recursion enumerable 

languages, without loss of generative or assume that phi is not in S, suppose phi is in S; 

that means, is empty set say if any of the values phi, that we just consider the 

compliment of that problem. 
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Suppose, phi is in S, then thus consider the compliment of this set S and we prove the 

result; that means, we consider for property which a negation of P, because cosine 

compliment because a corresponding set corresponding to a property which is the 

negation of P; that means, the set of all recursively enumerable languages which do not 

satisfied a property P. So, once you can show that a compliment of S, this is S c is 

undecidable, then we also know that S is also undecidable; that means, if you solve a 

problem the decidable problem for a compliment. We know the answer for these set also. 

Therefore, without loss of generality what we assume is that phi is not in S, because if 

phi S which are considered a compliment of the set and solve the problem.  
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Now, the corresponding language for S can be written as we note it as L S. The set of all 

Turing machines M and coding Turing machines M, such that L M, the language 

dimension satisfies the property P. So, that is how we describe the corresponding 

language for a problem? Now, our claim is that this L S is undecidable, you know we 

want to prove that L S is undecidable, and we prove this claim by reducing the halting 

problem; that means, the language M TM to L S. We just reduce halting problem to this 

problem; that means, a language M TM will be reduce to L S.  

So, therefore, to do that what any to be is that given a Turing machine M and an input 

string x, we construct a Turing machine M dash, such that x belongs to L(M), if and only 

if L(M dash) satisfies P, so that is the reduction. Given M an input string x, we need to 

construct Turing machine M dash satisfying this x belongs to L M, if and only if L M 

dash satisfies the property. In such a case, we are true. 
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Now, we have say that S is a proper non empty subset of all recursively enumerable 

languages; that means, proper non subset of the class of recursive enumerable languages. 

So, therefore, we just consider any language L naught that belong to S, since it is not a 

non empty subset, such a language L 0 must exist in S, since it does not contain a phi. 

So, such a language L 0 must exist, also L 0 is not phi, because we say that if S contains 

phi, then we consider the compliment of the problem. So, L 0 is not phi. Just consider, 

that M L0 be a Turing machine that excepts L 0, so there is a Turing machine accepting 

L 0, and that is to that is the Turing machine M L0. From this we construct the Turing 

machine M dash as follows Turing machine M dash for (Refer Time: 04:50) such that at 

that satisfies P. 
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So, given any string as input w to M dash, M dash is in initially does not do anything, it 

first simulates M simulates x on in simulates in the Turing M on input string x. Now, if 

M says S on the input string x, then we start the simulation on M L0 on the given input 

string w, we start simulation and if M L0 accepts then y acts S, if it accepts then M dash 

also accepts it says yes, if it says no, if it says no or repeat does not say yes or it was 

answer yes. 
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Clearly M dash a Turing machine and we see that if x belongs to L M, x belongs to L M 

then M says S, and then only we start M L0 on input string w. So, therefore, if x belongs 

to L M, then M dash accepts all those strings accepted by M L0, because if M L0 accepts 

a says yes, then M dash says yes. So, if x belongs to L M, then M dash accepts all those 

strings accepted by M L0. So, this is quite clear, that is if x belongs to L M, then L M 

dash is nothing but L 0 and which is which belongs to S. Similarly, if x does not belong 

to L M, then in case, when x does not belong to M, then does not say yes, since it does 

not say yes, M N0 is not started at all. So, therefore, M dash will not accept anything. 
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Therefore, if x does not belong to L(M), then L M dash must be empty, because M dash 

does not accept, and which is not in S because you know that in S we do not have phi. 

Thus, x belongs to L M, if and only if, L M dash belongs to S, therefore this is a 

reduction. So, M TM here is reduced to L S, so that L S is undecidable. 

Now, therefore setting different properties P, we now say that say if the property P may 

be avoided this language given recursion language is recursive or failure the language 

accepted by the Turing machine is regular, whether languages accepted by the Turing 

machine is context free, whether language accepted by the Turing machine is empty or 

finite and so on, we just said different properties.  

And for the language accepted by Turing machine thus consider any property that 

defines a set which is non empty and a proper subset according rice’s theorem, we can 



say that all these are undecidable. So therefore, we can use this rice’s theorem, to prove 

that so any property is non empty of course, and proper subset of all recursive element 

languages, that describes the non empty and proper set of recursion M languages are is 

undecidable. 
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Now, we just consider a problem and take it an exercise, suppose M is a Turing machine 

and w be an input string, given w as input to M, will M eventually halt with empty tape, 

and its head on the left most cell sure is a question there is a problem. So, is this problem 

decidable or undecidable; that means, the recursion language is that L of H0 is set of all 

strings M w, such that M is a Turing machine like this with the elements Q sigma Q 

naught and delta, and w is an input string. 

And, if you start in the initial state, initial configuration initial state is q 0, input is w, and 

head is placed it a cell just after write blanks at that separate input string w, so there is a 

initial configuration of the Turing machine M. So, in 0 or more steps, whether it will halt 

a string its head and the input tape is empty and placing in the heads on the left most cell, 

that is the language. So, set of all those strings M w, such that M is a Turing machine, 

and Turing machine eventually halt starting with the initial configuration taking w as 

input, eventually halt with head on the left most cell.  

So, what can done is that, we can reduce the halting problem to this problem called as 

problem say H naught. So, accordingly the language is L of H naught, we can reduce 



halting problem to this variant of halting problem, the halting is that you just remember 

that whenever the Turing machine halt in case of halting problem. So, this machine 

should erase its tape eventually. So, all the containable tape must be erased. (Refer Time: 

14:11) Now we use this result, so show that some other process to me undecidable. 
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So, if introduce a problem which is called word problem for Thue system and eventually 

will show that this word problem is also undecidable, so first we define what a Thue 

system is, and then we define the word problem for Thue systems. The Thue system T is 

an unordered pair of strings over an alphabet sigma; that means, this T is a set of ordered 

pairs so x 1 y 1, x 2 y 2 and so on up to say x n y n. So, all this strings x i y i are strings 

over sigma. So, this belongs to sigma star. 
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Now, we define a binary relation say it a tilde, so this binary relation tilde is defined on 

sigma star, we say that two strings even b or related by this relation binary relation tilde 

if and only if, there exist some pair x i y i in that two system such that u can be written as 

z x i z dash and v can be written as z y i z dash for some z z dash and sigma star, or u can 

be written as z y i z dash and v can be written as z x i z dash for some z z dash. So, this is 

simple binary relation that may be defined on sigma star. 

Now, we use this notation to denote the reflex reflexive transition closure of tilde. So, 

that this is an equivalence relation on sigma star, that is two strings even v are related by 

this relation; that means, u is equivalent to v, u is equivalent to b, if and only if one can 

be transformed into the other by successive replacement of one strings in a pair in the 

Thue system T by the other, it does not relate the order in any order you can apply it. So, 

you can study one can be transfer to the other string by some successive replacement of 

one string in a pair in a Thue system by the other. So, in such a case we say that u is 

equivalent to v. 
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Now, we define the problem the what problem for Thue systems, the problem is that give 

a Thue system T, and two strings u and v for any Thue is an T, and any two strings u and 

v whether or not u and v are equivalent. So, that is the problem and we can show that this 

problem is called word problem for Thue systems is undecidable; that means, we cannot 

decide this word problem for Thue system. 

We can prove this result by reducing that variant of halting problem that we have just 

introduced that H0 to the word problem for the Thue system; that means, we will 

consider this problem H0, which is a modified variant of the original halting problem we 

can use this. That means, we can reduce this problem H0 to the word problem, to show 

that word problem is also undecidable. We use H0, reducing H0 to word problem we can 

showed a Thue system word problem for Thue system is undecidable. 
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That means given an instance M w of H0, we construct an instance or the word problem 

which is T M corresponding Turing machine M, we construct T M u v, such that M w 

belongs to L of H 0, if and only if, u and v are equivalent, so that is what you want to do. 

From a given instance of H 0, we construct and instance of the word problem; that 

means, a Thue system and two strings u and v, such that for any M w, if M w belongs to 

L H0, M w we can say L M 0, if and only if, u and v are related u and v are equivalent.  

So, given Turing machine we construct a Thue system with the help of a grammar that is 

equivalent to the Turing machine. Now, we know that already it has been given or 

proved that for every Turing machine, there is an equivalent grammar, and it does not 

shown, how to construct the grammar rules for any given Turing machine? So, that the 

grammar and a Turing machine are equivalent, so will use that construction to construct 

the Turing Thue system from the given Turing machine T M. 
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Now, recall the result in which we have demonstrated already the equivalence between 

Turing machines and grammars; that means, given Turing machine M. So, the Turing 

machine, so there exist a grammar G, such that for any input w, we have if we start in the 

initial configuration, if the Turing machine in 0 or more steps, eventually goes to these 

configuration; that means, the halt state. So if and only if, so this string corresponding to 

this initial configuration derives this string corresponding to the halting configuration. 

So, you need to recall the result that you have already proved corresponding to in the 

context of proving that Turing machine and grammars are equivalent. Now, once we 

have that given a Turing machine M, we simply construct a Thue means Thue system by 

collecting all those pairs, so, x y such that x y is a rule in the grammar G. 

So for Turing machine M, we can construct a grammar G, in the grammar G we have 

rules like x goes to y, so collect all those rules, from those rules you collect all the pairs x 

y. And those are the pairs that we have in the corresponding Thue machine T M, so 

corresponding Turing machine M, we have the corresponding Thue system T M. So, that 

is how we construct the Thue system for a given Turing machine. 
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Now, for any input w of M, we consider two strings, so u v is considered to be left 

square bracket has w Q 0 has right square bracket and v is left square bracket H for H is 

the halting state has right square bracket. Now, you want to show that the string M w 

belong to L of H 0, if and only if u and v are equivalent in the corresponding Thue 

system T M, that we construct from M. So, that the problem H 0 is reduce to the word 

problem, showing that the word problem for Thue system is also undecidable.  

Now, we just note that M w belongs to H 0, these should have been L of H 0, if and only 

if, the Turing machine starts in the initial state taking w as input, it process the input 

string eventually it enters in halt state; that means, from this configuration Q 0 has w, has 

in 0 or more steps in M, it arrives the configuration when H is the state, and head is 

pointing to the blank cell.  

So, L w belongs to L of H 0, if and only if these are situation, if this is the case, 

according to our equivalence of Turing machine M grammar. We know that these string, 

corresponding to this initial configuration, we will derive in 0 and more steps, these 

string corresponding to the halting configuration; that means, since we have say that this 

string is not denoted by I said u. Already, we have said that this a string u and this a 

string v, so therefore, this says that u the string u derives 0 are most option G the string v. 

So, M w belongs to L of H 0, if and only if, u derives the string v for u is this string, and 

v is this string.  
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Thus, in a sufficient proved at u derives v in G, if and only if, u and v are equivalent in 

the Thue system. So, we have just simplify the problem or restate it. Now, in this case 

which as observed at only if for is very straight forward; that means, u derives v in G in 0 

or more steps. 

Suppose that is a case, in such a case what will have is that there is a sequence of 

derivations sequence steps in revision, where u 0 derives u 1in one step, u 1 derives u 2 

in one step and shown up to say u k minus 1 derives u k n 1 step, while u 0 is u and u k is 

v, therefore u derives v in 0 or more steps in grammar G, so in such cases, so therefore, 

since grammar rules and the pairs in Thue system are parallel. So, what you can say is 

that u 0 is related to u 1 by binary relation tilde the u 1 is related to u 2 by the same 

binary relation and so on. So, therefore, according to our definition of their equivalent 

relation, we know that u is equivalent to v. So, this part only part is quite straight 

forward.  
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The only difficult part is that the if part; that means, assume that u is equivalent to v. So 

in such a case, if u is equivalent to v, then you need to show that u derives b in 0 or more 

steps that is what you understood. Suppose u is equivalent to b, then there must exist a 

finite sequence v 0,v 1 or to say v n, such that v 0 is u, v 0 and v 1 are related, v 1 v 2are 

related by a binary relation tilde and so on, v n minus 1 on v n is related by binary 

relation tilde the v n is v. So, they must exists such a sequence, according to the 

definition of this since u and v are equivalent.  

Now let us assume, this sequence is a shortest sequence because there may be many such 

sequences assume that out of all those this is this sequence is a shortest; that means, there 

is no such and this such that there is a sequence v 0,v 1 up to say v n dash, where v 0 is 

where to be v 1, v 1 will to be b 2 and so on up to v and thus so on relate to v, and thus 

where v not is u, and v and thus is say v, and this is less than n. So, this cannot happen 

because you say that this is a shortest sequence. So, n is always less than any sets and 

thus if subsequence exist, so this is our assumption.  

So, if that is the case we claim that v i derives v i plus 1 for all i in this sequence; that 

means, what you say that all rules in the derivation are applied in the forward direction; 

that means, v i derives v i plus 1 is not a case that v i plus 1 derives a v i. So, first you 

show that all the rules that the derivation are always applied at every state it is applying 

the forward direction.  



Now, the first into note is that v n has H as the state component because we have defined 

v n to be since v n equal to v, and we have say that v is so we have say that v is a string 

left square bracket H has right square bracket. So, this H is a halting state is there in v we 

nothing but the halting state H is there in v, which is v n which is nothing but v. So, 

therefore, v n means one must derive v n that is at this step when v n is one derives v n in 

grammar G. The rule must be applied in the forward direction, because from halting state 

we do not go to any other state from other state only we can go to the halting state. So, 

therefore the last step in the derivation, the rule must be applied in the forward direction, 

so that is our claim. Now, suppose that so, since we claim that v i derives v i plus 1 for 

all i that is about we want to prove that, if that is not a true there must be some step 

where this is halted. 
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Suppose that i 0 is the largest number where i 0 is basically may be greater than equal to 

0 or less than n minus 1 because for n minus 1 we have already assume that there will is 

applied now for duration. So, suppose that i 0 is a largest number. So, for this is 

highlighted; that means, v i 0 does not derive v i 0 plus 1 in G, then we must have that v i 

0 plus 1 derives v i 0 in G; that means, rule is applying the by quadration. 

But already, we know that v i 0 plus 1 derives v i 0 plus 2 in one step, because i 0 is the 

point i 0 is the number largest number, why they we use file result, beyond that w is not 



halted. So, therefore, v i 0 plus 1 must derive v i 0 plus 2 in G that must be the case and 

we have say that the rule is at this point. So, therefore, v i 0 plus 1 derives p i 0. 

Now, while consider Turing machine, if we assume that Turing machine is deterministic 

then what we have is that the grammar rule must be unique. So therefore, v since v i j 

plus 1 derives v i 0 also v i j derives v i 0 also v i j process from derives v i 0 cross two 

non step. So, v i 0 and v i 0 plus 2 must be the same string, because the Turing machine 

M can be assume to revenuestic and hence the rules will be unique. 
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So, therefore, now we have the sequence say u is v 0, v 0 let to be u 1 and so on. So, v i 0 

is related to now in set of say v i 0 plus 1 since v i 0 plus 1 derives v i 0 plus 2, and v i 0 

plus 1 derives v i 0 and these two are identical. So, therefore, we have the sequence now, 

where v i 0 and v i 0 plus 3 are related by tilde and so on up to v n by v n is p. 

Now, in this case since from v i 0, we get v i 0 plus 3, these two related or original 

assumption that the sequence v 0, v 1 up to v n, v 0,v 1 v 2 up to v n, this is a shorter 

sequence that whatever this is the assumption that must be first because in the in that 

sequence, so what we have v 0,v 1 say v i 0, then v i 0 plus 1, then v i 0 plus 2, then on v 

i 0 plus 2. So, this must be longer sequence corresponding to the sequence that we have 

just introduced. So, that must be any longer sequence corresponding this results all are 

sequence. 



So, this contradicts our original assumptions that successive shorter sequence exist. So, 

therefore, v i must derive v i plus 1 for all i. So, therefore, even v must be related u, u 

must derive v in 0 or more steps in G, applying the forward rule at every state. So, that is 

what we want to prove; that means, u derives v in G in 0 more steps, if and only if, u and 

v are equivalent, so we have shown the both size if for n and if for n. So, therefore by 

reducing this variant, or the halting problem to this what problem for Thue system. We 

have shown that what problem for the what problem for Thue system is also undecidable. 

Similarly, we can show many other problems to me on undecidable by using this kind of 

reduction. 
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Will now introduce another problem, where is called a similar to what problem in Thue 

system is called post correspondence problem, and will show that post correspondence 

problem is also undecidable. Let us first this define an instance of PCP there is post 

correspondence problem, an instance of PCP is a finite set of ordered pairs. So, in this 

case these pairs are all ordered finite set of ordered pairs of non empty strings say it is a 

post in sense of post correspondence problem to P is x 1 y 1, x 2 y 2, x 3 y 3 and so on x 

n y n. So, it is a finite set of reversal strings over sigma and this pairs are ordered. 

Now a solution to P are is a sequence, so listen to these instant of P instead a PCP is a 

sequence i 1 i 2 up to i k, such that if you take the corresponding strings from the ordered 

pairs. The first element and the second element and concatenate they will be identical; 



that means, x i 1x i 2 x i k, concatenate x i 1 x i 2 upto say x i k, and concatenate x y i 1 y 

i 2 up to y i k, there said x i 1 x i 2 upto x i k is equal to y i 1 y i 2 y i k. So, if such a 

sequence x is satisfying these condition we say that this is a solution to the instance the 

PCP. 
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 Now, the problem is given an instance of PCP whether or not it has solution that is our 

problem. So, can we decide it the result is that post correspondence problem is 

undecidable, so we can show that the post correspondence problem is also undecidable. 

To show this first for it do we consider a modified for some the post correspondence 

problem, because given an instance of PCP related to find out the sequence i 1 i 2 up to 

say i k satisfied that condition; that means, x i 1 x i 2 up to x i k must be equal to y i 1y i 

2 up to y i k. 

The problem is how to start, or just index i 1 thus difficult to find out may be if we 

consider suppose that we need to start at say index 1 and then you find all those 

remaining the sequence; that means, if the case that x 1 x i 1 x i 2 up to say x i k equal to 

y 1 start with the index 1 y i 1 y i 2 up to say y i k, so this is solution to the NPCP. So, 

this modified version is said to be modified PCP, simply MPCP we can show that MPCP 

is decidable if PCP is decidable. So, you can reduce this problem by reduction you can 

show this result. 



Now, this halting problem again can be reduce to this MPCP to show that MPCP is 

undecidable. So, you leave it an exercise you can give a time to prove the result. So, once 

again we can reduce the halting problem to PCP, in fact to MPCP to show that PCP is 

undecidable. Now, this result that PCP is undecidable can be used to show that some 

problems, so let to CFG are also undecidable.  
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For example, just consider a problem of ambiguity of CFG that means given a context 

free grammar G whether or not G is ambiguous can we still given ambiguous CFG can 

we decide whether G is ambiguous. The result is that is undecidable to determine a given 

CFG is given, CFG is ambiguous, so we cannot decide over any given ambiguous CFG 

is ambiguous. Now can use this PCP, to show that and make it to problem of CFG is 

undecidable; that means, we reduce PCP to this problem. 
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Now, the reduction for any to do is that given an instance P of PCP we construct a CFG 

G P from this instance P of PCP we construct an instance CFG G P such that this PCP 

has a solution if and only if the corresponding G P is ambiguous. So, these a reduction if 

can show this we know that and make it a problem of CFG is also undecidable 

Now, let see the reduction, how can you reduce it? Consider that P is an instance of the 

PCP, where all the strings x i y i are strings over sigma, some other forward sigma. We 

just consider another alphabet say sigma this where it contains all the in symbols from 

sigma, and sigma union and some additional symbols a 1 a 2 up to a n, where the 

numbers of such symbols is equivalent to the number of such pairs in this PCP is that is. 

So, x one y one up to we have a x n y n, so we have n numbers of additional symbols in 

sigma dash will contain all the symbols of sigma as well as. So, additional symbols; that 

means, a i does not belong to sigma for all i and there n numbers of such symbols where 

n is on number of pairs in the PCP. 
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Now, we construct a grammar say G 1, G 1 contains a single non terminal S 1 is alpha by 

the sigma this, star symbol is; obviously, it must be S 1, and a set of productions P 1. So, 

P 1 contains to the set productions, S 1 goes to a i S 1 x i for all i, i equal to 1 through n 

and S 1 goes to a i x i, so there only two rules, that we have for all a i n x i of for all for 

all i. 

Obviously, we will see that the language of the grammar G 1, I will be of the form a i 1, 

a i 2 a i m, then x i m x i 2 x i 1 for some M greater than or equal to 1, because since we 

have to star symbol, it has some a from the alphabet, and that corresponding x i will be 

there in the other side and in between we have this S 1. This S 1 again we have to replace 

S 1 by the same will may be then we have another a i for some i and a corresponding x 1 

eventually we have terminated by this two this S 1 has to terminated by this two, we 

reduce a a i x i. So, therefore, every string must be of this one. 

So, this a i 1 the last symbol the last string has to be x i 1, a i 2 corresponding to these we 

have x i 2 and so on, up to a i n when the no terminate, so it means x i. So, that is how we 

get a strings of the language is an advisable, similarly G 2, another gamma G 2 can be 

constructed. So, which S 2 is a star symbol, and sigma raised a alphabet S 2 has to be the 

star symbol here, and P 2 is a safe same similar kind of productions P 2 the set of all 

production at this S 2 goes to a i S 2 y i and S 2 goes to a i y i for all i. So, therefore, the 



language generated by this contained the strings of this kind a i 1 a i 2 up to a i n y i, n y i 

m minus 1 up to y n, y i 1 for m greater than equal to1. 
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Now from this G 1 and G 2, we construct g under grammar G which is call G P 

corresponding to the instance PCP, the G P as follows it contains besides S 1 and S 2, 

one additional star symbol S n symbol S which a start symbol of the grammar our same 

alphabet sigma raise. 

And P contains all the rules of G 1, all the rules of G 2 that is P 1 union P 2, and then 

from the start symbol of S may had I go to start symbol G1 or the start symbol G 2; that 

means, clearly the language of G P is nothing but L(G 1) union L(G 2) because from star 

symbol of S you go to either S 1 or to S 2 and then you used the corresponds rules from 

G 1 or from G 2, so that L(G P) is union of L(G 1) in a union L(G 1) and union L(G 2). 

Now observe that P has a solution if and only if, CFG G P is ambiguous. So, this will 

prove our claim. 
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Now, assume that i 1i 2 up to i k be a solution to P, if that is a case x i 1 x i 2 x i k must 

be equal to x i 1, y y i 1, y i 2 up to y i k. Now, observe that the string a i k a i k minus 1 

up to a i 1, then x i 1 x i 2 up to x i k has two left most derivation in G P as shown below. 

We start it S in one stable go to S 1 in one step, you apply S 1 goes to a i 1 s 1 s i k, the 

next step you apply the rule S 2 a i k minus 1 S 1 x i k minus 1 and so on. Eventually, we 

apply that terminated by as goes to a i 1 x i 1 and hence this is nothing but w. 

(Refer Slide Time: 49:54) 

 



Now, similarly we can show that in one step from S we go to S 2, then apply the rules 

first step a i k S 2 y i k, next step a i k S 2 y i k minus 1 when solute terminate with it a i 

1 y i 1, but these one these string and these string both the identical, because already we 

have say that i 1 i 2 at i k the solution PCP hence this part x 1 i 1 x 2 i 1 x i 2 x i k and y i 

1 y i 2y i k. This two are assign and first part is over sign a i k up to a i 1 a i k up to a i 

one therefore, both had w, but distinctly this two are this one and this one are two 

different left most revision for the same string w and hence the grammar is ambiguous. 

Similarly, if you assume that conversely if you assume that G P is ambiguous then you 

must adjust a string u that belongs to G P, which has two left most derivations must have 

because you have say that G P if empty case. 
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Now, since every string in L(G 1) has the unique left most derivation in G 1, also it is 

same thing for G 2 every string in L(G 2) has unique left most derivation in G 2. And, 

since L(G P) is union of L(G 1) and L(G 2), we have for u belong to L(G 1) and u 

belongs to must belong to L(G 2). Therefore, you must be some a j1, a j 2 up to a j r for 

some r then x j i x j i mean show up to x j 1, similarly u must be a l 1, a l 2 up to a l s, 

then y l s y l s minus 1 up to y l 1. And therefore, r n s must be same, and j 1 must be 

equal to l 1. So, that this two are identical, similarly j 2 and l 2 must be identical, and 

next two were identical up to a j r must be equal to a l s; that means, j r equal to l s. 
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Hence x j r x j r minus 1 up to x j i j, one must be equal to y j r y j i minus 1 to y j 1, so 

that j r j r minus 1 up to j 1 is a solution to PCP. So, this shows that the PCP instant that 

the instance of the instance P a PCP, P has solution if and only if the grammar G 

grammar G P that a construct from the instead a PCP, P is ambiguous. So, therefore, 

ambiguous says it determining ambiguous of CFG of any other CFG is undecidable, 

since we have given a reduction from the PCP to this make it a problem of CFG. 


