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So far we have discussed about computability with respect to turing machines. Now, like 

in case of finite automata or push down automata; we have an equivalent formulism with 

respect to grammars also. So, in case of push down automata we have called context free 

grammars; in case of finite automata that is a regular grammars or right linear grammars. 

So, we have discussed all those things and we have ascertained the equivalence between 

those classes. So, similarly in case of turing machines we have a class of grammars an 

equivalent set of grammars. So, here this is the most as you understand that turing 

machine is defined for the at most computability; that means, as a device which is useful 

to model the computation this is the model of computation.  

So, grammar whatever that we are going to talk about that should also have you know 

facility to capture or to understand anything, which is which we wanted to compute. So, 

in this lecture I will talk about that more general type of grammars. So, we call this as 

because we have certain restrictions. So, far on the grammar in case of context free 

grammar or regular grammar this is the one, which is more in a relaxed fashion; that 

means, the more general one we call it as structured grammar or unrestricted grammar. 
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So, the grammars that I am going to talk about here are structured or unrestricted or 

unrestricted grammars. So, now, the question is what is that what is the meaning of 

unrestricting like if you look at if you remember in case of context free grammar a 

production rule A goes to alpha, where this A is a non-terminal symbol. This alpha is a 

mixture of terminals and non-terminals because if you write terminals by sigma; I wrote 

that as say V. So, alpha is an element of V star; as we you just recollect that this a non-

terminal because some for every production rule left side some non-terminal has to their 

otherwise when you are applying a production rule because for a terminal. 

We have already agreed upon that when you want to apply there has to be a non-terminal 

on the left hand side of each production rule. Now, we relax this condition that left side 

only one non-terminal symbol that was the restriction that we are maintaining so, we 

relax that condition. Now, what is the more general a situation the left side also you can 

have a mixture of terminals and non-terminals; right side also mixture of terminals and 

non-terminals. But you remember that if you want to apply a production rule at least one 

non-terminal has to be supposing if you arrive to a terminal string in a derivation. 

Then, we have as we have seen we do not expect anything for other. Because we arrive 

already a terminal string; that means, the derivation ends there. So, there has to be at 

least one non-terminal to apply any production rule. So, that condition we cannot relax. 

So, the more general scenario is left side a mixture of terminals and non-terminals, but at 



least one non-terminal has to be there and the right side a mixture of terminal and non-

terminals as earlier.  
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So, this unrestricted grammar the production rule, which is of the form say alpha goes to 

beta, where alpha is a mixture of terminals and non-terminals, but at least one non-

terminal has to be there. That means, it is an element of this set and as earlier beta is an 

element of V star, where this V is non-terminals union the terminal symbols. So, this is 

what we introduce. So, formally a structured grammar structured or unrestricted 

grammar; we may call it is as simply grammar. Grammar is a quadruple this is a 

quadruple as earlier N sigma P S, where N finite set because there are all as earlier finite 

set called non-terminal symbols and sigma is a finite set, this is called terminal symbols 

and S is the start symbol; S is a non-terminal the start symbol. 

Now, this P the production rules it is a finite subset of V star N V star; that means, at 

least one non-terminal as to be there on the left side cross V star, where V has given 

here. So, this is how formally we give it as a quadruple N sigma P S, you like in case of 

context free grammars or regular grammars we give to the same notation. But, here the 

production rules it is a finite subset of V star N V star; that means, left hand side of each 

production rule should have at least one non-terminal symbol on the right hand side you 

will have a mixture of terminals and non-terminals. So, that is how formally an 

unrestricted grammar can be defined. 
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Now, let me look at an example. I will not consider those examples, which we have 

already established some regular grammars or context free grammar; because you can 

quickly see as a remark that every regular grammar is you know a context free grammar 

and every context free grammar is a structured grammar. Because left side you are 

allowed to use a mixture of terminals and non-terminals with at least one non-terminal; if 

you fix only one non-terminal on the left hand side; it is just boiling down to a context 

free grammar. Therefore, I am not going to give those examples, which we have already 

established some context free grammars.  

So, let us look at the example because we have this particular example that we have 

observed that this language say x in a b c star such that number of a’s in x is same as 

number of b’s in x is same as number c’s in x. Of course, just I put a restriction that is at 

least non-empty strings. So, we have observed that this is not context free language. 

Now, can we have a grammar for this because we have a more relax and you know you 

have already constructed turing machine also for this. So, we can obviously, as I had 

mentioned that these grammars are I am going to introduce here they are equivalent to 

equivalent computational capacity with turing machines.  

So, we will naturally expect a grammar for this. So, what kind of thing here? Context 

free grammar is not possible. So, the left side mixture of terminals and non-terminals sort 

of thing is required here. So, or more than one non-terminal symbol is required here. So, 



let as look at a grammar for this. You can quickly ascertain and understand that you have 

to generate a b c’s equal number. So, first what I will do I will take the production rule 

say capital A capital B capital C. So, A B C when I will generate and maybe I will put 

SS recursively the number of a b c’s whatever you want you generate and then. So, for 

example, by using these two rules you can quickly understand that. 

For example, if you want two a’s two b’s two c’s; then you use the production rule SS 

and two S you have generated and S goes to A B C; if you use two times then you can 

get this for corresponding to each capital letter of course. I will give the respective small 

letter say A goes to a; B goes to little b and that C goes to little c for example, I give it 

like this. Now it is not that A B C’s will be the same order because it is it can be mixed 

for example, all A’s come together. So, may be some B’s and A’s are mixed, but C’s 

may come together. So, whatever is the possibility only restriction I have is number of 

a’s and number of b’s and number of c’s should be same.  

So, what I will do? I will along this non-terminal symbols A B C’s they can commute 

each other. So, for example, A B can be B A whenever you have A B if you want B A 

you can make if you have B A; similarly I will have a flexibility of making A B. So, this 

A will commute with B similarly, A can commute with C say A C can be C A; C A can 

be A C. Similarly, B C can commute with C that is B can commute with C that is B C 

can be C B or C B can be B C. Suppose, we if I give all these rules you can quickly 

understand that the logic the way that we have defined you can understand that you know 

first, what are the number of a’s or number of b’s number of c’s they should be equal. \ 

So, you wanted to have in a particular string that many times you apply as recursively 

and get that n number and once you have that required number of capital a’s capital b’s 

capital c’s, which are equal always. Then, whatever the particular type of string you want 

what are the permutation that you want your permute this a a’s b’s c’s capital a’s capital 

b’s capital c’s and then you terminate with the terminal strings and you can quickly 

generate whatever the string that you want in this language let me give an example. 
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For example, if you want a b a b c c you can see that two a’s two b’s two c’s are here. 

So, the derivation as I had mentioned you may first use SS the production rule and this S 

you can put A B C and for this also you can put A B C. Now, do not terminate first you 

arrange using that permuting rules and bring the form whatever that you want. For 

example, a b can give this first A B there is no problem, but you want a b here. So, this C 

we will take. So, C can commute with A as well as B. So, I will that rule by commuting 

this I will get A C then I have B C and you can commute this C with B also. So, I will 

get A B A B C C. Now, you can terminate this a little capital A can go to little a.  

So, that is the situation here and then this capital B. So, you finitely many times I simply 

write this a you can bring this b then a then b then little c then little c. So, you know how 

many steps you required I am putting just star here finitely many steps. So, you have a 

derivation like this. So, quickly we can ascertain that the strings in this language can be 

generated because as I had mentioned that at least one a or one b one c has to be there 

because number of a’s equal to number of b’s equal to c greater than or equal to 1; one a, 

one b, one c has to be there, but whatever is the order and the logic that I have defined. 

You can recursively give this and you can permute to the positions, where ever that you 

want a’s b’s c’s.  

So, these are the permuting rules and thus any string in this language you can observe 

that any string in this language can be generated. Of course, I have not defined formally 



the notion of this one step relation and the reflexive transitive closer of that. So, this can 

be you know as earlier in case of context free grammars. So, I am using this for one step 

relation; one step relation and its reflexive transitive closer is by star of this reflexive 

transitive closer of this one step relation. So, this one step relation again what is that 

given a string if you can apply rule once and to get another string say from alpha to beta; 

if you can get in by applying one production rule once then we use this symbol between 

the strings as earlier. 

So, that is what using this two we have defined we have shown that S derives this 

particular string a b a b c c. So, as earlier for a grammar G language generated by G is set 

of all x in sigma star such that S derives x infinitely many steps, where s is a start symbol 

of the grammar. So, all these definitions this one step relation definition or reflexive 

transitive closer of that and the language generated by grammar as earlier; do, we are not 

going into details of this. But we will just see like what are the what are the languages 

that you can generate using structured grammars or unrestricted grammars this kind of 

grammars. 
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So, if you recall let me look at this example this is set of all x; I can simply write like this 

a power n b power n c power n such that n greater than or equal to 1 for example. Once 

again, we have observed that this particular language is not context free. We have used 

pumping lemma for context free languages and we have realized that this language 



cannot be generated by a this is not a context free language. Now, again the question is 

can we have a structured grammar for this. So, for this particular language we have 

defined we have designed the turing machine also you have you have that. 

Now, one wants that we do not have that flexibility we have certain restrictions may be 

let me define like this. I want to generate because n greater than or equal to one some a b 

c has to be generated and then say let me give recursion and S T say T may be like this 

and here the idea is as follows. This, T counts how many this this commutes with this T 

commutes with this little c and whenever you have this b T c; we will make this t 

essentially generates the respective number of b c’s say b b c c. So, if I give an example 

then you will realize that it generates a power n b power n c power n; you can see that if 

you want just a b c to be generated it is not a big deal you just get in one step using the 

first rule there is no problem; because S goes to a b c is the rule. 

If you want so, this can be generated if you want a square b square c square say 2 a’s 2 

b’s 2 c’s in that order if you want. You see I use this rule a S T and then this S with this 

rule a b c this T is there. So, T takes care of you know generating the respective number 

of b’s and c’s as for that we have used. So, this T can commute with c and come inside. 

So, what I get like this a a b T c. Now, b T c can give another because each T will 

generate a pair of b c’s. So, a a b b c c. So, what string that we wanted in this language is. 

So, this production rules that the way that I have defined look at that because this S can 

produce as many a’s as you want and T is the check corresponding to each S you are 

having a T.  

So, this T will generate the respective number of b’s and c’s in the appropriate position. 

So, for that purpose this T has to be you know moved in between that b’s and c’s. 

Because if T is not moved then what will happen this b’s and c’s when you are 

generating you know you required to generate them in this particular pattern after b’s 

then c’s should come and after once, you have seen then they should not be any b. So, 

that is the reason that we have to allow this rule that T commutes with little c and you 

will be able to generate then the respective in the respective pattern. 
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So, just for the sake of you know familiarity just if you want a typically a power n b 

power n c power n; then what you have to do is you use this rule for n number of times to 

generate a power n; then what will happen here S T when I am using. So, here every time 

I get a power n S then this T power n that is what we get. Now, you see so, n minus 1 

times we use and then this you terminate with a b c a power n minus 1 a b c c T n that is 

how we have to do. So, what do you have this is this is a power n b c T. Now, you bring 

T inside one T. So, a power n b T c T power n minus 1.  

This is how you have then this you can generate now 2 b’s say b b c c; then T power n 

minus 1 and so on. You keep bringing this T’s inside to generate the respective number; 

now you have 2 b’s here a b c T power n minus 1. So, this will be n minus 2. So, two b’s 

two c’s already there; the respective number of T’s you bring inside and after finitely 

many steps you get a power n b power n c power n. So, this is a typical derivation in this 

particular grammar. Now, what I have observed you take any string, which is the form a 

power n b power n c power n because any way a 2 b 2 c 2; I have already observed 

assume n greater than n greater than two, in which case you just use this kind of rules a S 

T for n minus 1 times.  

So, that you get a power n minus 1 S T power n minus 1 after getting this a power n 

minus 1. You have then S you will terminate with a b c then you have n a’s then you 

have one b c here and it n minus 1 T ‘s you have. So, those n minus 1 T’s you bring 



inside to produce the respective number of b c’s again side by side so; that means, this T 

has to commute with this c’s what are the that. So, for you have generated then, T will 

come between b’s and c’s there you terminate that T by generating one more a pair that b 

c so that is how we will generate a n b n c n. 
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So, by this what do you understand this language a power n b power n c power n such 

that n greater than or equal to 1 is a subset of the language generated by G. Now, we 

have to look for the converse; that means, whatever that is generated by this grammar the 

string is of the form a power n b power n c power n, for which we have to look at the 

characteristic properties of each rule. Here, I have two terminal symbols S and T unless I 

use this rule a b c the S cannot be avoided that is what is the property. So, if you start 

with start symbol S unless I use the rule a S goes to a b c we will always have the non-

terminal symbol s in because there only possibility that I can use a S T.  

So, I will be producing this many number of t’s. Now to avoid this t that means to 

terminate this capital T; I have to use this production rule. I can use this production rule 

if I have this T in between b and c. So, I have to use this commuting rule if I have 

produced certain b’s certain c’s and so on. So, you use there are only very few rules one 

two three four rules only. So, observe that applicability of the four rules and then you 

argue that this the language generated by the grammar is a subset of this at, a power n b 

power b c power n such that n greater than or equal to 1.  



Thus, we conclude that this language generated by this particular grammar is this 

language you have this equality. So, this is one phase of grammars, but as I had 

mentioned that these are having the power of turing machines. Turing machines are used 

as language generators or as computable computing devices. Because we have talked 

about turing computable functions between you know strings a turing computable 

function is the one to compute that particular function. You should require a turing 

machine; now, an equivalent or a parallel mechanism or parallel concept of 

computability in case of grammars that we introduce. 
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So, that is let me give you this formally the definition as in case of turing machines. Let 

sigma 1 and sigma 2 be two alphabets. A function f from sigma 1 star to sigma 2 star is 

said to be grammatically computable as earlier we have talked about turing 

computability; now we are calling grammatical computable; if there is a grammar say N 

sigma P S, where the sigma 1 sigma 2 or subsets of the sigma and there are strings let me 

call u v u dash v dash in V star we call them as end markers. We call them as end 

markers such that such that for x in sigma 1 star y in sigma 2 star if y is a image of x 

under f if and only if u x v from u x v in finitely many steps in G you should be able to 

get u dash y v dash.  

Look at the similarity of the turing computability with this grammatically computable 

function. Now, just recall a function is said to be turing computable if there is a turing 



machine turing machine such that if y is image of x under f then by giving x as input in 

the initial state; you should be able to get y as output and conversely and conversely I 

mean this if and only if. That means, by giving x as input whenever you are getting y as 

output in a turing machine what is that condition that y has to be image under f of x. So, 

the similar the same thing here in place of the turing machine we are talking about 

through a grammar, but here there is nothing like you know giving input and output 

therefore, we are talking with respect to certain end markers. 

If you want to say a particular function is grammatically computable with respect to a 

particular grammar further particular grammar you have to first declare these are the end 

makers. So, these are the starting end markers in this particular contest we are choosing u 

v and the ending end markers we are choosing u dash v dash. It is similar to you know 

initializing a turing machine and you know you are stopping a turing machine halting a 

turing machine by giving the output. In the similar fraction, here we had to introduce the 

end markers because otherwise in case of grammars we are generating grammar through 

start symbol.  

Here, start symbol will not a play any rule, but any way the grammar that start symbol is 

a component. So, we are any way considering that is fourth component as well in the 

grammar, but here the end markers are important when you want to say a particular 

function is grammatically computable. We have to fix the end marker for that particular 

grammar for to compute that particular function. Now, look at this definitions take two 

alphabets sigma 1 and sigma 2 a function from sigma 1 star sigma 2 star is said to be 

grammatically computable; if there is a grammar n sigma p s where sigma 1 sigma 2 

subsets of sigma and there are strings. 

These are the end markers u v u dash v dash for the purpose of you knows the starting 

and ending we are using. So, u u v u dash v dash is elements of v star such that whenever 

y is image of x under f then you should be able to have this kind of derivation and 

between this end markers whenever you have this terminals strings x and y with the 

property that x is in sigma 1 star and y is in sigma 2 star then y has to be image of x 

under f. So, this condition is very strict this if and only if condition. So, using this 

condition will be establishing that turing computable functions are also grammatically 

computable and vice versa. But let me demonstrate first how to construct such grammars 

to certain examples then we will see accordingly. 
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So, let me consider a simple example it is a very easy example to understand this. This 

grammar generating language is you know very well, but this is little bit different. So, let 

me first consider say sigma to be say a b. So, a b star into a b star a simple function this f 

1 I am defining if you take any x I simply concatenate a to x. So, you can clearly see this 

is the function it is grammatically computable; what is the grammar I consider let me 

consider the grammar G to be say any way start symbols since we require.  

Let me take that itself as a start symbol and a special symbol some dollar some cent is 

this known symbol let me use and the terminals a b the production rules I give you and S 

is that. The production rules what do I give as follows; if I have a with cent I will simply 

give or I do not require anything because I have to produce a I will just give this as a 

production rule just only one production rule. So, what is the idea here I declare the end 

markers u to be this dollar and v to be this cent; I give and u dash same dollar, but v dash 

I declare it as is forms.  

So, the idea here while giving this particular production rule whatever that string x that I 

consider with this end markers dollar and cent and after finitely many steps whatever that 

why I wanted to have that is this end marker I am taking the same; but this end marker 

with this form. I do not get this pound unless I apply production rule. I apply this 

production rule whenever I have this cent I simply concatenate. 
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You can quickly see that using this rules any sting that you consider a 1 a 2 a n this 

dollar and this cent you apply that production rule only once. Then, you can get the same 

a 1 a 2 a n you have what are that strings then you concatenate and terminate. So, only 

one step derivation that you have in this grammar; because only one production rules 

wherever cent is there; I will simply concatenate and produce pound. Since, this is the 

end marker for right side and this is for the left side the same thing that we have 

consider. So, here within one step I get the image of x under this function f 1 and hence 

so, everything that you can compute in one step only. So, you can quickly see that f 1 is 

grammatically computable function. So, this f 1 is grammatically computable. 
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Let just let me explain this; this conditionally because unconditionally we are putting 

there. So, f 2 is f 2 is same a b star to a b star defined by f 2 of any x is equal to let me 

write y a if x is of the form say y b and it is y b if it is of the form y a epsilon else. So, 

look at the definition of V function if the string x is terminating with b if the ending 

symbol is b; then I have to remove that b and I have to place by a and the vice versa. 

Whenever I have to place it by b and if it is empty string it is empty only. So, for a non-

empty strings at least a or b you should have. So, you can quickly tell me that what is the 

production rules that you require? Same earlier if you have with cent I just give b with 

pound and b with cent if you have and say a pound you give. 

This is important because dollar with cent; that means, if the input is empty string then 

you have you require this rules. So, these three rules let me consider now the respective 

grammar G you know what the non-terminal symbols etcetera are. So, this is the p for 

this grammar. Now, the idea here is with the u u dash I am taking the same dollar, but v 

to be sent and v dash is the pound that is what we are consider. So, if you take any string 

a 1 a 2 a n with the start symbols this dollar and cent. Now, what happens this a n based 

on this a n if a n is a then it is of the form y I require b. So, this a n cent that is a cent will 

become b.  

So, there are the possibilities this dollar is same a 1 a 2 a n minus 1 a and that if a n is 

equal to a then s cent. We can make it as b pound and if that a n is b this will become in 



one step a 1 a 2 a n minus 1 by applying this second rule you will have a pound and if n 

equal to zero then you have this dollar and cent side by side and hence in one step you 

can produce this. Thus with the end markers the beginning ends markers u v and the 

ending n markers; that means, by the time of terminating this derivation. Of course, here 

also every derivation is you know in one step that you are getting. 

Let me consider little better example of course, we have talked about the definition of 

grammatically computable functions from strings to strings as in case of turing 

machines; we can talk about this grammatical computable function over numbers also 

when I am talking about numbers as earlier we will talk with respect to unary 

representation.  
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So, let me consider a simple function that is successor function from I star the unary 

representation the natural numbers are considered I star; that means, essentially I am 

considering s from natural numbers to natural numbers defined by s of n equal to n plus 1 

the successor function. So, here that s is taking I power n I power n plus 1 as we have 

constructed earlier we can see this is grammatically computable, this particular example. 

Now, similarly if you want to talk about predecessor function from natural numbers to 

natural numbers defined by p of n is equal to n minus 1; if n greater than or equal to 1 

zero if n equal to zero.  



So, for that we have to be little bit careful that you know what are the number of I’s you 

are given if there is an cent the way that you are defining I cent you can make it as say 

for example, pound. So, that one I is killed the last one if there is no I then the scenario is 

that you have dollar and cent side by side and hence. So, essentially you have to check 

the condition because earlier you can simply define that produce one more I at the end by 

changing the symbol you will get it; that means, let me give you because dollar and cent 

consistently if I am using I can give the production rule like this; whenever I have cent I 

will simply make I pound that is all.  

So, what are the number of I’s existing n number of I’s one more I is appended and you 

declare that pound to be the v dash, but in this case of predecessor function we have to 

cross check; that means, as earlier if you have this I cent that you can make it pound. So, 

one I is killed and otherwise if there are no I’s then; that means, this dollar and cent will 

be side by side then you make this is dollar pound. So, if you consider these two rules 

you can quickly see that predecessor function over natural numbers; you know using 

unary representation with number of I’s you can see that it is they are grammatically 

computable. 
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Let me consider another example, which let me stick to a b for the time being say f from 

no let me write r a b star to a b star defined by r of x is reversal of x. You know reversal 

of x if whenever you are considering a 1 a 2 a n the string the image is a n a n minus 1 



and so on a 1 in reversing the string. So, this is little bit tricky; we have to be careful with 

the end markers and how we have to pursue this job look at. Now, let me fix may be end 

markers like this some bracket this dollar x this bracket; this is with this pair end marker 

u and this is with v after finitely many steps; I would like to produce this x power R this 

dollar this.  

So, here u to be this square bracket dollar and v to be this square bracket and u dash is 

this square bracket and v dash to be this dollar and square bracket with this end markers I 

will pursue the job. So, here what I will do whenever I am considering this a 1 a 2 a n 

this dollar the idea is like this. The square bracket the terminal symbol whenever it is 

touching this particular terminal symbol corresponding to that I will create one non-

terminal symbol some non-terminal symbol and I will allow this non-terminal symbol to 

commute with each of this terminal symbols here and pass through this dollar; whenever 

it is passing through the dollar I will make that as a the respective terminal symbol.  

For example, if it is I will make it as a capital A let me not to use this because you may 

think this is the production rule. So, I will convert this as capital A and if it is small b I 

will convert this as capital B that is how I will choose. So, whenever this is touching this 

right side bracket the respective capital letters that I am considering. This capital letters 

can commute with any of the small letters here. So, that it will go here and after crossing 

this dollar I will leave them back; that means, if the capital A is crossing this dollar I will 

make it as a small letter if the capital B is crossing this. Then, I will make it as a small b; 

thus you will pick you will understand that x power R can be generated through this 

mechanism.  
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Let me give the rules. So, the idea is this if I have little a with this bracket the idea is to 

create the capital A in that place; similarly if you have little b touching to the right side 

bracket; I will give the rule that it will be make capital B. This capital A and capital B 

should be able to go through this little a’s and b’s so that means, this little a capital A the 

capital A little a; that means, a can pass through this and similarly it can pass through b 

also. The same property with b’s a capital B is this and if you have little b capital B then 

B b here. Now, this capital A whenever it is touching dollar what do we do, we convert 

this back to its original form that is a dollar; similarly this dollar capital B is touching 

this dollar once it pass to that place; we will leave it back to little b dollar.  

Now, you look at through an example. So, these are the production rule I am considering 

these are how many there are four here four here total eight production rules. This is 

what the production rule set is; you know the grammar here of course, for start symbol 

purpose you can take dollar as a start symbol does not matter. So, dollar I have used and 

this square brackets what else capital A and capital B. These are the non-terminal 

symbols under consideration and terminal symbols little a little b only I have and P has 

given there and this is S. So, this is the quadruple under consideration this grammar 

computes this function making a string reversal making a string reversal. 
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How it pursues? Let us look at an example suppose I am considering a b b. What is the 

form that I am considering dollar this bracket and this bracket. Now using that rule two 

little b with the bracket can be converted to capital B bracket. So, I have a b this is 

capital B. Now, this capital B can pass through this little a’s and little b’s. So, what will 

happen this dollar now you have two possibilities of applying production rule? You can 

pass this b through a make little b and systematically you can go for the second symbol 

or if you want to make this little b again capital B, because this small b is touching the 

right side bracket.  

So, let me for fun consider this way look at with these symbols cannot commute among 

themselves this capital letters b and b cannot commute them. So, the first symbol can 

commute with small letters only a; you cannot convert unless you pass these symbols. 

So, let me pass now dollar this capital B a B. So, what I want to point out here whatever 

the order that the capital letters are generated in that order only they will pass through 

dollar. The order cannot be changed because this capital can commute with only small 

letters and this capital letters will become small letters after passing through dollar. 

So, the order whatever the way that they are converted to capital letters will not be 

changed that is what one has to observe here. Now, this capital B is touching this dollar. 

So, you just pass through that and now becoming the small letter this is how you are you 

have. Now, this little a unless it became capital letter it cannot pass through dollar and 



so, unless you get that particular position you are unable to do that. So, that order is 

taken care here now pass b through this little a. So, you have this and now this capital B 

passes through this becomes small letter this and a b b; this dollar will become now 

capital letter.  

So, this is now b b a dollar and you see the end markers u dash v dash you have 

achieved. This is u dash as declared u dash is left side bracket and v dash now is dollar 

with this bracket and for empty string you do not have to apply any rule quickly. We can 

see that if it is empty string the input is of this form here epsilon and with zero number of 

steps; here let me` write star zero number of steps. In fact, we can see that because these 

two strings are essentially same.  
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Now, in a general case let us see what is happening in a general case if you consider a 1 a 

2 a n you consider a 1 a 2 a n. This becomes capital A n a 1 this is capital A n it may be 

capital A or capital B I am writing a n corresponding to this. This a n can commute and 

pass through this after finitely many steps this a n comes here becomes small a n dollar 

this a 1 a n minus 1. Similarly, this a n dollar a 1 say capital A n minus 1 this may be 

capital A or capital B again this passes through all these letters finitely many steps and 

now pass through this dollar become a n minus 1; this dollar a 1 and so on a n minus 2.  

Now, you notice that a n has first cross dollar its position is maintained and a n minus 1 

is the second symbol to pass through this dollar; so a n a n minus 1 and so on. So, this 



symbol last at the last a 1 will be passed through this dollar and will be at the end and 

dollar will be next to this. So, you will get after finitely many steps using this same 

process a n a n minus 1 and so on a 1 dollar by the time a 1 passes this dollar will be next 

to this. So, you will get the final end markers.  

This v dash and this is u dash and whatever is the string, which is formed this way and if 

this dollar is going to next to this you can realize that this will be the reversal of the 

given string. So, that we can understand that the reversal can be forming reversal is a 

grammatically computable function; so, all these things that we have done in case of 

turing machines because given x as input x power r.  
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How to create or you know given x may be let me do that kind of thing if I give g from 

say a b star to a b star; g of x is equal to x x power R. So, this this kind of all such 

functions we have observed through turing machines that we can create this kind of 

strings if x is there to create x power r next to that. This kind of things or you know over 

numbers computing over numbers all those things that we have done through turing 

machines the same thing; whatever that you have done that computable whatever the 

computable function that you have observed through turing machine you can observe 

through grammars also.  

Now, for the sake of that generalization, because you have handled with two strings three 

strings as input and so on n number of strings as input; only thing is here I have to have 



certain notation the end markers say for example, u v that you are fixing if you want to 

give n number of strings as input you may separate with some special symbol like this as 

in case of turing machine x 1 x 2 and so on x n. We will separating through some special 

symbols and whatever the output that you wanted after finitely many steps u dash v dash 

in between suppose; if you want to generate m number of strings say y 1 say special 

symbol some blank symbol that I am using assume this is not the part of the input 

alphabet. 

If you can do this, then we say some sigma 1 cross sigma 1 star cross sigma 2 and so on 

sigma n star to for example, sigma let me you say some other sets A star A 1 star cross A 

2 star and so on alphabet some alphabet A m star. So, this kind of strings the computable 

functions in a general case of this form can also be discussed. For example, now you 

consider two numbers giving as input unary representation and then calculating some of 

those two numbers product of two numbers or division. So, whatever is the computable 

function that we are handled through turing machines the similar things that you can 

handle here. 

May be, we will discuss some of the examples through grammatically computable 

function showing grammatically computable function is you know is much easier than 

creating a very cumbersome turing machine. So, we will discuss few more examples and 

then see; so meanwhile whatever the simple turing computable functions that we have 

discussed. They are all can be taken as exercised to show them as grammatically 

computable function; that means, the respective grammars that you have create and show 

that these are grammatically computable functions. 


