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 Properties of CFLs 

 

In this lecture, we will discuss properties of context free languages and first you  

observe certain trivial properties. And then we will ascertain some properties connecting 

to context free languages which you know you will look at in parallel to what are called 

properties concerning regular languages. 
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So, this properties of context free languages, so 0.1 it is very clear from the definitions of 

context free grammars you can quickly understand that the class of context free 

languages is closed with respect to union. This proof is very simple if you take two 

context free languages, let L 1 and L 2 with 2 CFL, so that means, you have say G 1 is 

equal to N 1 say T 1, P 1, S 1, a CFG such that language generated by G 1 is L 1 And 

similar you can have G 2, so let me call L i for i is equal to 1, 2 I have two context free 

grammar. 
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Now, you can design, so set G 2 be you know this N 1 union N 2 union singleton S, you 

take new not terminal symbol now this language, it is certainly over union of terminal 

symbols and now production rules P i, let you know and S. So, in this case your 

production rules you take P 1, union P 2 and you give U rule S goes to S 1 or you know 

S 2, if you set grammar like this you can clearly see the productions in P 1 are in the 

form for context free grammar and for P 2 also. 

Now, what are the two U rules I have introduced S goes to S 1 and S goes to S 2 in thiS 2 

are you know satisfying the conditions for the context free grammar and thus we can see 

not that this G is a CFG. And now we can ascertain that the language G is the CFG and 

the language generated by G is simply L 1 union L 2. That one can observe right because 

if you take any string generated by this grammar you have to start from the start symbol s 

and you have to take one of the branches S 1 or S 2. 

If it is going to S 1, then you can generate the strings of L 1, if it is going to S 2 you can 

generate the strings of L 2. So, that you know any strings, which is generated by this in L 

1 union L 2 and conversely what are the string which is in L 1 and L 2 you know either it 

will be L 1 or it will be in L 2. So, you know if it is in L 1 you can generate through that 

to S 1 thus you can generate that through S also, so that it will be in L of G similarly. So, 

you can observe you can prove that this construction was to show that context free 



grammar context free languages are close to with respect to the class of context free 

language is close with respect to union. 
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Now, if you look at intersection that will be a question to us the question is the set the 

class of CFLs closed with respect to intersections and you can question that is this closed 

with respect to complementation etcetera? The set theoretic properties related will 

address these points little. Now, if you ask about these are set theoretic thing, now if you 

look at the concatenation again, so the result is the set of or the class, whatever the set of 

CFLs is closed with respect to concatenation. 

How as earlier you know you let L 1 and L 2 be 2 CFLs considering the respective 

contract text free grammar say G 1, G 2. And now when I am setting G here, I consider 

the protection rules you know of this form thus this is T 1 union T 2 union in this S goes 

to S 1, S 2, I will consider. So, here you will require the non terminals of the first one of 

the second one union new symbol S and our concatenation any way this T 1 union T 2 

and the P S. 
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If you have this again this new production rule I have a single rule here, this acts as the 

criteria for context free grammar, so that you know can note that the G is a CFG and you 

can observe that language generated by G is L 1, L 2. How come, if you start from S you 

have to use this is if I take any word which is in L of G I have to start from S and 

produce that word w. 

 If w is in L of G, I require this, but you look at the first step from S, I have only one 

rule, so that means, I should use this S 1, S 2 and after that infinitely many steps, I might 

be producing this w. Now, corresponding to the non terminal whatever that we are 

generating the terminal string, the portion of w that you can generate in L 1, similarly 

corresponding to S 2 whatever that we are generating portions is w that is in L 2. 

So, that this w can be written as x y for x in L 1 y in L 2, so that it is in L 1 and L 2 and 

similarly you can see the converse; that means, if you take any string in L 1, L 2 you will 

have to strings say x 1, x 2, x is in L 1, x 1 is in L 1, x 2 is in L 2. Now, since x 1 is in L 

1 you can generate that in the grammar G 1 and x 2 is in L 2, you can generate that in the 

grammar G 2 and thus you have the respective production rules to generate this x 1 and x 

2. 

Now, if you start the derivation what are the derivation that we have got from S 1 to x 1 

you have got a derivation in G 1 and similarly for x 2 you have got a if you start with a 

string w is in L 1, L 2 is w is are the form x 1, x 2 and for x 1 is in L of G 1 and x 2 is in 



L of G 2. So, I have this derivations and now you just have to start use this production 

rule S 1, S 2 and then use this derivation and produce from S 1, because the derivation G 

1 will be derivation G also. 

Because, all the production rules of G 1 P 1, the production rules, they already there in 

G, so I can make that as a derivation in G also. So, I have x 1 this and after again finitely 

many steps S 2 can be made in this x 1, x 2 thus you see that you have a derivation this in 

G, so this is a derivation in G. So, that this x 1, x 2 that is what is w is in L of G, so we 

can observe these things. 

So, this I S 1 side to observe that L of G is continue in L 1, L 2 this is other side to 

observe L 1, L 2 is continue L of G, so that this grammar what we have constructed here 

that generates L 1, L 2. So, that you know the class of context free languages is close 

with respect to concatenation, so regarding this set theoretic questions, whether the class 

of CFLs is close with respect to intersection complementation, if you are going to such 

questions and many other properties. 
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Let me just give you a pumping lemma for CFLs which you know it is which something 

parallel to the one we have worked for regular languages. So, let me first state the lemma 

because, I dint have to give much introduction for this because, you have already worked 

for such pumping lemma for regular languages. The philosophy is similar, what pumping 



lemma says for any infinite context free language L of course, this we will be observing 

that it is super finite languages also, but any way I will work for infinite language here. 

So, for any context free language L there exist a constant n such that for all w in L with 

length of w is greater than or equal to n, this w can be written as u v x y z such that the 

length of this v y a second component and the fourth one. Length of v y is greater than or 

equal to 1 and length of v x y the middle 1, this v x y these 3 components that is less than 

or equal to n. And if you pump the strings v and y simultaneously for i number of times; 

that means, for all i greater than or equal to 0, u v power i x y power i z is in L all these 

strings will be in L. 

So, now you look at in case of regular languages every string you will be able to split 

into three parts such that the middle string is non empty and if you pump that string for 

any number of times the resultant strings will be within the language. That is what we 

have observed in case of pumping lemma for regular languages, here what is happening 

the string can be split it in to 5 parts and among these 5 parts say u v x y z, when we have 

splitted. 

This v and y at which one of them is non empty when I am saying this carnality of v y is 

greater than or equal to 1; that means, at least one of them has to be a non empty string 

and the middle portion that v x y. These 3 strings together you can always produce such 

a way that this length is less than or equal to n, what are the number n is existing and 

now if you pump v and y simultaneously for any number of times the resultant strings 

will be in L. So, the philosophy is similar and the applications are also similar now I will 

give you an idea that how you will produce this result. 
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Now, you look at if L is a context free language you have a grammar corresponding to 

that say some N,T,P,S and if you now we have to identify the number and I have to come 

up with the number n I tell you what should be that number. And now what how this 

number should be if you take any string w in L of G whose length is greater than or equal 

to L i should be able to write this w in 5 parts u v x y z, so this v y at least one of them is 

non empty. 

So, that is what is the break up we require and if you pump this two portions any number 

of times, simultaneously the resultant string should be in the language. Now, w is an L of 

G you have a derivation for w, what I will show here is I can always have this derivation 

of the form. Because, I will find the number n such that this derivation can be for this w, 

the derivation I will get things likes this say u some non terminal A z, I can always 

produce things like this or this u and z you may be producing later also does not matter. 

So, I will have a non terminal symbol this non terminal symbol will occur after you 

know after production of some strings, that is you know u v A y z and then this A I will 

be able to terminate u v x y z. So, if I can show that I will have a derivation that the 

given context of this form, then I am through this is what is w why because, once I have 

situation like this you see what is happening this non terminal A is producing the string v 

A y. 



Now, this A once again we can produce v what is called v A y after finitely many steps 

once again, so that we will have w y and if you once again, if you use you are getting 

triple v A triple y and also you see that A is producing x infinitely many steps. So, I have 

this also a produces x infinitely many steps, so this is also there in the part of the 

derivation. 

Thus after finitely many times, if you use you will get you know v power i A y power i 

you can get like this and then, if I use this I will get v power i x y power i because A can 

be terminated with the terminal string x. So, I will get always like this thus you see I 

have a derivation in this grammar of this sort, now you look at what is happening here in 

this derivation if you observe. 

If I can have such a derivation what is here a non terminal symbol which as occurred 

once is a pairing once again in the derivation of a string, whose length is bigger than or 

equal to that n. So, that is what is essential the fundamental idea, once a non terminal 

symbol reoccurs, I would be able to produce derivations for v power i x y power i within 

the portion of that and then you know I can produce the strings in the required as 

mentioned in the statement, in this is clear we can get the idea how we have to proceed. 
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Suppose, if I draw the derivation tree for this, this is a start symbol let us assume this 

way and what I have here I am getting say for example, once again if I am getting A here 

within the per view of this A, whatever is because you see context free grammar. So, 



every non terminal symbol will have production rules, there is nothing to do with other 

symbols addition to that, for A if it is producing x and this A if it is this tree, if it is 

producing the portion v y this is the leaf of this derivation tree. 

And now what are the remaining portion here that is u z this portion, now the derivation 

tree if a can have this A reoccurring, now connecting this sub trees will be having this 

way. And thus whatever the way that I have described here you know this such A 

derivation A as occurred once again and thus I will be able to produce the strings of the 

form u v power i, x y power i, z in the language the language generated by j. 

So, now you look at whenever you know if I am looking forward or repetition of a non 

terminal symbol, now you put a cap on it; that means, you consider number such a way 

that if you take any string. Whose length is bigger than that number you needs derivation 

tree you know you require this non terminal symbol to be repeated, there should be a 

repetition of non terminal symbol, this is the fundamental idea that I have just discussed. 

Accordingly you know, so what essentially we have to set the number any string if we 

look at the derivation tree in a branch I should have a non terminal symbol repeated 

taking this in to count. If you consider that number then what are the string in the 

language whose length is bigger than that particular number, you take the derivation tree 

of this form then you can manage to show that you know it is splitted into u v x y z. 

And of course, we have to observe that we have to have this split in such a way that at 

least this v r y should be non empty and of course, the extra criteria we had put the length 

of this should be less than or equal to that number all these things we require, these are 

all extra conditions. But as a you can understand that it will be splitted into 5 parts in 

which this v and y portions are at least non empty and u v power i x y power i z for all i 

this will be inside L that is what we have to observe. So, what I do in this connection to a 

get this extra properties instead of considering an arbitrary context free grammar, I will 

consider a context free grammar which is in CNF. 
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You know Chomsky normal form, so in Chomsky normal form every production rule is 

of the form you see that A goes to BC, A goes to a, of course, if connecting grammar, if 

it is in Chomsky normal form in the language. If you have empty string except empty 

string everything else you can generate you know that, so these are the types of 

production rules that you have and now if a grammar is in Chomsky normal form, you 

know this you can quickly understand this property. 

So, let me write this lemma, it is not difficult for you to understand let G is equal to N, T, 

P, S be a CFG which in CNF Chomsky normal form, you are generating CNF. If the 

parse tree of a word w generated by G is of height h, then you can observe that the length 

of this is less than or equal to 2 power h minus1. You see what happens I just of course, 

this you can prove by induction, I will just demonstrate illustrate this example. 
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For example I have like this, so since it is CNF I can have say like this if the situation is 

once again I have non terminals, I will have like this then say for example, a 1, a 2 and if 

in the case you know a 3 or B whatever. Now, you look at because it is in CNF, you 

know the length of what happens now if I consider the complete binary tree here. So, the 

possibility is I can in fact, extend if I am looking for the height a 3 say b 1, b 2. 

Now, height of this is 1, 2, 3, is the height and now you see the maximum length of 

because I have filled all the nodes in this complete this thing, here I can get maximum 

length is 4, because you see at this level you have node 1, as you have in complete this 

thing you have 2 nodes here, here 2 square nodes will be there. If you go one more level 

2 cube nodes will be there and now once you have all the levels all the nodes are 

available; that means, in this 2 power you know 2 cube nodes are there. 

And all of them are getting terminated say for example, a 1, a 2 and so on, a, a 8 and now 

you see the length of this thing is 8 that is what is the maximum. So, to this level if you 

come now you understand now at any level suppose if you are you are terminating at this 

level itself, now the lesser number but the maximum you look at that if it is of height you 

know here 3 you see that 2 square here. So, if it is of height 3 you know 2 power h minus 

1, that is the maximum length string that you can produce. 

If it is of height h any parse tree of height h can produce a string of length maximum 2 

power h minus 1 maximum this is the length. Now, In fact, you can observe this result by 



induction the by induction on this binary trees you can observe this is an I will use this 

result. 
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Now, So, let me consider this Chomsky normal form in the present context, so for proof 

of this result let G equal to N, T, P, S be a context free grammar in Chomsky normal 

form, generating l minus singleton Epsilon. The non terminal sets suppose the size is k 

and set the number n to be 2 power k, now you will understand because just now the 

result what we have discussed is if it is of height h the length of you know the string will 

be maximum 2 power h minus 1. 

So, I will consider this n equal to 2 power k, now you consider string w in L of length 

greater than or equal to n, take any string whose length is greater than equal to n. Now, 

since it is the length of this is greater than two power k minus 1. Any parse tree T of w in 

G must have a path of length at least k plus 1, because the length of this thing is greater 

than 2 power k minus 1. So, you should have at least one path of length at least k plus 1, 

now let me draw a picture in that in that is sense. 
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So, you consider a parse tree of this w, so you should have a path at least k plus 1, 

because whose length is bigger than or equal to n, since it is greater than 2 power k 

minus 1, I should have a path of length at least at least k plus 1. Now, the last node is any 

way terminal node, some terminal node will be there and then here before that a non 

terminal nodes will be there, so these are all non terminal nodes on this of length at least 

k plus 1 length. 

Now, you look at so let me say that path be P, so how many vertices will be there, if it is 

of length k plus 1, there are k plus 2 vertices will be there on this path, there are at least k 

plus 2 vertices. Now, you know the last node is a terminal node and at least then k plus 1 

non terminal nodes will be there on this path P, on this path P at least k plus 1 non 

terminal. 

So, whose labels are non terminal symbols, so at least k plus 1 node whose labels are non 

terminal symbols, so you will have like this and thus you see if there are at least you 

know k plus 1 nodes whose labels are non terminal. But how many non terminal symbols 

we have there are only k non terminal symbols, therefore, at least one of them by 

pigeonhole principle at least one of them should be repeated.  
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Now, you see Since, there are only k non terminal symbols by pigeonhole principle, 

some non terminal symbol you know will appear twice on P, now what I will ask you to 

do you just go from you know this terminal node to above and check you know k plus 2 

nodes. Other, than this suppose, if you check k plus 1 nodes, you can certainly get one 

node repeated, so whatever that it is getting repeated for example, this node label and this 

node label assume they are same. 

For example, say you know the label is A, if I am writing and the node say it is close to 

this terminal node; that means, let me call v t and the node which is close to the root and 

I may call v r whose labels are same. The label is the label of v r and v t assume it is A, 

labels are same, so what I asked you to do from the terminal node you go above till say 

for example, k plus 2 nodes I means. 

Other, than this terminal nodes if you just visit k plus 1 nodes, before that you can realize 

that 2 nodes will have the same label, before you reach two k plus 2 nodes from the 

bottom, so let me assume the first node which is getting repeated. So, v t label and v r 

label I am just writing because v r which is close to root and v 2 which is close to this 

whose labels are A. So, from the leaf node on t go above and check the first k plus 2 

vertices will find two vertices v t, v r whose labels are same non terminal symbol say A, 

this how we have taken a label. 
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Now, note that the portion of P from v r 2 leaf node is of length at most k plus 1. So, the 

sub tree t r with root v r, that represent a derivation of sub word say w dash of w of 

height at most k plus 1 from here whatever is this w is the entire word. Of course, this 

sub tree let me call it has w dash, now you look at how many nodes I have visited k plus 

2, set the maximum k plus 2 nodes I have visited and therefore, the length of this path is 

you know the length of this path is k plus 1. 

Now, you see the height of this tree is maximum k plus 1 why is because, the height of 

this is maximum because P, what we have consider that is the longest path in the entire 

tree, therefore you know here this portion should be longer. Then, any other path within 

this sub tree also, if I have something else then it cannot be longer and therefore, the 

height of this thing is at most k plus 1 thus what you have the length of this word is less 

than or equal to 2 power k. 

Length of the word because whose height is maximum k plus 1 and from the result what 

I have just discussed, the length of the yield. This from lemma, you can observe that it is 

less than or equal to 2 power height minus 1 and therefore, the length of this w dash 

should be less than or equal to n. 
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Now, you see if you consider the sub tree root at this v t, if t is a sub tree with root v t 

which represents the derivation of sub word x, then w dash can be written as v x y. 

Because, this w dash is the yield of the sub tree who rooted at v r, if you consider the sub 

tree rooted at v t, the yield of this sub tree if I call it has x, then this w dash can be 

written as v x y the centre portion w dash. 

So, this portion is x, now you understand this point because I have considered CNF, this 

is the node A and this A goes to say for example, BC because, it is in CNF, I have you 

know this sub tree here which is marked rooted at this v t. This should be a sub tree of 

you know which is rooted at B, because I am having you know two branches here from 

this node. So, the sub tree will be entirely within the sub tree rooted at B or it should be 

within the sub tree rooted at C. 
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So, you look at that say A now, the rule say for example, BC is like this, now you have a 

tree connecting to this B and you will have a tree connecting to this, there will be not 

anything common. Now, what is the sub tree, I am showing rooted as v t, this v t will be 

therefore, within this or it cannot be you know this v t cannot be in the common of these 

two. 

And therefore, from this you can observe that other than this portion x you know when I 

have C here, suppose it is within B this C should get terminated and at least you know 

some string some yield you will have so when I am writing w dash is equal to say v x y. 

So, the remaining portion other than x should be at least you know you should have at 

least one symbol and thus it has to be non empty the length. So, this is the argument I am 

placing here, since the first production used in the derivation of w dash, let v r must be of 

the form A goes to BC for some non terminal symbols B and C. 
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The sub tree this T t must be completely within either sub tree generated by B or the sub 

tree generated by C and therefore, you see at least one of this B or y should be non 

empty. So, the string v y length should be greater than or equal to 1, thus what do I have 

this a infinitely many steps I am producing v A y and this a infinitely many steps we are 

producing x. 

Where v A y length, that is what is w dash is less than equal to n, that is what we have 

observed and also with this argument we have observed that v y length should be greater 

than or equal to 1 .And hence because of these two derivations we have for all I greater 

than or equal to 0, we have a produces infinitely many step B power i x y power i. So, 

this is what essentially I have mentioned that, we will give a derivation within the sub 

derivation that a non terminal symbol will be repeated and it produces strings of this 

form v power i x y power I, once I have this then I am through. So, I can compute this 

result. 
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Now, note that the string w can be written as u v x y z for some u and z because this is 

the rest of the portions other than the sub tree what we have discussed. So, the derivation 

will be of this form this s produces u A z etcetera and now the derivation connecting to 

this if you place it here you can see that all the strings u v power i, x y power i, z for all i 

will be in the language L. 

Thus, you see every string w of length greater than or equal to n, what are the constant 

that we have set here, the constant is in this particular context I have set n equal to 2 

power k, because we have considered Chomsky normal form and you can observe this all 

the strings u v power i x y power i z will be in the language L. So, what is pumping 

lemma for context free languages and you can compare with pumping lemma for regular 

languages and understand this better. 

Because, the philosophy is similar the way that we are working there we have work with 

the state, if the proof is through you know finite automata here, we are working through 

the non terminal symbols here. But, what is the philosophy once again, if you look at you 

know I have to produce the derivation of this form as I explained here. 

Once i have produced derivation like this, I can always produce the strings u v power i, x 

y power i, z in L for all i, so for that purpose we have consider you know the tree in 

which we have consider a longest path and such a way that you know the non terminal 



symbol is repeated. So, the constant we have to set accordingly, so we had set 

accordingly and we have produced this result. 
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Now, let me talk about applications of this pumping lemma, because you see in case of 

regular languages the pumping lemma you have used to observe certain languages are 

not regular. Similarly, here in case of context free languages also use this pumping 

lemma to observe certain languages are not context free. Let me just give this example, if 

you consider the language L a power n, b power n, c power n, n greater than or equal to 

0, this is not a context free language. 

How do I observe this suppose L is a context free language, now as per this pumping 

lemma you should have a constant let me say n naught be a constant as per pumping 

lemma for CFL, now as we have worked for regular languages here also same debate. If 

you choose any string w, whose length is greater than or equal to n naught, what 

pumping lemma says, if it is a context free language. 

We should be able to split it in to 5 parts in which you know at least one of them is non 

empty, that v or y such that we should pump string, simultaneously for all the powers the 

resultant strings should be in the language. Now, I will give you string which face that 

particular condition and so that we say that our assumption is wrong. So, when I am 

assuming it is a context free language I get a constant n naught as per the pumping 

lemma. 



Now, let me smartly choose the string say because, here the strings are of the form a 

power n, b power n, c power n, I am particularly choosing you know this a power n 

naught, b power naught, c power naught. You see is the length of the string is 3 m naught 

and therefore, this is greater than or equal to a length n naught, number n naught, length 

of this string. So, if it is split it in to the any strings of a form u v x y z into 5 portions. 

If, this w is splitted like this satisfy the conditions that v x y length is less than or equal to 

n naught and at least v or y is non empty, once I have take this restriction v x y length is 

less than or equal to n naught. You see how this portion v x y looks like how does it look 

this v x y, since it is of length less than or equal to n naught, it will be within a’s or 

within b’s or within c’s or you know you can have some a’s and some b’s. 

Of course, you cannot have a’s, b’s, c’s because the length is length maximum n naught, 

so this can have if it is in the border you can have some a’s and some b’s or you can have 

some b’s and c’s, but you cannot have all a’s, b’c, c’s together. 
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Now, you see what we will do as in case of a regular languages I have chosen this string 

now as shown below this u v power i, x y power i, z is not in L for some i, for some i will 

produce that which contradicts pumping lemma. So, that the language is context free 

language that is what is will be the conclusion, if I show that for some i u v power i, x y 

power i, z is not in L. 



So, we have the following 5 cases as I just mentioned for v x y for some m 1 and m 2 at 

either it can be of the form a power m, this v x y or it is of the form b power m or it is of 

the form c power m or if it is common to the portion. This a’s and b’s highly have a 

power m 1, b power m 2 form or it is of the form, if it is common to b’s and c’s b power 

m 1 c power m 2. 

If I argue for a’s, then it will be similar for two these cases if I argue for one of these the 

other thing will be similar, so we discuss the cases 1 and 4, other cases will follow 

similar manner. Let me consider, the case v x y is of the form a power m and w that is u 

v x y z, it is of the form a power k 1, because when a power mm when I am saying this 

side and that side you can have some a’s. 

Say this k 1 and k 2 you know greater than or equal to 0, because if a power m is equal to 

a power m naught, then you can you cannot have any number of a’s other side, but 

anyway this is the genetic format, when v x y is of the form a power m. So, this u v x y z 

if it is in this form since this B or y is non empty that means, within this a’s you know at 

least 1 a. 

If, you consider when I am pumping these v’s and y’s my water is non empty, what will 

happen the number of a’s will increase, but the portions in this jet you know you have 

b’s and c’s which remains same. Because i am just pumping the volts v and y the number 

of a’s here for example, here within this v y if 1 a, if it is their some where it has to 

because the length of v y is greater than or equal to 1. 

If i keep pumping the number of v’s will increase number and therefore, number of v’s 

will be different from the from that of b’s and c’s and hence what will happen you know 

the resultant string will not be in L. 
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Similarly, if c x y is of the form a power m 1 and b power m 2, if it is like this you know 

I have some a’s here a power m 1, b power m 2 and the rest of the b’s, I may call it has b 

power k 2, c power m naught, iit is of the form..Now, since again v and y’s, when I am 

pumping I do not know v may have some y’s, y may have some b’s might be pumping 

them or you know v and y’s may have only S. 

In which case, when I am pumping them, if it is i greater than 1, if I rise the powers what 

will happen the number of a’s or b’s will increase, whereas the c’s which are in the 

portion z, you know that will not increase. And therefore, as a number of a’s or b’s will 

be different from number of c’s in the string, this cannot be in L. 

So, I can produce string for certain powers which are not in L but pumping lemma says 

that for all I it has to be so since I am producing the strings like this as observed. Now, 

you have some i such that u v power i, x y power i, z is not in L which is contradict in 

pumping lemma, thus you can say that this language is not a context free language. 
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Similarly, people you know several other languages say for example, w w, w belongs to 

a b star, we can observe that this is not context free using pumping lemma, only thing is 

if you say this is context free language, what we have to do you have to there will be a 

constant you have to now choose some string. And observe that and you divide in to any 

of the form u v x y z then by pumping v or y, v and y simultaneously you will have 

certain strings which are going behind the language. So, that is how we have to do now, 

you can take this as an exercise and ascertain that this language is not context free some 

more languages I will display now, that they are not context free you can observe them. 


