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Module - 8 

Simplification of CFGs 

Lecture - 1 

Simplification of CFG 

 

In today’s lecture, we will discuss Simplification of Context to Grammars and normal 

forms. 
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Simplification of grammars and normal forms, so given any CFG, suppose we have a 

CFG, would liked to find an equivalent CFG G dash, say G and G dash are equivalent. 

But here G dash should be simpler than G, the grammar on simpler than the original one 

in a sense that, it is less clumsy for example and easy to understand. Maybe it has less 

number of symbols or some awkward productions, which are there in G are remove from 

G dash, but still they are equivalent. 

Now, if a grammar is given in simple form or simpler form, it helps us to bring many 

fraction results about languages, will consider simplification of grammars by removing 

useless symbols, epsilon production and unit production. So, first we consider useless 



symbol, we will first define useless symbol, what is mean by useless symbols and then, 

see how can I remove useless symbols from grammar creating an equivalent grammar. 

Now, a grammar design to generate a language that is what we know, and every non-

terminal introduce in the grammar should contribute to the generations of strings in the 

language, is meaningless to introduce a non-terminal that do not occur in derivation that 

generate terminal strings in the language. Because, it will make a grammar unnecessarily 

large and clumsy, the same is true for a terminal as well, we would liked to eliminate all 

symbols of this kind normally denoted as useless, that means which not record at all. 

Elimination of these symbols makes the grammar simple, straightforward and if our 

formally define useless symbols and then, give methods to eliminate them. 
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We say that a symbol say x belong to the set of non-terminals or the set of terminals is 

useful, suppose x is symbol belong to N union sigma, we say that x is useful in the 

grammar G, N, sigma, P S. N is a set of non terminals, sigma is set of terminals, P is a set 

of productions and S is the star symbols, we say that x is useful. If there is some 

derivations of the form say starting the star symbol in zero or more steps in the grammar, 

we get some sentential form like this say alpha x beta, which in zero or more steps 

eventually derives w. 

Where, w is basically a string of terminals, eventually we derive a string of terminals and 

alpha and beta maybe any again of terminal and non-terminals; so alpha is any string of 



our terminals non-terminals and w is a string of terminals. So, starting with S eventually 

we derive a string of terminals and we get a sentential form where we have the symbol x, 

that occurs over here, in such a case we see that x is useful. 

And a symbol is useless if it is not useful, so this is the case if useful, if this ((Refer 

Time: 05:07)) and a symbol is useless if it is not useful, so that is the definition of useless 

symbols. That means, a symbol is useless if it is not used in derivation of any string w, in 

the language generated by the grammar, so this is what we mean by an useless symbol. 

Now, a terminals symbol is useful if it occurs in a string of the language, that is what we 

know. 

And similarly, a non-terminal is useful if it occurs in a derivation that begins with the 

star symbol of the grammar that eventually generates a terminal string, so that is what we 

know about the usefulness of a non terminal symbol. That is for a non terminal suppose 

A, belong to N the set of non terminals, say suppose A a symbol that belongs to the set of 

non-terminals. 

So, for non-terminal A to be useful it need to satisfy the following two conditions, so 

starting with S in zero or more steps under the grammar G, we should have this sentential 

form, say alpha A beta, where alpha beta belongs to N union sigma star, it maybe string 

of terminals and non-terminals. So, N union sigma star, in such a case we see that the 

symbol A is reachable, that means starting the star symbol we can eventually reach the 

symbol A, A reachable. 

And the second point is that eventually starting with A in zero or more steps in the 

grammar G, we should be able to derive a string w for some w belong to sigma star, that 

means a string of terminals. In such a case we say that the symbol A is generating or live, 

we used a term generating or live to indicate such kind of symbols and we say that, A is 

reachable if starting with S, we can get this kind of sentential form. But, a converse does 

not hold that means, even if both the conditions satisfied, in such a case we cannot say 

that A is useful, A maybe useless. 



(Refer Slide Time: 08:17) 

 

Now, an example if we say given a grammar G like this, so S goes to A B and A goes to 

say small a, where small a is non-terminal symbol and A, B and S are non-terminals. So, 

in this case even both the conditions satisfied, because starting with S, we can get S 

derives A, B, so first condition satisfied and the second condition also A derives 

eventually A using the second production. 

For in this case A is, the non-terminal A is not useful, because eventually we cannot 

derive the string A starting in the star symbol S, this because of the second non-terminal 

that we have B along with A in this production. So, because of this non-terminal, 

presents in non-terminal creates the problem, so what we do in our procedure for 

elimination useful symbol, we start which applying the condition 2. 

We first applying condition 2, that means we will first eliminate all non terminal symbols 

that are not generating and non-terminal that are not generating and we applying 

condition 1 to remove symbols that are not reachable. So, given a context to grammar G, 

we first used algorithm to remove all non generating symbols from the grammar G and 

then, construct equivalent grammar G dash containing only generating symbols. 

In the second step we eliminate all non terminals from G dash which are not reachable 

from the star symbol of the grammar and then, construct an equivalent CFG, say G 

double dash that contains no useless symbols. So, first let us construct or let us discuss a 

procedure to find an equivalent grammar G dash from G, which do not counting any non 



generating symbol. So, our idea is that suppose A goes to w, where w belongs to sigma 

star that means, from A in one step we can derive a string of terminals, so therefore A 

must be generating. 

So, we create a set say GEN, where we keep all non-terminals A such that, A goes to w 

belongs to the set of productions of the grammar, which say w belong to sigma star. So, 

if w is a belong to sigma star and A goes to w is in the grammar, then we say that A is 

generating. So, we keep all symbols in the set of in this genset, generating and then, 

suppose we have already included some symbols in this genset and then, suppose we 

have some productions like this A goes alpha that belongs to P. And already the symbols 

of alpha or non terminals set is there in alpha is already included in genset, in such a case 

if we also include this A in the genset, we continue this process until no more symbols 

can be added. 
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So, therefore, we can write it in the form algorithm, so first we include in genset all those 

symbol A such that, A goes to w belongs to P with the condition that w belongs to sigma 

star, in a string of terminals. And then we repeat this process, we first say create a sets 

whole where we put this genset, then for all A belong to a set of non terminals, we do the 

following. 

If A goes to alpha in P in the set of productions and alpha is already there in this set all or 

it may be, basically alpha is a string of, maybe string of terminals, non-terminals. So, 



alpha may belong to all union sigma star, it may be any string over the symbol that are 

already there in this set that means, already included in genset or it may be string of 

terminals. Then we include in GEN this new symbol, GEN union A we keep on adding 

like this, until this all set and genset are identical. 

So, in such a case what we can compute is that no more symbols can be added, so it is 

easy to see that this algorithm will terminate, because there finitely many productions in 

the grammar. Upon termination GEN contains only those and all those symbols or all 

those non-terminals and in those non terminals and only those on terminals, which are 

generating. 

We can prove it easily by applying in that sum, suppose A is a generating non terminal 

and A eventually derives w under the grammar G, for some w belong to sigma star, that 

means it generates the string of terminals. Now, we can apply in that sum on a numbers 

of steps, needed to generate w, to show that this GEN contains only those symbols and 

on those symbols, which are generating. 
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Now, the basic case is that, if A derives w in 1 step under grammar G, then A goes to w 

must belong to P, otherwise it cannot derive the string w in 1 step, therefore A is 

included in GEN, hence A is included in genset that we have already seen in first step. 

Now, in that some step what you assume is that, let A derives w in n plus 1 step under G, 



then we can write say A derives alpha in say 1 step under G and in say n steps eventually 

it derives w. 

Now, since alpha derives w in n step under G, we can apply that induction hypothesis to 

calculate that all the non terminals in G are already included in GEN, so design this is the 

hypothesis. Again since A derives in 1 step the string alpha, therefore A goes to alpha 

must belong to P, otherwise in 1 step it cannot derive, therefore according to our rule of 

the algorithm A will be included in the circum step over algorithm. 

So, it is clear that no non generating non terminal will be included in GEN and thus the 

algorithm generates the desire set, that means the set of all non-terminal s which are 

generating and only those sets which are generating. Non terminals that are not in genset 

that we have constructed are useless, since they cannot contribute to the generation of 

strings in L of G. So, this observation leads us to construct a CFG G dash, which is 

equivalent to G and eliminates all variables of G that do not derive any string of 

terminals. 
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Now, we can say that in the formal theorem, say let G equal to N, sigma, P, S be a CFG, 

so there is an algorithm to construct a CFG G dash, which is say N dash, sigma, P dash 

and S dash such that, number 1 L of G dash equal to L of G. And number 2 for all A non 

terminal belong to set of non terminals A is generating, that is every non terminal in G 

dash, G dash is a terminal string in G dash, so you can easily now proof it. 



Let N dash equal to the genset, that we have already constructed from G and P dash is 

obtained by deleting all rules in P. So, from P will delete all those rules, which are not 

generating, that means containing non terminals that do not derive terminals string that is 

P dash, specifically contains all those productions like this A goes to alpha. Such that A 

goes to alpha belongs to P and A belongs to genset and alpha is basically GEN union 

sigma star. 
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Also sigma dash equal to all those terminal symbols A belong to sigma such that, A 

occurs in the right hand side of a rule in P dash, that means here you will have sigma 

dash of course. Now, since P dash is purpose set of P, because from P we have 

eliminated some rules not containing, which contains the non deterministic symbol, since 

P dash is purpose of the P. 

Therefore, every derivation in G dash is also a derivation in G, therefore is clear that L of 

G dash is a subset of L of G, now we understood the other side, that means L of G is a 

subset of L of G dash. So, that will prove that the resulting grammar G dash is equivalent 

to G, to show this we assume that, say let S derives is string w in grammar G, that means 

w is a string of L G and starting with G a S, we can derive the string w in grammar G. 

Then, what we can say if that is the case, then we want to show that, then S derives w in 

grammar G dash as well, then only you can say that L G is a subset of L of G dash. 

Suppose, this is not a case, then in non terminal which is non generating must occur in 



and in terminal step in the derivation, that is what the case may be otherwise it is not 

possible. 

But, a derivation from a sentential form containing a non generating symbol, cannot 

generate the terminal string, hence all the rules used in S derives w, so all the rules which 

are used in the corresponding derivation S dash w under G must also use in P dash. So, 

therefore since we are using all those rules which are generating this, and those rules 

must be in P dash, therefore S derives w under G dash also in zero or more steps. 

So, therefore, as it is a subset of L of G dash and because of both of this, we can say that 

G is equivalent to G dash, that means we can now construct from G and equivalent 

grammar G dash, which do not contain any non generating symbols. Now, we will 

construct the set of all variables or all non-terminals, which are reachable. 
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And then we will see how to construct the equivalent grammar containing only reachable 

non terminals, suppose given a grammar G by constructing G dash as we have already 

described equivalent grammar G dash from G, we have removed all non generating 

symbols. So, we must now remove variables that are not reachable that is what our aim, 

now we will use the following process. So, it is start with the first reachable non-

terminal, which is basically the star symbol, star symbol is a first non terminal symbol, 

which is reachable. 



And then, starting with this if there is a production like say S goes to some alpha, where 

alpha contains some non terminals, then that non terminal will also be reachable. So, 

therefore, initially we construct a set which is called reach, which contains only the star 

symbol S and then, for every production the forms S goes to alpha all the non terminals, 

which is there in alpha will be included in the set reach. 

We keep on continuing process repeating this process until no more symbols can be 

added, so therefore we can write it in the formal algorithm even the grammar G, first will 

initialize reach to be the only symbol of this star symbol of the grammar. Then we assign 

this all set to be phi and this is use for checking the termination criteria of this algorithm, 

then you repeat this process, we create a new set, which is nothing but, all those symbols 

in leach. But, which is not there in old, so leach minus old and old is initialized to be 

now the leach set. 

Now, for all non terminal A which belong to N, we do the repeated process for all 

production of the form A goes to alpha, which is in P do at all non terminals in alpha to 

leach. So, whatever non terminal we have in alpha must to added to leach, because is 

already there in leach, we continue this process until no more new non terminal can be 

added, that means until leach is equal to old. So, by this algorithm we keep on adding a 

new non-terminal, which is reachable from the star symbol S. Now, prove that a reaching 

contain only those variables, which are reachable from the star symbol of the grammar 

G. 
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We first show that all reachable variables are added to leach, now if S derives suppose 

alpha A beta, in suppose n numbers of steps under grammar G, then A is reachable that is 

quite clear, because we can leach A from the certain symbol S using this derivation. 

Now, A is reachable and is added to reach on or before, iteration n of the algorithm or 

before nth iteration of the algorithm of the procedure, will add this symbol not under A 

which under on right hand side, that will be added to the set reach eventually, that is 

what we want to show. 

That means, all reachable non-terminals will be put in the reach eventually, the basic 

case is that the star symbol S is the only symbol reachable by derivation of 1 step and it 

is added to reach in the step one of the algorithm. Because, S is already included in the 

first step by default, so this is a basic step, then we use this induction hypothesis, so each 

non-terminal reachable by a derivation n steps or less is added to reach on or before 

iteration n. 

So, every non-terminal to reachable by derivation of n step or less is added to reach 

before iteration and so this is induction hypothesis. So, each non-terminal reachable by a 

derivation of n step or less is added to reach set on or before iteration n of the algorithm, 

so this is what our induction hypothesis. So, in induction step, so that say assume S 

derives in n step alpha A beta and in 1 step it derives under G say alpha gamma B delta 

beta. 



Suppose these are derivations and length of derivation is clearly n plus 1, because the 

first step these takers n step and in under 1 step, we get this particular sentential form, so 

the length of the derivation is exactly n plus 1 step. Now, in the first step you will see 

that, in the first step we apply, the last step basically we apply a derivation A goes to 

gamma B delta. Because, this a is replaced by this string means A goes to gamma, A 

delta must be production in the grammar, they joy in 1 step we apply this and hence, we 

have got this ((Refer Time: 32:53)) form. 
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So, therefore, in the last step we have applied these two A goes to gamma B delta, so by 

inductive hypothesis A has been included in reach, ((Refer Time: 33:05)) because this 

takes n steps. So, according to this induction hypothesis, so since it takes n steps A is 

already there in a reach set. Now, variable B will be added in the next iteration according 

to our rule, so therefore every variable, which is reachable will be included in the set a 

reach. 

Now, we show that all variables included in reach are reachable, that means we do not 

yet any variables, which are not reachable in the reachable set by this algorithm. So, the 

basic case is this, in the first step we include S and S is the already itself it is a star 

symbol with grammar, in induction step we show that, suppose the variable B is added in 

the n plus first iteration. So, B is added in the n plus first iteration, then according the 



algorithm A goes to alpha B beta must belong to P, then only you can add this kind of 

production must be there, we applied in 1 step. 

And in that step since A is already in the reach we include B in the reachable set, now so 

A goes to alpha B beta must be a production such that, A already belongs to the set that 

is what we say after n iteration. Now, by induction hypothesis S must be derives, they 

must be derivation like this in zero or more steps under grammar G alpha A delta, so 

there must be derivation like this such S derives gamma A delta, because A is already 

there in reach. 

So, therefore, in zero or more steps S must be derive this sentential form gamma A delta, 

because A is already there in reach, and in the last step we have added B, hence the 

derivation S goes to gamma A delta, then in 1 step we have included gamma. So, A can 

be replace as alpha B beta by this production and an delta, so A is replaced by this, so in 

the grammar we have derivation like this. Because, A is already included we have this 

derivation and in the last step we say that we applied this production, so therefore we 

have the derivation like this. 

So, according to this derivation we know that B is reachable and hence, since B is added 

we know that every such B must be reachable. So, therefore, whatever we add in reach 

set according to this algorithm must be reachable, therefore it contains the set of 

reachable variables and all the theory words which are there in it is reachable are 

reachable. 
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Once we have this algorithm, so what we can say is that, so that G equal to N, sigma, P, 

S be is CFG, so there must be an algorithm to construct a CFG G double dash, such that 

L of G double dash and L of G are equivalent, that means G and G dash are equivalent; 

and G double dash has no useless symbol. So, what we do from G, we first construct an 

equivalent CFG G dash, say N dash, sigma dash, P dash and S contain no non generating 

symbols by using the previous theorem or we have given how to construct it. 

Now, using the algorithm just we have described or using the previous algorithm, just we 

have described we construct the set reach, and this reach for G dash we construct the set 

reach. Now, we construct the CFG G double dash, which is say N double dash, sigma 

double dash, P double dash and S according to the following rules. 
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So, what we do in the double dash, in the set of terminals in G dash it be basically the all 

those variables or set non-terminals, which are include in the reach set, because which 

are basically reachable. We construct all those symbols or non-terminal symbols, which 

are reachable and thus there will be in the set of non-terminals and P double dash it will 

contain all those productions that from A goes to alpha that belongs to P dash. 

That means, which belongs to this grammar G dash such that, A is a reachable non-

terminal, A belongs to reach and this alpha is a string of symbol, which is there in reach 

and sigma, so it is reaching and sigma star. So, alpha is string of symbols which are here 

in sigma, sub sigma dash and a reach and sigma double dash is basically all those 

terminal symbols A belong to P dash belong to sigma such that, A occurs in the right 

hand side of a rule in P double dash  

If that symbol any symbol does not appear in the right hand side of any rule in P double 

dash that we have constructed, then that symbol is useless, so we can now establish that 

L of G. So, we use this three rules to construct the grammar G double dash and so that, L 

G double dash is equivalent to L of G dash and hence, this will imply that L of G dash 

eventually is equivalent to L of G, which is the original grammar. 

Now, since this P double dash is subset of purpose of basically, a subset of P dash, so 

every derivation in G double dash is also a derivation of also derivation in P dash, so a in 

derivation of say G S. So, whatever we derive under grammar G dash, can also be 



derived under grammar G dash, because P double dash is subset of P dash and therefore, 

this implies that L of G double dash is a subset of L of G dash. 

Now, we need to show the converse, that means every variable in this derivation is 

reachable and hence, it is in reach and thus and N double dash and it will be N double 

dash and each tool applied will be in P double dash. So, therefore, S derives w under 

grammar G dash as well, suppose if S derives w under grammar G double dash we said 

that, S derives the same string w under grammar G dash as well. 

So, therefore, similarly we can show that L of G dash is a subset of is similar to the 

previous one that we have already discussed, so L of G double dash. So, therefore, L of 

G double dash is equivalent to L of G dash these are identical and hence, since we have 

already shown that L of G dash and L of G are same. Therefore, L of G double dash and 

L of G are same, so this is how we can get rid of all the useless symbols by using the two 

algorithms, that we have described first to remove or eliminate the non generating 

symbols. 

And next to construct a set of reachable non-terminals and then, eliminate all the 

productions, not containing the non generating symbols and not reachable symbols. So, 

we have seen how to remove useless symbol by using these two algorithms, next you 

will see how to get read of epsilon productions and unit productions. 
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First let us define what is the epsilon production, we know that a production to from A 

goes to epsilon is said to be an epsilon production, where this A is a non-terminal. 

Similarly, a production a type A goes to B, where both A and B are non-terminals, is said 

to an unit production and this is epsilon production. Now, we would liked to simplify a 

grammar by removing these productions, because sometimes it may be difficult to 

determine, whether applying a production of these types in a derivation makes any 

progress toward deriving in a terminal string. 

For example, if we use say this production A goes to B first and so B goes to C and then, 

C goes to A, they are all unit productions. And we suppose apply this in a sequence and 

such a case, we will even enter a loop A goes to B, B goes to C, C goes to A and again A 

goes to B, B goes to C, C goes to A, so it may so happened we are entering a loop. 

Similarly, we can generate a long string deriving starting with some non-terminal and we 

can keep on deriving a long string and then make it empty by applying some say B goes 

to epsilon, so all these B empty. 

On the other hand, a derivation of CFG G without epsilon production, so there is no 

epsilon production and there is no suppose unit production, then we can be very sure that 

there will be a demonstrable progress at every step. In the sense that either a terminal 

symbol will appear in the right hand side or in sentential form or the sentential form will 

get strictly long. So, in that sense it will always better to eliminate unit production and 

epsilon production of course, if we get read of epsilon production, the grammar now 

cannot generate any epsilon the string epsilon in the language. 
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Now, I will construct this theorem say for any CFG G, which is say N sigma, P, S, there 

is a CFG G dash with no epsilon production such that, L of G dash is equivalent to L of 

G, but the string epsilon is not there. So, L of G minus the set containing epsilon, so L G 

can G dash can generate all those strings, that is there in G except for epsilon and all 

those strings, which will be there in L of G will also be L of G, so let us prove this. 

So, we will construct given the grammar G, from grammar G we will construct a 

grammar say G hat, which is say N, sigma, P hat that is that means, we modify the set of 

productions with a original grammar G. So, P dash is basically constructed by using a 

few rules, so first is that if A goes to alpha B beta and B goes to epsilon are in P, then we 

include A goes to alpha B alpha beta in P hat. 

That means since B goes to epsilon, we can remove B, because B can be replaced by 

epsilon, and we in right hand we have only alpha beta, so therefore A goes to alpha beta 

will be included in P hat. So, there is a new production that we have included in P hat 

and then, it easy to see that P is finite, then so is P hat, so P hat juggles finite provided P 

is finite. 

Now, clearly you can show that L of G is a subset of L of G hat, because L of G contains 

some more productions, beside the productions that are there in L of G, so it is quite 

clear that L of G is subset of L of G, since P is a subset of P hat. Therefore, every 

production or every derivation in G must be derivation of G dash as well, again L of G 



hat can be shown to be a subset of L of G. That means, whatever you can derive in 

grammar G, G hat must be there in G as well, because every new production added to P 

hat, because the above rule that we have already constructed can be simulated in 2 steps, 

but two productions that causes to be added in P hat. 
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That is say alpha 1 A alpha 2 from this sentential form of course, we have derived in G 

hat in 1 step, say alpha 1 alpha beta alpha 2, suppose this is derivation in G hat in 1 step, 

then in grammar G, what we can do we start with alpha 1 A alpha 2. Then in 1 step in 

grammar G this A can be replaced by alpha B beta, then we have alpha 2 as well, so A 

goes to, because A goes to alpha B beta and B goes to epsilon both are deriving P, that is 

why you have included A goes to alpha B in P hat. 

So, therefore, in 1 step we use this one and then, in the next step in grammar G, we can 

use, so alpha 1 B goes to epsilon, so alpha 1 alpha beta alpha 2, so whatever we derive in 

G hat can also be derived in G. But, here the length of derivation will be 1 step more, 

that is what we have done, so therefore L of G is equal to L of G hat, so it is quite clear. 

Now, what we can show is that for any string w belongs to sigma star with of course, it is 

not equal to epsilon, this w is not equal to epsilon any derivation S starting with S under 

grammar G hat of minimum length does not require any epsilon production. 

So, in G hat you can, if we can derive w starting with S and if that derivation is a 

minimum length, then you can show that this minimum length derivation of w in G hat 



does not require any epsilon production. So, therefore, we can always throw out all those 

epsilon productions without changing the language of the grammar, so therefore we do 

not require any epsilon production. 

Suppose, for contradiction we assumed that there is a minimum length derivation as goes 

to w in G hat, that quenches an epsilon production to derive w, suppose there is a 

minimum length derivation, which is as epsilon production, say that epsilon production 

would form say B goes to at any point of derivation. That means, we have a derivation 

like this S goes to under G hat alpha 1 B alpha 2, then in 1 step under G hat it uses B 

goes to epsilon, so it is alpha 1 alpha 2. 

And eventually suppose in zero or more steps under G hat it gives us w, suppose these 

are scenario that we have considered for contravention, it uses in this step the production 

B goes to epsilon. And I have said this is the minimum length, now we will arrive at a 

contravention. 
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Now, since w is not equal to epsilon, so both alpha 1 and alpha 2 cannot be epsilon, 

because alpha 1 and alpha 2 both cannot be epsilon, since w is not epsilon, that we have 

already said, w is not epsilon. Now, since B is since alpha 1 and alpha 2 cannot be 

epsilon, B must appear earlier in a derivation, when a production of the form say A goes 

to alpha B beta was applied, that is the above production we have written as S derives in 

some m steps suppose, say gamma A delta. 



Then in 1 step under G hat gamma A goes to alpha B beta was applied and then, in 

suppose n numbers of steps under G hat eventually, it goes to it has taken the forms 

alpha 1 B alpha 2. And then, in 1 step under G hat, we have got alpha 1 alpha 2 applying 

rule B goes to epsilon and then, in suppose k steps under G hat it has derived w, so 

clearly this derivation has a length of m plus n plus k plus 2. 

So, many steps are created this is a length of derivation, because m steps over here, n 

steps, k steps and 1 plus 1, 2 steps for some m, n, k greater than or equal to 0, this is a 

case. Now, according to the construction of G hat, since we have constructed G hat, A 

goes to alpha beta belongs to P hat, because we have applied we know that A goes to 

alpha B beta is in the grammar G hat. And B goes to epsilon is also there in the grammar, 

therefore A goes to alpha beta must also be there in production or hat. 

So, therefore, what we can do is that starting with S, suppose in m steps under G hat you 

have got alpha A delta, so therefore at this point since A equals to alpha beta is a 

production here, we can apply in 1 step that production, and we will get gamma alpha 

beta delta under G hat. And then, using this n steps we will arrive at alpha 1 alpha 2 and 

then, using those k steps eventually we will get the string w, but this derivation has 

clearly m plus n plus k plus 1 step. 

So, we have seen that, this is a minimum length derivation not the previous one, so 

therefore, this is the contradiction, that means we do not actually need the production and 

of the from A goes to epsilon which are there in the grammar G hat. So, therefore, we 

can threw out all those productions and eventually we will get a new grammar, which do 

not contain any epsilon production. And which can generate all the strings that was there 

in the earlier language, except for the epsilon production. 


