
Formal Languages and Automata Theory 

Prof. Dr. K. V. Krishna 

Department of Mathematics 

Indian Institute of Technology, Guwahati 

 

Module - 07 

Properties of Regular Languages 

Lecture - 01 

Closure Properties of RL 

 

In today’s lecture, we discuss about Closure Properties of Regular Languages. Some of 

the closure properties of regular languages are very straight forward from the definition 

that you have already observed. For example, if you say the class of regular languages is 

close with respect to union, that is straight forward from the definition; or you can say 

that the class of regular languages is close with respect to concatenation that is also 

straight forward from the definition. 

And the class of regular languages is close with respect to cleanly star, that is also the 

part of the definition. Now, several set theoretic closure properties that we can see, 

because language is a set, because this is subset of sigma star. So, several set theoretic 

questions we can have and see like whether the class of regular languages are close with 

respect to those set theoretic constructs. 

Let us go one after another systematically and main point here you can observe that, this 

closure properties will be helpful to understand further some of the new languages are 

regular. For example, if you have indentify the language, which is union of some of the 

known regular languages, you can use the definition or we know the closure property to 

say that the new language is regular. So, let us first look at this compliment, so that 

means the question is if you are given a regular language L. Whether L compliment is 

regular, this is not straight forward from the definition as you understand. 



(Refer Slide Time: 02:07) 

 

Now, the answer is the class of regular languages is close with respect to compliment, 

that means if you are given a regular language L, L compliment is regular, how do we 

observe this you consider a DFA for a given regular language. And then you can do this 

by interchanging the roles of final and non final states, you can quickly understand that a 

compliment of a regular language is regular. 

That means, for example, if you consider a language L and a corresponding to which let 

A be a DFA has given here, Q, sigma, delta, q naught, F. Now, you construct A dash 

straight set is same as Q as in A, the alphabet of course, is same then the transition map 

also we are not going to change, the initial state is same. But, the final states now the 

original non final states you make them as final states, and the original final states you 

make them as non final states. 

That is by interchanging the roles of final and non final states, if you construct, then you 

understand that the language accepted by the new DFA is compliment of the given 

language. So, this is the construction of A dash, now you can quickly ascertain that, if 

you take any x in sigma star, if x is in L compliment that means, x is not is L, that is if 

you put x in the initial state of the original DFA, then it will not reach to your final state. 

If it is not reaching to your final state that means, in the new DFA that is A dash, you see 

that delta cap of q naught at x by supplying to the initial state, you will be getting a final 

state of the new DFA. And hence you conclude that this x is accepted by the new DFA 



and as you see these are equivalent statements, what are what are all written here and 

hence, we can conclude that the new constructed DFA is precisely accepting the 

compliment of the given language. 

Now, if you have already identified a language is regular, then it is compliment is to 

understand that the compliment, if you want to see that a language is regular, if it is 

compliment of a known regular language we can conclude quickly that it is also regular. 

(Refer Slide Time: 04:54) 

 

Now, let us look at certain corollary of this result, for example intersection you consider, 

the class of regular language is closed with respect to intersection. Why because the 

intersection has the relation with respect to compliment and unions, as I mean by the De 

Morgan law I stated here; L 1 intersection, L 2 is L 1 compliment union L 2 compliment 

whole compliment, this is the De Morgan law. 

Now, if you assume that L 1 and L 2 are regular as we have understood that L 1 

compliment is regular, L 2 compliment is regular and hence, of union of regular 

languages that is from a definition, this is a regular language. And compliment of a 

regular language, once again you use the result just we have observe and understand that 

intersection of two regular languages is regular. 

So, given a language if you want to see that is regular, if it is intersection of some known 

regular languages, you can quickly conclude using this results that it is regular. But, one 



may be interested to find a DFA or an NFA finite automaton for a given language to say 

that it is regular, for which I will give you an alternative proof for this result that means, 

a constructive proof. 

(Refer Slide Time: 06:15) 

 

Here, we give a DFA to accept intersection of given two regular languages, so what do 

you do in general let me give you the construct here, consider two DFA say A 1 and A 2 

let me call, I would just state sets Q 1, Q 2 and of course, common alphabet is sigma. 

And the respective transition maps are delta 1 and delta 2 and the initial states here you 

may call it as Q 1 and Q 2 and the final states F 1 and F 2 for each here. 

So, I am considering two DFA is A i as given here and now if you set the a DFA as 

given here, this is quintuple, the Cartesian product of the respective states sets of the 

given DFA. And of course, the common alphabet sigma is input alphabet for this and 

delta you define point wise, that means if you take any state in the new DFA, it is of the 

form a ((Refer Time: 07:20)) p, q. 

Now, if you take any symbol A in sigma, what do you do, what are the transition that it 

is taking place in the first two DFA, you give as a first component and similarly in the 

second DFA what are in the transition it is taking you give it as a second component. 

And that is how this delta is defined and the initial state component of the first DFA and 

the initial state of the second DFA, we take it as components and declare that as Q 1, Q 

2, here that is the initial state. 



And final states is F 1 cross F 2 here, because F 1 is final states of first DFA, F 2 is final 

states of second DFA, you consider F 1 cross F 2. Now, if you construct a DFA like this, 

you can understand that this new DFA A is will accept the intersection of L 1 and L 2, 

where L 1 is the language absolute by A 1 and L 2 is the language absolute by A 2. 

(Refer Slide Time: 08:26) 

 

For this first observe first observe that delta cap of p, q, for any state p, q of the new 

DFA if you supply any string x in sigma star, it is precisely delta 1 cap p x comma delta 

2 cap q x, this you can observe by applying induction on the length of the string x, that is 

not a big deal you can take it has an exercise and try that this is happening here. Now, I 

use this to quickly understand that the new DFA accept precisely alone intersection L 2, 

now take string that is accepted by the new DFA A. 

That means, by definition by this observation you can say that, the component wise that 

is going in a F 1 cross F 2, because if you say a swing is in a language absolute by A, this 

is the definition that is going to the final state by supplying the string x in the initial state 

of the DFA. And now by as this observation, you can say that these are the values of that 

you are getting in F 1 and F 2, that means if you say a pair is in F 1 cross F 2, the 

component wise they belong delta 1 cap of q 1 x is in F 1 and delta 2 cap of q 2 x is in F 

2. 

And now here, now you have got the x is in L 1 and x is in L 2 as well and hence, x is in 

L 1 intersection L 2 and you understand that, this is you can follow conversely that, if it 



is in the intersection, this is what is happening. And if it is in L 1 this is a situation with 

the first DFA and this is situation with the second DFA, and this components if you take 

this as a pair that is in F 1 cross F 2. And what we have observed by in this line, you can 

again go back to here, because these two are equal and hence, you can say that x is in 

language accepted by A. So, this constructive proof gives you a DFA which accepts 

intersection of two regular languages. 

(Refer Slide Time: 10:55) 

 

Now, let me give you an example, because for example if you consider this all those 

strings in 0, 1 star with the property that the number of 0's in x is even and the number of 

1's in x is odd, suppose if you consider this language, we can observe that it is regular. Of 

course, you if you know that, with this property if you consider the strings it is regular 

and with this property if you consider the strings is lower 0, 1 if it is regular. 

From the previous result that means, intersection of two regular language is regular you 

can get it, you see that this DFA this we have constructed earlier, this DFA accepts all 

those strings over 0, 1 with even number of 0's. Similarly, that this DFA accepts all those 

strings with odd number of 1's, now from the result you can say the given language is 

regular, but using the construction you can give the DFA that accepts the given this 

language. 

Now, you consider the Cartesian product of this state's, here you have q 1 q 2, p 1 p 2, 

now there are 4 pairs that is q 1 p 1, q 1 p 2, q 2 p 1, q 2 p 2, let me call them as S 1, S 2, 



S 3, S 4. And then the DFA what you have to do you have to put the respective 

transitions, component wise and construct the DFA, that is a construction given to you, 

so if you construct using that you will get this. And now you see from the construction i 

have declare S 2 is final state, because in the first DFA q 1 is final state and second DFA 

p 2 is final state. 

Now q 1 p 2 that is state S 2 if you declare that as final state from the previous result, this 

particular DFA gives this particular DFA accepts the language given to you, now by 

choosing appropriate final states here you can vary this. For example if I choose S 3, 

what is the meaning of S 3 choosing as final state instead of S 2, this q 2 p 1 in q, if you 

consider the first DFA Q 2 as final state instead of Q 1, you understand that the number 

of 0 accepted by this, the number of 0's in any string accepted by DFA is art. 

And S 3 this is p 1, this is the situation if this is the final state with the second DFA, then 

the number of 1's in a string accepted by this DFA is even and this you can see if you 

make S 3 as final state instead of S 2, this accepts all the strings in which the number of 

0's of art and number of 1 is even. For example, if you consider S 4 as the final state 

instead of S 2, that is q 2 p 2, so q 2 if you considering the first DFA this accepts all the 

strings in which the number of 0's is art. 

And in this case number of 1’s is art and this intersection that is number of 0's is art and 

number of 1’s is also art. Similarly, if you consider S 1 are, now if you consider say S 2 

and S 3 or any combination S 2, S 4 both of them that means, then this are this, the 

property pretending to S 2 are the property pretending to s four. Or if you consider any of 

the combination you understand that, this particular construct is helpful to understand 

that various combination of languages with the number of 0's, with the property of 

number of 0's and number of 1’s whether you an art can be observed here. 

So, this construction the Cartesian product construction of course, here we have observed 

the intersection of two regular languages is regular, but this construction will be helpful 

to understand some of the complicated language to see they are regular. 



(Refer Slide Time: 15:40) 

 

For example, you consider this set of all those strings power 0, 1 in which and the strings 

have number of 0's is even if and only if number 1's is odd. If you consider this language 

you see, this is a conditional statement whenever x has even number of 0's, then the 

number of 1’s should be odd and conversely, so the condition is looking little bit 

complicated. So, what do you can little bit analyze this logical statement and formulate 

the appropriate connectives, in terms of and are not or whatever. And the previous 

construct, that Cartesian product construct may be helpful to observe that this particular 

language is regular, you can take it this as an exercise and try to show that this particular 

language is regular. 



(Refer Slide Time: 16:44) 

 

Now, let me consider another set theoretic construct this set difference and see that from 

the previous results, that means the compliment and intersection if you consider the class 

of regular languages is close on a set difference. That means, if L 1 and L 2 are regular, 

then L 1 minus L 2 that is also regular, that L 1 minus L 2 is essentially L 1 intersection 

L 2 compliment, this is set theoretic property related to set difference. 

You see if L 2 is regular L 2 compliment is regular, L 1 is regular is given and L 2 

compliment is regular intersection of two regular languages is regular, so you can 

understand that set difference that preserves regularity or regular languages. Now, let me 

give you an example consider the language a power n such that, n greater than equal to 5, 

I means all the strings power single letter alphabet whose length is bigger than equal to 5 

this is regular. 

Of course, constructing a DFA is not a big deal for you, but let me use this you take L 1 

to be L of a star that means, the language represented by the regular expression a star and 

hence, it is regular. And L 2 you consider this strings, empty string a, a square, a cube, a 

power 4 consider this strings and a finite set is a regular language, this is regular and L 1 

is regular, L 2 is regular, L 1 minus L 2 is also regular and L 1 minus L 2 is nothing else, 

but the give the language under question. 

Here, from this I will give one important observation that is in general, if you remove 

finitely mini strings from a regular language, that leaves a regular language, this property 



will be useful in several context. Because, you see that you have come up with the 

language in which certain things are missing, if the missing things from a known regular 

language, if what are the missing strings if they are finitely many, then you can conclude 

that the given language is also regular. 

(Refer Slide Time: 19:17) 

 

Now, I consider this construct that is reversal, reverse of a string, now the property here 

is if L is regular, then L power R that is defined by, by considering all the strings by 

reversing the strings of L L power R is equal set of all x power R such that, x is in L. So, 

take a string from L reverse and put it in L power r, so this is what is l power r, and now I 

observe that if L is regular l power r is also regular. For this I require a small result, that 

is for every regular language L, there exist a final automaton A with a single final state 

such that, L of A is equal to L. 



(Refer Slide Time: 20:18) 

 

So, here if you are considering a DFA, what I will do if you are considering a DFA 

assume L of A is equal to L, for L we construct suppose the DFA is like this, certain 

states are there, some initial state is there certain final states are there assume some n 

number of final states are there. Now, what would certain transitions here, what I would 

suggest, you consider a new state outside this state set of given DFA, you make that as a 

final state, and remove that there final states you just make them as non final states, these 

are non final states, whatever the final states that you have earlier in this. 

But, you put epsilon transition from here to the new state, and you see any string that is 

accepted by A is a original DFA, what is the situation any string, if you put it in the 

initial state here it takes the transition and finally, end up with the final state here. But, 

since there is an epsilon transition from each final state to this new final state, the 

original final state to the new final state. 

Now, you understand that this particular string, using this first particular string from 

initial state to the final state you can always reach. And when you can reach to this final 

state, any string that is ending if you put in a initial state ending in this state, only you 

can reach to this new final state. Thus you can understand that this worsen of NFA can 

be constructed with unique final state and which precisely accept to the given language L 

that is... 



Now, if you consider Q, sigma, delta, q naught, F a, DFA accepting L, what do you do 

you set B to be Q union single term p, a new state p and of course, the original alphabet. 

All the original transitions of the given DFA will be lying there in addition to that, you 

take the transition from the final states to the new final state, because this p is declared as 

new final state, the original initial state is the initial. 

So, this delta dash is defined as, if this q is in the original state in a in sigma, then as it is 

delta of q, a and if this q is in the final state, so in addition to this transitions. We are 

declaring that, through epsilon transitions you will be reaching to the final state, that is 

what is a construction I have shown. So, if you construct a finite automaton of course, 

this is an NFA, then you can understand that this accepts the same language, but you 

have only one final state. 

(Refer Slide Time: 23:36) 

 

So now, once you have this, what I will do given a regular language I consider finite 

automaton with unique final state, so given L I consider a finite automaton with unique 

of course, initial state is always unique, now I have only one final state. Now, you have 

certain transition here, you have certain transition in this finite automaton, what I would 

suggest you now whenever you have an arrow in A for example, from p to q, if you have 

an arrow under A, you simply reverse this arrow in the new DFA. 

So, let me call this DFA to be say A R finite automaton, let me not say is a DFA, because 

whatever that we have constructed with unique final state, that is non deterministic 



automaton NFA. So, what do you do the final state of the finite automaton A you make 

this as initial state and the initial state of this you make that as a final state and whenever 

you have an arrow here from p to q you reverse that arrow, that is all. 

So, the transitions will now flow back from state to the initial state here, thus in A power 

R, you can understand that whatever is the string accepted in A, it is reversal will be 

accepted in the new finite automaton. Because, you take a string a 1, a 2, a n that you 

apply it in the initial state here, you are reaching to the final state, now since arrows are 

reverse. 

So, whatever the edges that you have here they are reverse you can understand that, by 

applying that particular string the reversal of the string a 1, a 2, a n in this state, you will 

come back to this state; so now what do you do, you give a formal construction. 

(Refer Slide Time: 25:54) 

 

So, an exercise is here is give a formal construction of A power R, you see when I have 

demonstrated the idea that if a language is accepted by a DFA are finite automaton. For 

every regular language there is a final automaton with unique initial state, I have 

demonstrated like you have to construct this way and of course here you have to observe 

that language accepted by B is nothing else, but L, so this is a part of exercises. 

And now you have one more exercise, first you do the formal construction whatever the 

idea I have explained here, you give a formal construction here of A power R. And 



observe that this new automaton accepts precisely L power R, so that this as an exercise 

and give a formal proof that if L is regular, L power R is regular. 

(Refer Slide Time: 27:27) 

 

Now, what are the properties, so far we have discussed using this, let me give you an 

example using all these properties, we conclude that a particular language is regular, is a 

very important language that you feel, once I present this language. Consider the 

alphabet which 8 symbol say a naught to a 7, what are this symbol, there essentially the 

binary representation in this form of the numbers, decimal numbers 0 to 7, that is a 

naught is triple 0 0 0 like this a 1 is 0 0 1 and so on, a 7 is 1 1 1, so what is a naught, 

what is a 1 and so on. 



(Refer Slide Time: 28:16) 

 

Now, a string over the sigma this alphabet is set to represent correct binary addition, if 

correct binary addition, if the first row I will say that is b i 1 dash, b i 2 dash and so on, b 

i n dash that is a first row of each symbol. And plus second row of each symbol is equal 

to third row of each symbol, because whatever the string that you consider a i 1, a i 2 and 

a i n. If you put them side by side the first row of each symbol plus second row of each 

symbol if you consider those strings, these are the binary numbers, it should be equal to 

the third row of each symbol whatever the string that you are getting. For example a 5 a 

1, a 6 a 5 represents correct addition, because this a 5 a 1, a 6 a 5 if you consider what 

you have essentially, let me write here. 



(Refer Slide Time: 29:27) 

 

1 0 1 1, a 5, a 1, a 6, a 5 if you consider a 5 is essentially this 1 0 1 a 1 is 0 0 0 0, this is 0 

0 1, a 6 is 1 1 0, a 5 again is 1 0 1, we say this string represents correct addition, because 

if you consider this first row that is 1 0 1 1, the second row that is 0 0 1 0. If you sum up 

these two you get this 1 1 0 1 and thus I say that, this string a 5, a 1, a 6, a 5 power sigma 

represents correct addition. 

For example, if you take this a 5, a naught, a 6, a 5 if you put the symbol side by side and 

see the first row and second row, if you take up the sum, that is not equal to the third 

row. And thus you see a 5, a naught, a 6, a 5 power this alphabet that does not represent 

correct addition. 



(Refer Slide Time: 31:19) 

 

So, now you consider the language power sigma, which contains all those strings that 

represent correct addition that is all those strings a i 1, a i 2, a i n power sigma star, if you 

sum up the first row with the second row, that should be equal to third row, consider 

those strings, we observe that it is regular. That means, essentially we are understanding 

that this binary addition you can represent a language of this form and we can see that 

particular language is regular. 

Now, if you remember we have constructed a mille mission to perform the addition, in 

which whatever the format that we have followed we have precisely adopted the same 

format here, whether there you have consider a pair as input and the particular bit as 

output. Here, the this bit is also included in the input and we have consider each symbol 

as a triplet and thus you have 8 symbols, so among over this 8 symbols we have 

formulated the strings and we consider only those stings, which represent correct 

addition has defined here. 

Now, we observe that this particular language is regular, you follow the same pattern as 

mile mission, for 0 state carry 1 state and you can observe very quickly that, you can 

identify an NFA accepting this particular language. Let me present that here, this is how 

the mille mission we have constructed, there only things we have mention, for example if 

you have 0 1 1, there we have 0, 1 as input 1 as output, because this is a carry 0 state and 

this carry 1 state. 



And for example, here if you give 0 0 as input in the 0 carry state, you will have 0 as 

output in case of mille mission, here we made it as a triplet, because 0 0 0. So, for 

convenience I am writing this is horizontally 0 0 0, but the what is the symbol this is 

vertically we are writing in a bracket that 0 0 0. So, likewise here for each state I have 

only four symbols you used for 0 carry state and 1 carry state, so among this symbols 

depending on the carry that if you add for the first two symbols, the third symbols will be 

reflected as a third component of this triplet. 

And thus we have constructed here an NFA and now you can quickly understand by 

recollecting the construction mille mission are right here also. If you take the string like 

this a 5, a 1, a 6, a 5 what we are doing, we are summing up this two and whatever is the 

corresponding symbol that is given as the third symbol here in a triplet. And if you have 

some carry here, that carry will be considered while counting while summing of the 

components of the second symbol to look at the answer in the third component. 

For example, here 1 1 that is you see 1 1 when you are adding whatever is coming up, 

but what we have to look at here is, when you are adding these things. Because, 1 0 1 1 

and this is 0 0 1 0 when I am adding this 1, 0 that is 1 here, when I am adding 1, 1 here 1, 

0 here you have 0 as the result and but you have 1 here as a carry. So, when you have 1 

carry here, so that is going that is changing the state there the input is 0 0, but you have 1 

carry, so the result it is reflecting, 1 1 is reflected. 

But, you look at when I am giving the string a 5, a 1, a 6, a 5 I am not getting these 

transition, because this transitions are essentially carried from a 5, a 6, a 1, a 5 in this 

direction if you fit to the constructed NFA here, then it represents the correct addition. 

Because, you are adding from right to left not from left to right, because the carry is 

important when you are coming from this side to this side, in a usual way of adding to 

binary numbers. 

And thus you understand here whatever is the string addition to by this, those symbols 

that you are adding component wise from right to left and hence, this strings which are 

accepted here is the elements of L power R. And of course, since we met this initial state, 

this initial state as final we have one more string that is empty string accepted by this, but 

what do we require, we require reversals of the strings in L power R, but we do not want 

this epsilon as well. 



Now, what do you do you apply this properties, this is the language accepted by this 

NFA and hence, this language is regular, you can safely remove finitely mini strings 

from a regular language to observe, there is resultant language is regular the properties 

we have observed. And this what I would suggest first you remove this, what is the 

resultant 1 that is L power R and from that property you say that L power R is regular. 

(Refer Slide Time: 36:51) 

 

Now, since if x power R power R is x this property, this is the property of a reversal of 

the string, you can understand that if you consider L power R power R, because for each 

string again you take and obtain the reversal that is what is essentially L. And hence, 

since L power R is regular it is power that is L only, where L is given precisely here, so 

we can conclude that for L for this language, we have a finite automaton and hence, this 

language is regular see what are properties. 

So, far we have discussed like reversal of a languages, regular languages regular, 

intersection and differences, so this particular example has demonstrated some of the 

things to understand that. But, the language is looking little bit complicated, but you see 

applying this properties we can conclude, applying this closure properties we can 

conclude that the language is regular. 

Now, let me introduce one more, that is right quotient this is new, because so far 

whatever that we have discussed, all these things we have already defined earlier, this 



operations. Now, this is the new operation that we introduce here, that is right quotient 

between languages. 

(Refer Slide Time: 38:35) 

 

How do I define this, let L 1, L 2 be two languages for sigma and alphabet, right quotient 

of L 1 by L 2, we denoted by L 1 by L 2, these are language comparison all those strings 

x and sigma star. Such that, there is why in L 2 such that, x y is in L 1 that means, you 

see if you have any string x y in L 1, and there is a suffix in L 2, you can remove that 

suffix and the remaining you can put it in L 1 by L 2, that is how it is define. 

And this you can do it for any string and the resultant language you have construct, let us 

look at examples, consider because this is a finite language, so that we can understand 

the things very quickly. Consider L 1 to be this having four strings 1, 2, a, a b, b a b, b a 

b a and in L 2 I simply consider a, a b, if you want to have L 1 by L 2, what I have to do 

this two strings wherever that you get as suffix those suffixes you remove. And whatever 

the remaining prefix that you will be considering in L 1 by L 2, that is the definition. 

Now, you see a is suffix of this and this and the resultant strings now here it is, this a for 

the first string a this is a suffix and the remaining prefix is epsilon and hence, epsilon 

will be in L 1 by L 2 and a is suffix of this string also. And if you remove this a the 

resultant string is b a b that will be in L 1 by L 2, similarly if you look at a b, a b is suffix 

for this for this these two strings and as this is suffix of this and the remaining prefix is 

epsilon. So, epsilon will go L 1 by L 2 already it is there, and now for this string the 



remaining prefix is b, so b will go in L 1 by L 2. So, L 1 by L 2 is now epsilon b a b and 

b, so these three strings are there in L 1 by L 2 consider, let me consider some infinite 

language, so L 3 is 1 0 star 1 given by this regular expression. 

(Refer Slide Time: 41:20) 

 

That means 1 0 star 1 means, for this regular expression the language is 1 0 power n 1 

such that, n greater than or equal to 0 and L 4 is consider to be 1, this is given as L 3 

represented by this, L 4 is given as 1 the regular expression; that means, this is single 

term 1. Now, what is L 3 by L 4, suppose if one questions you consider all the strings, 

which is having 1 as suffix in L 3 and remove that suffix and all the prefixes you collect. 

So, a general string is of this form 1 0 power n 1, so in general for each string 1 is there 

as suffix and thus by removing that you get this is 1 0 star, now the question is, is there 

any other string will coming to the picture. Here since the regular expression this is 1 0 

star 1 and the strings are typically of this form, every string has 1 as suffix and only that 

suffix you can remove. And the remaining strings are this 1 0 power n of course, for each 

n greater that equal to 0, and hence you can conclude very quickly that L 3 by L 4 is 

simply 1 0 star. 

Now, let me consider one more example, consider L 5 to be 0 star 1 0 star, now if you 

consider L 5 by 0 star what is that, that is L 5 given to be 0 star 1 0 star. Now, if you take 

the quotient with 0 star it is not that, just it is not something like this, do not get confuse 

with this example, that is in the previous example what has happened. If you consider the 



regular expression 1 0 star 1 by 1, what we have got this is 1 0 star does not mean that 

you have cancel this 1 1 and to obtain this, this is not the situation, you cannot adopt the 

same to conclude here something like 0 star 1 0 star by 0 star by canceling 0 star 0 star, if 

you write 0 star 1, this is wrong. 

What you have to do you consider from the definition, you consider the strings in which 

0 power n, because 0 star is having 0 power n such that, n greater than or equal to 0. So, 

any string from this that is the typical of the form 0 power n, which is having this as a 

suffix and that particular suffix you remove and the resultant string that you take it in L 5 

is 0 star. 

Now, you see for example, if you consider epsilon of course, for any string epsilon is 

suffix and all the strings are coming into the picture, because of epsilon, because L 5 by 

signal term epsilon if you look at all the strings are coming. And even if you take say for 

example, single 0 you see here 0 star 1 0 star, this is having all possible number of 0's as 

suffixes, so that is 0 power m 1 say 0 power n such, that m n independently greater that 

equal to 0, so this is the language here. 

Since all possible number of suffixes of 0's are available you take anything the remaining 

string is of the form 0 power m 1 say 0 power n 1, where n 1 can assume any natural 

number. And here you can observer that it is in fact, L 5 that is 0 star 1 0 star all stings 

will come in L 5 a 0 star, and now if you consider 1 0 star. Of course, as you see in the 

arithmetic here you may feel it, but of course you have to do that calculation that looking 

at a possible subscripts. 

Here this one will be helpful to understand that this is 0 star and now if you consider L 5 

by 1, that is the language containing single term 1, you understand that it is 0 star, so this 

is the quotient the operation, quotient between languages. 



(Refer Slide Time: 46:43) 

 

Now, the result is if L is a regular language, then so is L by L dash for any language L 

dash, so that means, the quotient with any arbitrary language, the quotient of a regular 

language with respect to any arbitrary language is regular, that is what we are proving 

here, that is the result. Consider the regular language and an arbitrary language L dash, 

what do you do since L is regular, you have a DFA let me assume a to be the DFA here, 

now set A dash to be the same state set same in of course, alphabet is same. 

And now consider here L and L dash over the same alphabet sigma assume this way and 

now transition are same initials state is same, but the final states we change it this way. 

Consider all those states in q by applying any string x in that particular state, if you reach 

to your final state, then you can say that state to be the new final state, that is in F dash 

you can quickly understand that this is a DFA and you can observe that this DFA accepts 

L by L dash. So, you can take this is an exercise, take any string x that is in L of A dash 

and observe that this is in L by L dash, so this is a formal proof to understand that L of A 

dash is L by L dash, you can this is an exercise and conclude that. 


