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Let us first see what the present situation is. In this course, so far we have introduced the 

following. First, we introduce the notion of formal languages and then we look for the 

finite representation, in that context we have introduced the notion called regular 

expressions and the respective languages called regular languages. 
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So, after introducing these regular languages, given a language whether it is a regular or 

not, it is not that easy to understand we understood that point because giving regular 

expression is not that easy. So, in that context we took the help of grammars and we 

specialized that to so called right linear grammars, that we are calling regular grammars 

because our intention is to understand that this regular grammars characterizes regular 

languages. Of course, we have not proved that we are going to prove all these things. So, 

through regular expressions whatever that we have defined. So, called regular languages 

our intention is to show that regular grammars characterizes. 



That means given any regular language we can understand that through a regular 

grammar. Still there we have certain examples of regular languages we are unable to give 

regular grammar for that. In that context, we gave a tool called finite automaton and 

through finite automaton we are understanding regular languages. As I hope you 

understood clearly that giving a regular expression is not that easy and regular grammar 

is relatively better, but for many of the things I hope now you could have given this finite 

automaton. 

In that we have variants of course,. So, called DFA and NFA. We have observed that 

these 2 are equivalent. So, here the notion of finite automaton that may be DFA or NFA 

this assumption lead to capture the information related to regular languages. These 

characterizes that term. So, in this context when we are proving DFA is equivalent to 

NFA, the number of states the newer. So, the DFA is introduced and whenever you are 

given an NFA, if you want to convert into a DFA, what is happening the situation here. 

If you have n states here in this conversion you are getting 2 power n states that is 

exponential number of states. Now, in order to understand that what is the possible 

minimal DFA or you know when you are considering a particular language 

corresponding to that, if you are if you are constructing a d f an NFA and converting to 

DFA use, is it the situation that you will always have that many number of states or 

whether there are any states which are useless. 

So, that kind of aspects now in this module we are going to discuss. So, here our 

concentration is to understand that what is the minimal DFA to accept a regular 

language, that is our concentration now. So, in this cycle of course, once again when to 

conclude here this particular cycle, this finite automata. We are going to observe that in 

the following lectures that all these are equivalent. 

So, the present concentration of course, at present we are concentrating to understand 

that what is the minimal DFA to accept a regular language. So, the present lecture is 

essentially present module essentially concentrating on that 1 or 2 lectures in this 

direction. In this direction we require one important tool called Myhill Nerode theorem, 

that I will be discussing in this lecture. In fact this a very important characterization for 

the languages accepted by DFA. Of course, eventually what we are understanding the 

language accepted by DFA is regular languages. So, this is very important 



characterization for regular languages. So, in this lecture I will concentrate on. So, called 

Myhill Nerode theorem and to introduce that theorem I require some basic definitions in 

that direction. 
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First let me introduce this, an equivalence relation tilde on sigma star like strings over an 

alphabet sigma is said to be right invariant, if you take any 2 strings x y, if they are 

related with respect to tilde, then any string you take z and concatenate it and right side 

of both the strings. Then there should also be related with respect to tilde. So, if this 

property satisfied for all strings x y which are related, if you concatenate any string z on 

their right hand side the resultant string should also be equivalent with respect to that 

tilde. 

So, such an equivalence relation we call it as right invariant equivalence relation. Let us 

look at an example. So, that you can understand this concept right better consider. So, 

this example I am defining tilde L. Of course that I will be using throughout this lecture. 
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So, please remember now, you consider a language over sigma that means it is a subset 

of sigma star. Define the relation tilde L on sigma star with this condition, that x related 

to if you take any 2 strings x and y in sigma star, you relate them if and only if, for any 

string z x z is in L if and only if y z is in L. So, whenever the x z is in L, y z should also 

be in L. So, this and vice versa of course. 

So, with this condition we are defining this tilde L. Of course, we can quickly understand 

that this is an equivalence relation because to understand a relation is an equivalence you 

have to understand reflexivity, symmetry and transitive. So, any string x is related to 

itself because if you concatenate any string z, the resultant string and both the situations 

here are same and therefore, both are in L or not in L. 

Thus, you can quickly understand that it is reflexive. Symmetry follows very quickly 

because of this if and only if condition here and transitive to also you can verify to 

understand that this tilde is an equivalence relation on sigma star. Now, our point here of 

course, important thing you have to cross check here in this context is right invariant 

property. That means x related to y implies x z related to y z for all z that is what we 

have to understand for right invariant relation. 

So, take x y in sigma star and choose takes x y in sigma star and assume they are related 

and pick up any z arbitrary in from sigma star. Now, we have to show that x z related to 

y z with respect to this relation, that is we have to show that for all w in sigma star x z w 



is in L if and only if y z w is in L. This is the condition we have to cross check. Now, if 

you write for any w take an arbitrary w in sigma star and write u to be z w. Now, you see 

that since x related to y with respect to tilde L what we have x u related x u is in L if and 

only if y u is in L this is the definition of tilde L. So, x u is in L if and only if y u is in L 

and what is u, we have chosen that is z w t. That means what are the property that we are 

aiming to that is this we have got it and that is this x z w is in L if and only y z w is in L. 

Hence this tilde L is a right invariant equivalence relation. Now, I give you one more 

example. 
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This is also very important in this lecture, that is I am defining it as tilde a for a DFA a. 

Consider a DFA q sigma delta q naught f, take a DFA. Now, define the relation tilde a on 

sigma star as below, x and y are related with respect to tilde a if and only if, you put 

those strings in the initial state, you should essentially reach to the same state. If you are 

reaching to the same state, then you say they are related. You can understand again that 

this is an equivalence relation because if you take any string that you related itself 

because what are the state that you are reaching to with respect to x of course, that is 

fixed in a DFA and hence x related to x for all x. 

Symmetry is very straight forward because here we have we are putting equal to. So, x is 

reaching to a particular state and you know y is reaching to a particular state and they are 

same then of course, vice versa. Hence x related to y implies y related to x. When you 



are looking for the transitivity, because of the equal to here you are transitivity also very 

quickly and hence this is an equivalence relation tilde a is an equivalence relation. 

So, here what we have to understand that it is a right invariant equivalence relation let us 

see. Take x related to y that is this property satisfy. Now you pick-up any arbitrary z in 

sigma star, what I have to observe that delta cap q naught x z is equal to delta cap of q 

naught y z, that is what we have to observe, to show that x z is related to y z.  

Now, consider this delta cap q naught x z. I hope by know you have proved that this is 

equal to this you can use induction to prove this property. Now, since these two are equal 

you can take in place of delta cap of x naught, q naught delta x. You can replace it with 

delta cap q naught at y. Again using the property you can have this. Thus x z you related 

to y z for all z, let us we have that is an arbitrary thing. Thus, you can understand this is 

also a right invariant equivalence relation on sigma star. Of course, and sigma star tilde a 

is defined on sigma star. 
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Now, let me state Myhill Nerode theorem. Let L be a language over sigma, the following 

three statements regarding L are equivalent, what are those statements. Statement 1 L is 

accepted by a DFA. Of course, once eventually if you prove that the finite automata is a 

character, it captures the properties of regular languages that means it is it is 

characterizing regular languages. Then this theorem use a characterization for regular 

languages as I had mentioned. 



What is the point here is, there exist a right invariant equivalence relation tilde a finite 

index on sigma star such that, L is the union of some more equivalence classes of tilde. 

So, what we are trying to say here is the second point, you can find a right invariant 

equivalence relation tilde such that, L is and of course, it is the finite index such that, L is 

union of some of its equivalence classes. 

Number three is the equivalence relation tilde L as defined just now with respect to L 

because given a language L you can talk about tilde L as just we have defined. The 

equivalence relation tilde L is a finite index. So, this theorem claims that these 3 are 

equivalent. L is actually DFA and there is a right invariant equivalence relation tilde 

finite index, such that L is union of some of its equivalence classes. 
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The equivalence relation tilde L is a finite index, these 3 are equivalent. We prove 1 

implies 2 and 2 implies 3 and 3 implies 1 to show that these 3 are equivalent. To show 1 

implies 2 assume L is accepted by a DFA say a to b this, q sigma delta q naught f. First 

what we will show, that in point number 2 what we have to show there is a right 

invariant equivalence relation, which is the finite index and L is union of some of it 

equivalence classes, this is the point number 2 we have to prove. 

Here in this context what we will observe that that tilde into that is, you know we have 

tilde a will satisfy the tilde in 2, that means what we have to observe that, tilde is the 

finite index because we have already observed that tilde a, is a right invariant 



equivalence relation on sigma star. So, what we have to observe the remaining 2 points, 

one is it is a finite index. 

Number 2 is L is union of some of its equivalence classes. These two points we have to 

observe. So, tilde a you know already the claim is it is a finite index. So, to show it is a 

finite index. First let me observe the following 2 points, for x and sigma star delta cap of 

q naught x, if it is equal to p, then the equivalence class containing x is all those strings 

in sigma star, if you put them in initial state. 

If you reach to p, that is equivalent to x because if you remember the definition of tilde a 

2 strings with respect to tilde a. They are equivalent if you put those 2 strings in the 

initial state of DFA here that is in q naught you should reach to the same state then we 

say that those two are equivalent. That means if you take any string x what are the strings 

equivalent to x, that is the equivalence class containing x is precisely. 

Although strings in sigma star if you put them in an initial state q naught if you reached 

to the state p what is be here, the state that you are reaching via x from the initial state q 

naught. This is what is precisely the equivalence class containing x, this is the point 

number 1. Point number 2 because here the state to which you are reaching that is 

characterizing the equivalence class. Now, corresponding to each state, now let us look 

at all those strings. 

Let me call for a given q in q for a given state q consider c q the class of q I am calling is 

although strings if you put them in the initial state q naught if you raise to the state q let 

me call it as c q. This is an equivalence class of course, this can be empty, if no string 

can reach to this state q because if that is not reachable y a, using any string then of 

course, this is empty let me consider empty also, in this context. 

So, what I am saying here, this is an equivalence class of tilde a because what are all 

those strings, if we put in the initial state to reach to q, they are all equivalent to each 

other. This forms an equivalence class. Thus what you can understand equivalence 

classes of tilde a are completely determined by the states of a because from the point 

number one, you understood that the state is coming into the picture. 

Now, take every state and said the class c q and collect all those strings, this can be 

empty if that particular state is not reachable from the initial state, but wherever it is non 



empty all those strings which are reaching from the initial state with that particular state, 

they are all equivalent. That is an equivalence class with respect to this tilde a. From 

these 2 points what you can understand that, this tilde a is completely determined by the 

states of a. Moreover the number of equivalence classes of tilde a is less than or equal to 

the number of states of a. 

(Refer Slide Time: 18:00) 

 

The reason why then I have every state gives an equivalence class to you of course, 

possibly empty in whenever the state is not reachable then equivalence class what I am 

calling here is empty set. So, thus the number corresponding to each state you get an 

equivalence class possibly an empty class some of the cases. So, thus the number of 

equivalence classes of tilde a is less than or equal to the number of states of a. 

Hence tilde is a finite index because a has only finite number of states. Therefore, tilde a, 

is a finite index. Of course, here index we mean index of an equivalence relation you 

mean the number of equivalence classes of that relation. Now, we want to prove that the 

second point L is union of some of it equivalence classes. Here this tilde a is equivalence 

classes. Now, consider this L by definition this is, although the x n sigma star if you put 

them in the initial state you will reaching to the 2 1 of the final states. That means delta 

cap of q naught x is in f that is union of these sets where you reach to a particular final 

state because for all final states I am considering these sets. 



Some of the non-final some of the final states may not be reachable in which case this set 

is empty. Now, just we have proved that this set is an equivalence class we are calling it 

as c p corresponding to a state p. Thus you understand that L is union of c p for p belongs 

to f as desired. Thus we have observed that 1 implies 2 that means we could identify a 

right invariant equivalence relation. Here that is tilde a, which is the finite index number 

1 and number 2 L is the language L is union of some of its equivalence classes. We have 

proved 1 implies 2. Now, let us consider 2 implies 3. To prove 2 implies 3 what we have 

to observe that tilde L is a finite index the number of equivalence classes of tilde L is 

finite.  

(Refer Slide Time: 20:43) 

 

Suppose tilde is an equivalence as into that means tilde is a right invariant equivalence 

relation of finite index number 1 and number 2 is L is union of some of this equivalence 

classes. So, that is what I am assuming tilde is an equivalence as in 2 point number 2 of 

the theorem. We show that tilde is a refinement of tilde L, what is refinement. If you 

suppose this is the set under consideration and if you consider equivalence. 
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Relation equivalence relation, you know equivalence relation partitions the set. Now, if 

you further refine this relation. That means if you break this equivalence classes further. 

For example, may be we are breaking this direction or whatever the classes. Here I am 

getting, we can clearly see that what are the partition that I am getting here each 

equivalence class that means equivalence class here I mean, the portions that are shown 

with a boundaries of this cross lines with the vertical lines. So, this portion is this is the 

new equivalence class. 

For example here, this is a new equivalence class. These equivalence classes are 

contained in the original equivalence classes because there subsets of the because we are 

partitioning, further partitioning this. Now, we say this is the refinement, we are further 

refining this equivalence classes. So, that means if you take any 2 elements in this set, if 

they are related with respect to new equivalence relation, they are related to the original 

with respect to original relation because new equivalence class is a subset of original 

equivalence class. So, what we are trying to show that, this tilde is a refinement of tilde 

L. 
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That means once we show that this is a refinement, as I have explained that the number 

of equivalence classes of tilde is more than the number of I mean more or equal to the 

number of equivalence classes of tilde L. That means an index of tilde is greater than or 

equal to index of tilde L. As it is given that tilde is a finite index, tilde L is also is the 

finite index. So, once we show that tilde is a refinement of tilde L, then we are through. 

Now, suppose as I have mentioned that if x related to y with respect to tilde, we have to 

show that x related to with respect to tilde L also, to observe that this is tilde is a 

refinement of tilde L. Now, for that purpose for x y in sigma star, suppose x related to y 

with respect to tilde to show x related to with y with respect to tilde L, what we have to 

show, for all that if you concatenate z from its right side this is in L if and only if, y z is 

in L. 

Now, since tilde is right invariant that is what is hypothesis given in 2, the point number 

2 are the theorem. So, tilde is right invariant what we have x z related to y z for all that. 

In point number 2 we have this information also, L is union of some its equivalence 

classes some of the equivalence classes of tilde that means whenever x z related to y z 

that means x z is in L, then y z should also be in L. So, that is we have for all z x z is in L 

if and only if y z is in L that is what is the desired property we look for, to show that x 

related to y with respect to tilde L. Hence what we have observed, x related to y with 



respect to tilde implies x related to with respect to tilde L also. Hence tilde is a 

refinement of tilde and thus tilde L is a finite index. So, this is gives you 2 implies 3. 
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Now, we prove 3 implies 1. In 3 what we have, tilde L is the finite index let us assume 

that and what we have to show. We have to show that there is a DFA to accept L, L is 

accepted by some DFA. Now, we construct the DFA in this portion 3 implies 1. Now, 

construct A L by taking q sigma delta q naught f. Of course, here I have to give you that 

q the states at you consider it as sigma star by tilde L, that means the partition of sigma 

star with respect to the equivalence relation tilde L. 

Hence all the equivalence classes bracket x, x in sigma star that is what we consider it as 

state set in A L and what is the initial state. You consider the equivalence class 

containing epsilon, the empty string. Then you consider a final states or as F all those 

equivalence classes with which are in you know if you take any string in L, the 

equivalence class containing that x you consider as a final state. Now, you have to give a 

transition function in case of DFA. 

Let me define delta from Q cross sigma to Q defined by delta of bracket x at a, we assign 

it to bracket x a, the equivalence class containing the string x a. Of course, for all states 

bracket x and for all a in sigma. We have to understand that this is a DFA. To understand 

this is DFA what do, you require these of course, sigma is given to the alphabet that is a 

finite set alphabet means I am what I have to understand that q is a finite set number 1.  



Number 2 this delta is a function from Q cross sigma to Q. That means we have look at 

we have to prove the well defines of delta. So, that this is a DFA. So, to observe these 2 

points of course, since tilde L is a finite index you can quickly see that the number of 

equivalence classes of tilde L is finite. Thus the partition, that means the number of 

equivalence classes here is finite. So, Q is a finite set very quickly that Q is a finite set. 
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To understand that this delta is well defined. How is delta defined, this is defined as to 

show this delta is well defined consider bracket x equal to bracket y. Consider two states 

for bracket y bracket x in q. These are the states consider arbitrary a in sigma. The claim 

is bracket x a is equal to bracket y a because what we have to show delta of bracket x at a 

is equal to delta of bracket y at a. That is what we have to show that bracket x a is equal 

to bracket y a. 

So, that means what we have show with respect to, show these 2 equivalence classes are 

same we have to show that this x a with respect to tilde L it is related to y a, that is what 

we have to show. What is tilde a, you know already it is a right invariant equivalence 

relation. That means, if you concatenate any string on right hand side, the resultant 

strings are also equivalent. 

Here a is in sigma, that is a string you can of length 1. If you concatenate a to x as well 

as y, they should also be related with respect to tilde a because tilde L is a right invariant 

equivalence relation. Hence you have this property, once you have this property, these 2 



strings are in the same equivalence class. That means the equivalence classes containing 

x a and y a are same and does what you have, delta of x bracket x at a is equal to delta of 

bracket y at a. Thus, you can understand this delta is well defined, this is well defined.  
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So, once you understand that this delta is a map from Q cross sigma to Q this with this 

assignment, we have this A L is a DFA deterministic automaton. So, we constructed 

DFA. We proved that the language accepted this DFA is L the claim is L of A L is equal 

to L. 
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For that purpose, we show that delta cap of q naught w is equal to bracket w. So, the 

state, the equivalence class the state the resultant state will be the equivalence class 

containing w. This serves the purpose, if you show this, this point this is sufficient 

because if you take any string w is in L, that if and only if bracket w is in F, the reason 

why w is in L if and only if, bracket w is in F. 

How this is, once we have proved this thing delta cap of q naught w equal to bracket w, 

once we prove this the initial state here of course, is delta cap of we are proving this that 

is what we are proving. If the state is in final state then w is in f that is straight forward if 

this is w is in L Whenever w is in L what is the requirement, whenever you put this w in 

the initial state you should you should reach to a state that is in F.  
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So, with this criteria delta cap of q naught w is equal to bracket w. If you can prove then 

w is in L if and only if bracket w is in f is clear. Thus what will happen the language 

accepted by A L is equal to L. We prove this assertion by induction on the length of w. 

So, induction basis is clear for strings of length 0 because if you take a string of length 0, 

that is epsilon. If you put in this that is what is q naught by definition of delta cap of 

course, in any DFA. 

Here q naught is bracket epsilon thus we have, the basis of the induction that is for those 

strings of length 0 of course, empty string more over you can in fact observe that by 

definition of this delta this assertion is true for those strings of length 1. Thus delta we 

have defined with this condition. Now, if you consider delta cap of q naught at a, for that 

strings of length a, that means there is a delta cap is nothing as, but delta and delta is 

defined as… 

So, and this string is nothing as, but a epsilon a is nothing as, but a that is you are getting 

class containing a. Hence what are assertion we have that is true for all those strings of 

length 0 and all those strings of length 1. So, induction basis from this point you can 

observe. For inductive step you consider a string in sigma star some x and consider a in 

sigma what I have to observe the delta cap of q naught x a is equal to bracket x a, that is 

what we have to prove. 



So, consider delta cap of q naught x a this equal to this. That is the definition of delta 

cap, by induction hypothesis we have this delta cap of q naught at x is bracket x, that is 

delta of bracket x at a, by definition of delta you know this is bracket x a. Thus what we 

have delta cap of q naught x a is equal to bracket x a.  

Hence by induction what we have delta cap of q naught at w is equal to bracket w. For 

all w in sigma star and hence any string is in L. If you put it in the initial state of this 

particular automaton, you will be reaching to a final state precisely the equivalence class 

containing the string. Thus the language accepted by this automaton a L is L. Hence, L is 

accepted by some DFA of course, here A L this completes the proof of Myhill Nerode 

theorem. So, we have proved that 1 implies 2 two implies 3 and 3 implies 1. Thus, if the 

condition the statements 1, 2 and 3 are equivalent. Now, let me give you a remark. 
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The proof of 2 implies 3 shows that the number of states of any DFA accepting L is 

greater than or equal to index of tilde L. Given a language L, considering DFA accepting 

L in 2 implies 3, what we have proved the number of states of that DFA a is greater than 

or equal to the index of tilde L. 

That is what we have proved because to observe that tilde L is a finite index we have 

proved this point in 2 implies 3. In the proof 3 implies 1 we have provided DFA namely 

A L, if the number of states equal to the index of tilde L because in that A L the states 

are essentially the equivalence classes of tilde L. So, that means the states what we have 



considered there equivalence classes there is the number of equivalence classes equal to 

the number of states for that A L. 

So, from these 2 points we can understand that A L is a minimum state DFA accepting L. 

So, given L you know what is tilde L, from tilde L you know the equivalence classes 

from the equivalence making those equivalence classes as states, we have constructed A 

L. Since any DFA accepting L should have the number of states of any DFA accepting L 

to the more or equal states then the index of tilde L and A L is, in fact having the number 

of states equal to the index of tilde L. We can conclude that a L is minimum state DFA 

accepting L. So, we have from Myhill Nerode theorem we have a minimum state DFA 

accepting L that is what is the conclusion at this point of time. 
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Now, let me give one or two examples as applications of Myhill Nerode theorem. Thus 

Myhill Nerode theorem is characterizing, once again I am observing that Myhill Nerode 

theorem is characterizing, the languages that are accepted by DFA. Eventually what I 

have we point out that Myhill Nerode theorem characterizing regular languages. So, let 

me consider this example, you know this is a regular language, you can give a regular 

expression for this. Consider the language x in consider the language with all those 

strings having a b as substring, what is the regular expression for this. 
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Any string is here is of the form x a b y for any x and y in over a b. Thus the regular 

expression for this is, a plus b star a b a plus b star, this you know and hence this is a 

regular language. You know a DFA accepting this language also that we have already 

discussed have constructed. From Myhill Nerode theorem, we should understand that the 

tilde L should be a finite index. 

So, let us calculate the number of equivalence class of tilde L in this example. To 

understand using Myhill Nerode theorem this is a regular, I mean this is a language 

accepted a DFA. First observe that the strings epsilon a and a b are not equivalent to each 

other. Let us observe these point. So, to show epsilon a are not equivalent to each other, 

we have to find a string, such that if you concatenate that string on the right to it, right 

hand side of epsilon and to a one string should be in L, one string should not be in other 

string should not be in L, that is how we have to find. 
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Now, in particular suppose if you consider b, the string b epsilon b is b. You know b is 

not in l, but if you if you concatenate b to a on its right hand side that is a b that is in L. 

So, you can quickly observe from this that, a and epsilon are not equivalent because we 

could identify a string b here that, concatenating b to the right hand side of both the 

strings one string you are getting in L other string you are not getting in L. 

Thus a and epsilon are not equivalent with respect to tilde L. Similarly, we observe that 

this epsilon and a b are not equivalent. If you consider any string, which is not containing 

a b, if you concatenate that to epsilon right hand side, you will get of course, L definitely 

in the same string and thus that is not in L. If you concatenate that string any string to a b 

on right hand side anyway that is having a b and thus that is a string in L. So, you get 

strings 1 is in L other is not in L. So, that you can understand that epsilon and a b are not 

equivalent. So, what I am trying to say here is to show a and x a b are not equivalent with 

respect to tilde L. 



(Refer Slide Time: 42:21) 

 

You choose any string x in which a b is not a substring, for which a b is not a substring. 

Suppose, if you consider this concatenate x to epsilon right hand side. This is resultant 

string is x only and if you concatenate x to a b on the right hand side resultant string 

anyway is having a b a substring. You see this string x which is epsilon x is not having a 

b a substring. So, that is not in L whereas this string is always in L, as a b is substring of 

this a resultant string. 

Hence, we observe that epsilon and a b are not equivalent. Any string x I general string I 

have mentioned, in particular here we are considering b. If you choose b, b is not having 

a b as substring and you can understand that epsilon and a b are not equivalent. Now, we 

also observe that a and a b are not equivalent.  
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Here, I have taken the string a. If you concatenate a to the right side then of course, the 

resultant string is a, a that is not in L. If you concatenate a to a b at right hand side that is 

a anyway string of L. Thus a when this little a distinguishes a and a b and therefore, a 

and a b are not equivalent because to show two strings are equivalent with respect to 

tilde L. If you pick up any string from sigma star concatenating that string right side of 

both the strings the resultant strings both should be in L or should not be in L. 

So, with that criteria we have cross check and from these three points. I hope you can 

pick you understood that, these three are distinguishable to each other. Thus, what is the 

conclusion here, these three strings should be in different equivalence classes. So, let me 

say epsilon is in the equivalence class bracket containing epsilon. Let me call bracket a 

for the equivalence class containing a bracket a b for this. So, let me assume these three 

classes not there from this. Now, what we are going to show that, if you take any other 

string in sigma star that string should be in one of these equivalence classes. 
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Thus, precisely we will have these three equivalence classes. Hence, we can understand 

that tilde L is a finite index. Let me observe this point also, pick up a string x. Now, I see 

the property of x in two cases whether a b is a substring of x or a b is not a substring of x. 

If a b is a substring of x then x clearly will be. 
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Suppose, a b is a substring of x. Let me use this notation a b less than equal to x I mean a 

b is a substring of x, so that what we are a trying to say that x is related to a b. So, that 

this x will be in bracket a b. This is very quick because to x if you concatenate any string 



z whether it has a b or not a having a b. Since, already there is a b in x in the resultant 

string x that you will have a b a substring. 

Since, with the say with the same property if you concatenate that z with to a b this a 

resultant string is also having a b a substring. Thus this is in L and this is also in L 

irrespective of whatever that z we are concatenating. Hence, these two are equivalent x 

and a b are equivalent. So, if you take any string x in a b star. If it is having a b a 

substring that clearly will be in bracket a b. Now, if you consider the other case that if a b 

is not a substring of x then what are the possibilities. 

If a b is not a substring of x, then let me see x y be of the form a power n or by b power n 

in which a b is not there or when you some a’s and b’s. Since, a b should not be there 

you can have some number of b’s followed by some number of a’s, but of course, after 

that you should not have any b’s after a’s, because if you have any b after follow 

following to this a’s, then you will always get a b a substring. 

Thus I can categorize those strings x for which a b is not a substring means it may be a 

power n may be b power n, there is also form b power n or b power n a power n these 3 

cases. Now, in each case we can discuss that these strings will fall in some of the 

equivalence classes among bracket epsilon bracket a. Of course, whether it will be in 

bracket a b or not we will observe here. For n greater than equal to 1, because if it is 

empty string that is 1 situation that I will consider in the case of b power n for n greater 

than or equal to 0, here at least one a for n greater than equal to 1. 
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The other case I will consider. So, for n greater than equal to 1. If you consider x to be of 

the form a power n in this case x will be in bracket a as I have discussed. So, far you can 

take it to an exercise and observe that x will be in bracket a, in this case and if you take x 

which is of the form b power n. 

Of course, n greater than equal to 0 also you can put where in which case that is epsilon. 

That will be in bracket epsilon and if x has some a’s and b’s as I had mentioned x must 

be of the form this b power n a power n for m n greater than equal to 1. In this case you 

can understand that, this will be in bracket a. Thus this tilde L has exactly 3 equivalence 

classes. Hence, it is a finite index and the conclusion from Myhill Nerode theorem that 

this language can be accepted by a DFA of course, you know already that this language, 

DFA accepting this language. So, let me consider one more example. We know this is 

language a power n b power n for n greater than or equal to 1.  
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 So, far we have not constructed any of course, we have a grammar for this, but not a 

regular grammar we have constructed a conditioner grammar for this. In this example, 

we observe that tilde L for this language L a power n b power n, n greater than equal to 

1. We observe that tilde L is of the index of tilde L is infinite. It is not finite and does 

using Myhill Nerode theorem, you can say this cannot be accepted by any DFA. As we 

are saying that DFA characterizes the properties of regular languages. Of course, from 

this we can conclude that a power n, the language a power n b power n, n greater than 

equal to 1 is not a regular language. 

So, let me observe this point. We show that the index of tilde L is not finite. For instance 

you consider these two strings a power n, b power m these two strings from sigma star. 

Here sigma is a b with m different from n consider these 2 strings they are not equivalent 

to they are not equivalent to be equivalent with respect to tilde L, because if you consider 

b power n. If you concatenate b power n to a power n on its right hand side that is an 

element of L. Whereas since m different from n a power m b power m is not an element 

of L. Thus for each n there has to be one equivalence class to accommodate a power n, 

the string a power n. Thus this tilde L is not a finite index. Therefore, the conclusion 

from Myhill Nerode theorem is that there cannot be any DFA accepting this language. 


