
Formal Languages and Automata Theory

Prof. Diganta Goswami

Department of Computer Science and Engineering

Indian Institute of Technology, Guwahati

Module - 1

Languages and Finite Representation

Lecture - 1

Introduction

This course this which formal languages and automata theory. In this lecture

interruptible lecture simply discus what this motivation behind this course. The content

of this course how will dealing this course, what are the books what are the basic

recommends and so on? So, this course will be taken ((Refer Time: 00:45)) I am

Diganta Goswami the faculty of computer science department. And my colleagues K V

Krishna from mathematics ((Refer Time: 00:58)) IIT Guwahati. Shall briefly discus

course, the contents; what are the books, how the topics will ((Refer Time: 01:08)) in

syllabus.

(Refer Slide Time: 01:22)

And what are the prerequisites for the discus; which we all know that competition is

basically solving problems through the mechanical preprogrammed ((Refer Time:

01:26)) of a finite number unambiguous steps. Computation can be performed using a

computer that is known to us. And theory of computation comprises the fundamental

mathematical properties of computer hardware and software.

(Refer Slide Time: 01:47)

And, theoretical computer science and basically comprises few components for says

data structures and algorithms. For solving any problem we to right algorithm that

means you have to follow the finite number of steps which are unambiguous steps

which when followed in sum order; it also particular problem; while executing the

algorithm we need to store, access data, many ((Refer Time: 02:15)) and so on. And for

that purpose of course some ((Refer Time: 02:20)) is called data structures; for

example, takes q and so on. So, in data structures and algorithms discus all those

concepts various objects and algorithms; then to implement those algorithms we need

to write in sum programming languages. So, therefore semantic programs comes into

the picture and then theory competition already we have say that various ((Refer Time:

02:56)) both hardware and software. And this present course is foundation course for

theory of competition.

(Refer Slide Time: 03:07)

So, what is there in theory computation? So, mainly what are we discussed here is that

what can be computed; we have large number of problems in the world, in the universe

((Refer Time; 03:18)) finite. So, can I compute or can I solve all those problems that is

what we have to see include a computation. So, if can you compute why we can

compute or what are limitations of computation that will have to discussed here. Then,

we that is can compute or solved a problem how difficult it is ((Refer Time: 03:44))

complexity ((Refer Time: 03:45)) that also we discussed in this course. But obviously

to address all those aspects we require ((Refer Time: 03:54)) more than sub

competition. So, ((Refer Time: 03:59)) abstract computer through which we can

demonstrate the mathematical proof of the assertions we make about all those. Now,

this course mainly to introduce some starting the property of, the fundamental models

of computation.

(Refer Slide Time: 04:19)

Since, we have say that we need various kind of abstract machines or abstract devices

and the different kinds of abstract devices, abstract computers or models. So, ((Refer

Time: 04:29)) basically the different kinds of models of computation and the properties.

For example, will have here very simple models of computation that is finite automata;

then we have pushdown automata, then turning machine which is most power full is all

most models of computation. We will introduce those concepts, those machines and

study of various properties of those motors. Now, the problems that we want to

compute which those abstract devices the models of computation; we discussed as

formal languages.

(Refer Slide Time: 05:14)

Therefore, we need to look forward for an abstract computer which can recognize or

expect those languages; when an abstract computer or those model can accept language

we sat that it can solve the problem. Because whenever it accept the language means it

has accept solve that problem whatever motion.

(Refer Slide Time: 05:50)

Now, whenever we say that a problem gets solved there will be some easy problem and

there will be some hard problem ((Refer Time: 05:54)) classify problem to get this

based on their complexity or hardness; easiest to hardest problem. And then since

problems are given irrespective languages what are the corresponding languages to

each of those. Then, we have some problems which cannot be solved at all by any

computing devices; that means so that no computer device to solve a particular

problem; that means unsolvable or un computable problems. And then what is the

corresponding languages for those language. So, since we have said that they are

various models of computation and gives the problems as formal languages as input to

the computer devices. Therefore, corresponding to its automata class of languages.

(Refer Slide Time: 06:54)

For this course, we have large number of the books available both Indian and foreign

publication. So, but there are some classical books. For example, the book by Hopcroft,

Motwani and Ullman. So, this one a classical book that we can refer to; whenever we

have since we have define books we will see the different books discusses or introduces

or ((Refer Time: 07:35)) problem in different ways. Say some books will discuss this

automata first; various models of computation. Then, formal languages every book of

course will first introduce you the basic concepts like ((Refer Time: 07:54)) languages.

And then various times of language will be discussed and then automata discussed. So,

some first discussed automata; then introduces grammers which a mechanism to

generate languages. For example, in these books how Motwani and Ullman first

discussed this automata; then introduces grammar and so on. Then, another book that

book by lives and ((Refer Time: 08:29)) Lomita ((Refer Time: 08:30) is very classical

book. Then, ((Refer Time: 08:44)) introduction of theory of computation and good

book; when we have book by peter limes which discuses lot of numbers of examples;

may be useful ((Refer Time: 09:00)). Then, book by ((Refer Time: 09:03)) languages

and machines and gets theory of computer science. Now, this book basically first

discussed this grammars, languages and then automata. So, whenever you have any

doubt may be you can refer to any one of those books and get clarification.

(Refer Slide Time: 09:30)

Now, we will see that what we were going to cover the various contents of this course;

what are the content and what are the flow of topics basically that is what we need to

want to discussed here. So, this is course into 15 modules and each module each

compression of many lectures. So, module 1 contains many say 2 lectures. So, initially

we give the basic concepts; what is the alphabet, strings and then formal defining

languages? And then we go for finite ((Refer Time: 10:14)) and that what mean by

finite ((Refer Time: 10:16)) is that since we have say that we need to use computer to

compute; and problems are given in terms of even formal languages. But you know that

languages may be finite or infinite. In case of finite is fine you can give you a input to

the computer finite ((Refer Time: 10:35)). But in case of infinite language we need to

represent that language using some kind of finite representation; and then give to an

input computer. So, therefore for every language we need to have some kind of finite

representation; so what is the finite representation and how will represent any language

using finite amount of information; that is what we discussed over here. So, we will use

some kind of tool called say regular ((Refer Time: 11:03)) which can be used to

represent any infinite language is infinite ((Refer Time: 11:14)). But it is not case the

very language can be written by using any regular explanation; they remain languages

for which is not possible the regular explanation. Then, will go for grammars in module

2; which is again divided into 2 to 3 lectures. So, grammar is basically again ((Refer

Time: 11:46)) tool which can generate languages. So, it is also finite ((Refer Time:

11:51)) for languages.

So, here first we will discussed on a kind of grammar called context free grammar; so

in this grammar we have rules to generate the strings in the languages. Now, we can

impose some restrictions and the rules of the grammars or we can more generate

grammar; based on this ((Refer Time: 12:19)) we have different kinds of grammar

which can generate different languages. So, firstly discussed the context free grammars

and then will see how we can derived strings in a languages? So, one is derived is string

in a language there is other ways to which as technique of derivation 3 ((Refer Time:

12:49)) which is also useful in ((Refer Time: 12:53)) a programming language. Then,

we will impose from resection the conduct the grammar and we will see that they

grammar called regular grammar; which is actually equivalent to the regular

expression. That means, the way we representing that the class of language that is

generated by regular grammars equivalent to the class of languages represent by regular

expressions.

After that in module 3 we discussed we come to say automata; first we discussed the

simply kind of automata which is called finite automata. So, all this automata basically

abstract computing devices, models of computation and then compute or accept

different kinds of languages; that mean we can solve different languages. So, finite

automata is simplest of all; that is way computing power will be limited. Then,

introduce ((Refer Time: 14:09)) infinite automata by the default find automata is

determined mistake; non determine the important concept is course assign we introduce

the concept of ((Refer Time: 14:20)).

And then we have another model is called ((Refer Time: 14:23)) simply is an f. But we

can so that the deterministic automata and non defendable automata both here

equivalent; they will we shown will be its module itself. Then, in module 4 we come to

minimized of automata; what is done here is that since we have a suppose we have a

language and we can construct find the automata through except that language; we can

construct in many different ways; in some cases the automata will number of ((Refer

Time: 15:15)) in another case number of cases will be more but both are equivalent in

the sense that accept the same language.

So, therefore for any language would like to asked is there a find automata with

minimum numbers substance; yes that is what we can do. For that purpose we can be

introduced a characterization for the class of language is x and y; the regular

expression. And then becomes so that we can construct a find automata which

minimum numbers subsets. Then, we go for showing equivalence the various concepts

like say regular language in which regular grammar and find automata; a class of

language accept by regular expression is said to be regular languages that way. And so

that the define automata and regular expressions they are equivalent; the class of

language except by the expression is equivalent to the class of language accept by

automata. Similarly, regular languages and regular grammar the equivalent regular

grammar is class of regular languages so on. So, will equipment in the various models

in module 5.

In module 6 we discuss some variation of find automata; so whenever normally will

discussed find the automata we see that accepts a class of languages particular

language. But find the automata can sometimes also produce some output; given some

input it may be produced some outputs. So, in that context we will see move machine

and ((Refer Time: 17:23)) which produced some output. And then we will also same

and other relevant of find the automata is ((Refer Time: 17:37)) where we read in head

can move ((Refer Time: 17:43)); in normal find the automata reading in head only

move in one direction. But will case ((Refer Time: 17:49)) it can move back input. So,

this various kinds of automata will be discussed in module 6. Module 7 we will discuss

property of regular languages. So, what are the various properties of generic

characterized of regular line thus; that will be discussed in this model 7.

Again, suppose as a languages were it is languages regular no; suppose it remains not

regular then how can you so that this language is not regular ?Whatever we have tool

do this he will discussed here in module 7 using sum kinds of ((Refer Time: 18:22))

languages. So, that a language is non-regular and then many ((Refer Time: 18:41)) for

regular languages we will proved over here. Then, we will go for implication of

concept of grammar we have already introduce in module 2. Then, in that grammar we

will have will many different kinds of rules. And so that some rules are not really

necessary and you can simplify the grammar by elevating or simplifying sounding

((Refer Time: 19:11)). And still we have an equivalent language; that means given a

grammar we can simplify that grammar and still this grammar we generate same

languages as the previous one; by simplification we means reducing the number of

rules that will having grammar and so ((Refer Time: 19:39)) simplification.

And, then we will discuss some extended forms which we useful some standard forms

of grammar which are called normal forms; which are useful in proving many

theorems. And how to given a grammar, how to arrive at standard form for the

grammar; which generate that a same language this is the original one that will discuss

in this module; there many different kinds of standard forms; we are not going to

discussed all kinds if standard forms only a few forms can be discussed.

(Refer Slide Time: 20:24)

In module 9 we discuss we properties of CFLS similar to the properties of regular

languages. The properties of CFLS means conduct free languages; the language is

generate by consider the grammar ((Refer Time: 20:34)) properties and some another

properties likes say given any language ((Refer Time: 20:42)) conducts languages. So,

how to prove that we have some tools to proved that and we will discussed in this

module. So, as if said earlier is that which its abstract devices or automata; we associate

the class of languages. For examples for finite of automata the class of languages is the

regular line ((Refer Time: 21:14)). Similarly, for the corresponding to this ((Refer

Time: 21:22)) language that the automata is the corresponding automata is whose down

automata.

So, to the see how ((Refer Time: 21:30)) automata is the different from find the

automata that means you can enhance by the automata by headings some more features

in it. So, that it can accept different kinds of languages which nothing but the context

free languages; we will also in the process that the class over the regular languages the

proper subset of conversed languages. That means, whose down automata is more

powerful in terms of accepting languages. And then we will proved here that who’s on

automata and context grammars their equality; we will so that if we have a presume

automata you can construct and equivalent ((Refer Time: 22:33) to it.

Similarly, if we have it context grammar I can contact equivalent automata from it.

Then, in module 11 we discuss and I told you most powerful computing model that is

((Refer Time: 22:57)) machine. The ((Refer Time: 23:00)) is the most powerful

computing devices in the sense that whatever it is machine can whatever a general

purpose computer can do the present general purpose computing then at termination

also give to the same thing. In the sense that is capable of computing whatever the

general purpose computer can compute do. So, see how we can used a ((Refer Time:

23:30) to do compute a function or different functions; then will use some modular

approach in the sense that we can contract very complex ((Refer Time: 23:50)) theory

eliminate from the complex functions using some simply theory machines which can

compute some simple functions.

That means, you can combine ((Refer Time: 24:01)) to compute more complex

functions. Then, also introduce to algorithms to ((Refer Time: 24:13)) and the different

kinds of ((Refer Time: 24:19)) that means various of ((Refer Time: 24:21)) machines.

For example, in normal ((Refer Time: 24:23)) of basic model we will have only one

step there may be multiple step in ((Refer Time: 24:27)) there is a one variant the multi

head ((Refer Time: 24:30)) two infinite step; normally we have single way infinite step

when basic termination. But that may have two infinite as well we can introduced;

again so that all this models are equivalent to the basic termination automata. In module

12 we will discuss structured grammars; which can compute any kinds of functions that

computer by ((Refer Time: 25:04)) machines. That means, class of languages generate

by such grammars is equivalent to the class of language except by ((Refer Time:

25:12)) machine. So, we will introduce here grammatically compatible functions,

structure grammars basically the most general form of grammar; then model starting we

discussed ((Refer Time: 25:35)).

So, what can be ((Refer Time: 25:38)) and what cannot be decided? So, that many

problems normally the problems related to languages their we have already introduced;

many problems have say desirable. For example, given a finite automata and a string

((Refer Time: 26:03)) except device automata difference for this belongs to a language

which is regular. So, this problem what are you this decidable and decidable; when so

that this is decidable problem. So, see many other line problem can be related to

languages shown to be in decidable. So, will discuss some problem which can be

solved. And then we will discussed undecidability; that means they are many problems

which cannot be decided using any computer devices. That means, for example saying

((Refer Time: 26:43)) machine consider any ((Refer Time: 26:44)) machine but we

cannot compute or we can solve that particular problem.

So, in this discuss we need to use some tools, some methods in which so that this

problems are not decidable; it will used the concept of diagonalization and first show

that ((Refer Time: 27:16)) machine is undesirable. And from there so that many other

problems are also undecidable; we will also simply introduced and the problem is

called P C P ((Refer Time: 27:30)) which can be used so that any problems it is

languages are undecidable. So, once we have problems which are decidable we want

know how difficult those problems are to solve. So, in module 14 we discussed that

issue or introduced those issues; so discusses ((Refer Time: 27:56)); how complex

problems are? Can you= classify the problems based on the complex level? So, they are

of course large number of classic language but here will simply introduce only the basic

classes, for example P, N P, N P complex.

Here, again we have used to many different tools; for example say reduction we want to

so that if can solve one problem and we can also solved another problems. That means,

they are having similar complexity level. So, here will so that one problem is N P and

then using that using that assuming that problem a complete we can say that many other

problem N P complex using this model reduction. First to show that one problem can

be N P ((Refer Time: 29:11)) we use this hooks theorem we introduced this hooks

theorem and prove it and so that problem is N P ((Refer Time: 29:18)). And then use

the method of ((Refer Time: 29:0)) many other problem are N P((Refer Time: 29:24)).

We give various different kinds N P compute problem by the method of reduction; so

that all this problems and can be N P compute. And finally we conclude this lecture by

giving a hierarchy of language classes. So, this is known as Chomsky hierarchy which

named after a famous linguistic ((Refer Time: 29:50)). There are various languages for

example ((Refer Time: 29:54)) of the formal languages conduct languages written this

languages, recursion languages and recursion language ((Refer Time: 30:06)) basically

accepts the class of languages to all recursively and precautionary languages. And in

((Refer Time: 30:14)) we also produces here and computing models that is called

((Refer Time: 30:20)) which accepts context sensitive languages. And corresponding

grammar from we will context free context sensitive in the grammar. And here so that

proper containment for example saying regular languages it properly to complex

languages by profile can be context line is ((Refer Time: 30:43)) is recursion languages.

And finally recursive languages ((Refer Time: 30:51)) recursively any would other

languages. And this have key is known as hams key headed.

(Refer Slide Time: 31:21)

So, this all bout the plans or flow of topics over in this course; but this course recurse

basic concepts from prerequisites. For example, one will have the basic knowledge of

set theory will set continuity of set; how would you find continuity of set such as

infinite sets we have so on. And this various operations from sets any other so on.

Then, functions and relations what do you want to one function or bijection those

things; for equivalent relation it can be class ((Refer Time: 31:59)) those concepts will

be occur. Then, most of results or theorems that will have in this course will be proved.

And many defined prove its can be used but most commonly using mathematical

induction. So, were we have a ((Refer Time: 32:26)) inductive hypothesis; this will

have some resistance, will have inductive hypothesis and will have inductive ((Refer

Time: 32:33)); to so that prove the result there is kind of induction called structural

inductance which will also be useful.

For example, we have that can be applied many structures which are recursively fine.

For example, ((Refer Time: 32:56)) recursion definition; there we can apply the

structure induction to prove binary ((Refer Time: 33:02)). Then, some concepts are

graphs ((Refer Time: 33:09)) and because this ((Refer Time: 33:14)) we can moral it

can be graph, it can be ((Refer Time: 33:17)) ((Refer Time: 33:32)) so on numbers of

accurate will be levels of division and so on. And many other purpose ((Refer Time:

33:37)) for example, ((Refer Time: 33:39)) in a particular language can we consider a

kind of tree structure which is called tree is called ((Refer Time: 33:48)). So, always

concepts will required; ok once we have a basic concepts we start having following

lectures very easily. So, let us all about the interaction of this discussed.

