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Hello viewers. So, welcome back to the course on Matrix Computation and its application.

So, today we are going to start a very new topic that is called the Singular value

decomposition for a given matrix A. So, let us do that. So, today we are going to discuss the

singular value decomposition.

Now, we have seen that suppose, I have a matrix A that is n* n matrix then, first thing is we

have seen that if A is diagonalizable, then I can write A as some A=PDP-1; this one I can

write. And in this case, my D is a diagonal matrix and P is corresponding



to the eigenvectors. So, we have seen that if the matrix A is diagonalizable, then we can write

it this way.

Now, the second thing is that if A is symmetric, then I can write A = S; S stands for

symmetric just as I am writing. Then, we can write S as some QDQT. So, where my Q is an

orthogonal matrix. And in that case, we say that this S is orthogonally diagonalized.

So, in this case my Q is orthogonal that is why I change my Q inverse with the Q transpose.

So, this form is also called. So, I can write this in the form of eigenvalue decomposition. So, I

can write this as an eigenvalue decomposition.

So, then we have seen the third form that when A is not diagonalizable, then we can write A

as sum I can write in this form now maybe X and then Jordan form X inverse. So, this one I

can write from here, and this is called the Jordan canonical form. And in this case, this X may

not necessarily be an orthogonal matrix. So, these are the things we have seen. Now, the next

thing comes.
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What happens when A is m cross n. So, in that case what we can say about the eigenvalues of

the matrix A when so, A is a rectangular matrix. So, here we cannot talk about eigenvalues of



A. So, then we start with the new thing called. So, let us write this one as. So, I will just write

the definition.

If A is a m* n matrix . So, I am taking the real matrix and if are the eigenvalues

of matrix ATA. So, I will take the ATA matrix. So, this will be of course, n*n matrix. Then the

number.

So, I take , then the numbers are called singular values of

the matrix A. So, A is a rectangular matrix and we call it the , ,.., . So, these are

called the singular values of the matrix A.

Now, for example, I suppose I take the matrix A. So, let us take matrix . So, this

is my 3*2 matrix, then I will take . So, this will be

So, I know that this is always a symmetric matrix and its rank will be the same as the rank of

matrix A. Now, from here I found that the eigenvalues of A transpose A are. So, these are the

eigenvalues 3 and 1. So, I got these eigenvalues 3 and 1. And from here, I can write that I can

write . So, these are the eigen these are the singular values of matrix

A that is .

So, these are the singular values of the given matrix. Now, in the first we have seen that a

matrix can be diagonalizable, it can be orthogonal diagonalizable and then we have seen that

it can be converted into the Jordan canonical form.
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Now, after this one we can write that for a given matrix A; that is m cross n. Now, our

condition is that we can write the matrix A decompose this matrix .

So, the first time we are seeing that A is decomposed into the matrix which contains three

different notations U, sigma and V. In all the previous one, this P and P inverse are just the

inverse of P. Here also, Q and QT X and X-1, but in this case, we have .

So, we call this that for a given matrix we are able to write this one, then this is called. We

decompose this one, where U, V are orthogonal matrices and this is an orthogonal matrix; it

is a square matrix and this summation is a diagonal matrix of dimension. So, its dimension

will be same as the dimension of A m* n.

So, I can write notes on the diagonal matrix. I can write the matrix of dimension m*n with

singular values of A at its main diagonal at its main diagonal. So, suppose I have a matrix like

this one and suppose, I have this matrix. So, it is 4 cross 2.

So, the diagonal main diagonal elements will be this one this or maybe, suppose I have

another matrix of this form suppose I have a matrix of this form. It is 3 cross 4. So, the main

diagonal will be this one. So, this is the main diagram. So, if we have a sigma is the matrix of



order m cross n and having the singular values at this as a main diagonal. So, this is the

definition of this one.

And now, from here. So, if I take this one and we are able to do this one. So, it is called so,

this is called singular value decomposition of matrix A; that is of order m cross n. So, this is

what I just write as equation number 1. So, let us see how to find the U, V transpose. So, the

next question is how to find U, V and sigma all things we need to find. So, let us see that.
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Now, so, it is we have . Let us see what will happen if I take . So, AT

means I am just taking the transpose and this is .

Now, this is V and if you see from here, it is an orthogonal matrix. So, it will be me. So, from

here I can write this sigma V transpose. And I know that this will be of dimension n*n. So,

my V will be n* n. So, this is m* n and this will be n* m and this will be again n*n.



I will get only this value. So, this is I will just write that it will be a diagonal matrix D with

this value, where D will be in this case

Because, I know that the is a symmetric matrix and it is positive definite. And we have

taken this that this is the eigenvalues and this suppose n*n it has n eigenvalues n singular

values so that we have written or if eigenvalues are 0, then to be 0 no problem. So, this will

be here.

So, from here, I can say that the is orthogonally diagonalized. So, and the symmetric

matrix will be V. So, from here that this I can write as diagonal form with the matrix .

So, now, from here, I can find my value V by taking the eigenvalues of A transpose A and

then finding the eigenvectors.

Now, so, from here I can write this one. So, maybe I can write this as 2. Also, let us see what

is going to happen about . Now,

So, its dimension will be m* m, because A is m* n A transpose is n*m. So, it will be m*m.

So, it is a new matrix. Maybe, I can write D1 here and then I can just write D2. So, I can

write from here that .

So, I can say from here that U can be obtained from the solving the matrix and its

eigenvector. So, this is the way we are able to find the value of U and V and then, we can find

the sigma. So, this is equation number 3 ok. So, let us see how we are going to apply the

singular value decomposition. So, in SVD, basically what we are going to do is as we have

discussed step 1.
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So, it means that first we have a matrix A. So, that matrix A is m cross n and this is from Rn

to Rm. Now, I take the matrix . So, this is n*n matrix and I know that this is a symmetric

matrix. So, is orthogonally diagonalizable that I know.

Now, we have considered that the rank. So, I consider that the rank of matrix A is k. And I

know that this is equal to the rank of matrix . So, in this case, the matrix I can write this

matrix can be written as a matrix .

So, D is the diagonal matrix which contains all the eigenvalues. So, I take the

and then, it will be going to have 0 eigenvalues, because its rank is K.

So, I can have the K non zero eigenvalues and all other eigenvalues will be 0.

So, this is my diagonal matrix. And I can take my V as a matrix that is corresponding to the

eigenvectors corresponding to and then, corresponding to 0 eigenvalues

will take . So, this is my matrix V and this matrix will be n*n. So, that we



already know, because this matrix AT A is n*n matrix. So, this is what we are going to do in

step 1. So, it is basically step 1.

Now, after doing this one. In step 2 what I am going to do is I will choose the non-zero

eigenvalues and I will find out sigma 1. So, first I will choose these eigenvalues and I will put

them in the order such that. So, I am putting them in the order and now, I am considering that.
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So, let I am considering that my . So, this is I am taking the non-zero

eigenvalues and I am putting this in the order. So, now from here, I am. And I know that this

AT A is positive definite. So, I can take its square root. So, now, I am considering sigma 1 I

will take .
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And now, from here, I can say that my singular values . So, this is the k

non zero eigen singular values of the matrix A. So, this is what I will put in step 2.

Now, after doing this one. Now, I need to find the value of the U, because in our singular

value decomposition, I am going to do . So, V we have already found. So, now

we are going to find the U. So, let us take this one. So, these are my non zero singular values.

So, now, let us consider the set of image vectors. So, I just consider {Av1 , Av2 ,….,Avk}. So,

I am taking the k image of the k vectors v1, v2 , v3 and v1, v2 , v3 is coming from here. So, that

we know now. So, if you see this then, then this belongs to the column space of A and you

know that the column space of A will belong to R m, because this is a linear transformation

from Rn to Rm.

Also, since v1, v2 all are orthogonal to each other that we already know. Now, let us see what

is going to happen if I take the dot product of Avi with Avj ; let us see the dot product of this.

And I am taking this i, j= 1, 2, 3,… k. So, I am taking from here the image sets. I am taking

the dot product.

Now, let us see I can write this as



And from this I can say that Avi is perpendicular to Avj and this is I am taking i ,j =1, 2

,…, k. So, this is all we are considering about the column space.
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Now, from here, we can say that since all Avi belong to column space of A where i =1, 2, 3

,…., k then, from here, and I can say that these are. So, the set Avi for i =1, 2, 3,…, k is an

orthogonal basis for column space of A. So, this is the orthogonal basis for the column space

of A; that is we are able to understand from here. Now, this is the orthogonal basis. So, let us

say that let us normalize A v i all this one for this i’ s.

So, for this one what I do I because this belongs to my column space of A. So, I

call it ui, where i =1 ,2,…., k and ui is unit vector, because I am dividing this one by. Now,

from here, let us see what is going to happen in this case. So, what is the. So, this one I am

going to do here.



Now, vi is the orthonormal vector, because we have seen that this matrix is orthogonal,

because I know that the matrix V is an orthogonal matrix and each of vi is orthonormal sets.

So, from here, I can say that this will be equal to lambda i.

Now, from here, I can write like this one. So, from here, I can say that the norm .

So, now, from this I can write this as

Now, this thing is from here, and I can write even as this , if you want to write in

the term of singular values. So, I can write this one as, because I know that these are the

singular values of A. It is a non-zero singular value, because all 0’s are also there. So, we are

just writing the non-zero singular values. We are concentrating on that one. So, I get this

value .
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Now, from here, I can say that. So, the set is an orthonormal basis for column

space of A. Now, what we want. We can extend this set to an orthonormal basis of Rm,



because this belongs to Rm. And these things we can do with the help of the Gram Schmidt

process.

Or we can because in this case, we also know that the column space of A is perpendicular and

orthogonal to the null space of A transpose that we know, because if you see we have the

picture of four subspaces. So, in the Rm, we have this is the column space of A and this is the

null space of A transpose and they are perpendicular to each other.

So, now, I know that the basis of this column space is also an orthogonal orthonormal set. It

is the basis of this one and I want to extend this one. It means I need the all the vector which

are orthonormal to all these vectors . So, I can choose the vector from the null

space of A transpose and that is also orthonormal and then we are done. So, we can extend

this set of orthogonal basis of Rm to make my A orthonormal basis of Rm. So, we can extend

and then, I can have

And this matrix will be of m*m, because all these ui belong to Rm and m in number. So, this

is.

So, now, from here I can write that I want to see what my U sigma is.

and then I can put the remaining 0 eigenvalues here

and I know that this is of order m* m and this is of order m *n.



So, everything depends upon that in this case, which is greater whether m is greater or n is

greater. So, it will go up to, because we know that our matrix V is of n cross n.
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So, now, from here, I can write my

So, I will get this matrix here and and matrix with A from here I can get these values, because

this will be of order m* n. So, m is the number of rows, n is the number of this one. So, I will

get up to n here. So, this will up to n if you do this multiplication. So, if you see from here, it

is going up to n.
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I think I should take this as equal to n. So, I can go up to 0. So, maybe I can just write here. I

think instead of this writing I should write like here. So, I should write it like 0 0 0. So, and

this is of the dimension m* n.

So, that we are writing, because from here, I get the matrix basically of order m* n. So, after

doing this one, I will get this matrix A and this is V n* n matrix. So, from here I can write

that after doing this one I can write my matrix A; that is and that is my SVD.

So, this way we are able to find all the elements of the matrix V and all the elements of the

matrix U.

So, now, after doing this one, we can take a quick example, then how we can find the SVD of

a given matrix. So, let us take the example find the SVD of a matrix A. So, this matrix we are

taking and this is 3* 2 matrix.

So, in this case if you see now, my will be 2* 2 and my is going to have 3*3,

because A transpose is 2*3. So, it will be 2 cross 2’s and. Now, we will go with the first step.

So, let us take the solution.



So, first I will find out

So, these are the eigenvalues I am getting.

Now, corresponding to the eigenvalues I am, I want to find the eigenvectors. So, I have my

vector. So, corresponding to . My if you see, then I can write from here, I want to

write it as

And from here now, I want to make these vectors orthonormal also. So, this is a vector and I

want to normalize this vector. So, I just take . So, I have normalized

this vector and I have taken the first eigenvector as this one. So, after doing this one.
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Now, for corresponding I will go the same way. So, I have

Now, based on this one, I can show my that my can be written as. So, now, my

. So, this is my matrix and this is my orthogonal matrix. So, I can write

that . So, this is what we are able to get.

Now, I will find out the value of u i’s. So, now, from here my . And if you see

that my A is 3* 2. So, my U should be 3* 3, sigma should be 3* 2 and V transpose is 2* 2.So,



this one we want. So, we got this value . So, this is my sigma basically. Now,

from here, I need to find the U.

So, if you see from this

So, it is a symmetric matrix. So, I know that and this is 3* 3.

Now, if you find out its eigenvalue. So, you will find out the eigenvalues of . So, this is

going to have the eigenvalue {3 ,1,0}, because if you see, then it is a 3* 3 and the rank of A

transpose is 2. So, it is going to have 1, 0 eigenvalue. So, it is a singular matrix and is going

to have 0 eigenvalue. So, this is what we got from here. Now, I want to find the value of u1

,u2. So, either you can solve this one and find out the eigenvectors or we have the way we

discuss.

So, what we need to do is now. So, I want to find the eigenvectors. So, I will start from here

and then, I will try to find what is mine. So, I know that . So, from here, my u 1 I

can find that

So, this is my u1 and it is a vector with magnitude one; that we can see from here. So, I am

able to get this value.
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Now, corresponding to I will get my u2 as

because I just substitute the value here, for v2 and I get this value.

So, now, we are able to find the 2 from here. So, and you can see that this {u1,u2}that it makes

belongs to the column space of A and they make the column space ok. So, these are the

column spaces of matrix A. Now, I want to extend this one. So, that is my question, because

my U is 3* 3. So, I am able to find these two eigenvectors or maybe these vectors u1,u2 based

on the condition that Av is equal to sigma 1 u1 and Av2 is equal to sigma 2 u2.

Now, I can take my u3 that should be perpendicular belongs to should be perpendicular to the

column space of A; only then, it will be going to make the orthogonal basis for R3, because

our matrix is moving from it is 3* 2. So, it is from going from R2 to R3.



So, now so, perpendicular to column space. Now, what we do is that just for the calculation

we can make life simpler I can take my u1. So,

And this belongs to column space of A and also belongs to column space of A. So, now, what

I do let my . Now, it should be perpendicular to both, because these are the

basis for the column space of A that we have seen. So, it means that the dot product. So, I just

put this as And from here, you can see that this is going to have a basis

2. So, now, its rank is basically 2.

So, now, from here you can see that I can have my . So, from these

two, I can have the vector. So, y and z should be the same in this case and 2 x is equal to this

one.

So, maybe I can just take this vector as I just take this as



So, I can choose any one.

You can use both the u3 if you see. So, I can say this or this; this is equal to this, if a=1 and

this is equal to this if a = -1; everything depends on this one. So, they and but this and these

are orthogonal to each other that should be there. And if you see that taking the dot product.

So, this will be orthogonal to each other. So, this way we are able to find the value of U.

And now, I can write my matrix So, I have taken this value.

So, maybe you can say that this value we have taken corresponds to just wanting to have a

smaller number of negative signs. So, that is why we have taken this one. So, my this is U

that is 3* 3. And from here, we can verify that my This may be verified in the

next lecture. So, we will stop here.

So, in today's lecture, we have discussed a very important theorem that is called the singular

value decomposition of a given matrix. And then, we have seen that how we can generate the

value of U and V that is the matrix involved in the singular value decomposition for the

corresponding to the given matrix A. So, in the next lecture, we will show that how we can

compute this singular value decomposition you, taking the help of MATLAB or Octave. So, I

hope that you have enjoyed this lecture.

Thanks for watching.


