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Hello viewers, welcome back to the course on Matrix Computation and its application. So, in

the previous lecture, we have introduced the concept of inner product space. So, in this

lecture also, we are going to discuss inner products in different vector spaces.

So, let us start with the inner product in the vector space of polynomials. So, suppose, we

have a vector space V that is set of all the polynomials of degree n. So, I can say that the set

of all polynomials of degree less than equal to n.

Now, I know that this is a vector space of dimension n plus 1. Now, from here, now I take

two polynomials, suppose I take p and q that belong to the polynomial set of polynomials P,

this one. So, suppose my p is basically I can call it



So, for this one, I need to define the inner product in the polynomials. So, the inner product
we are defining here is that because you can see that if we take the polynomial here of nth
degree. Then, its coefficient a0 , a1, a2 …., an ∈ Rn+1 .

Similarly, I have a q that also the coefficient of this one makes the vector in Rn+1. So, I can

say from here that a0 , a1, a2 …., an if I take it as a vector, it is a column vector. So, this will

belong to Rn+1. So, this is generally, what we are doing? We are taking a simple dot product of

the coefficients of the given polynomial.

So, this way, we are defining this inner product in the space of matrices or space of a

polynomial Pn. Now, the thing is that now we are able to define this in a product. So, we need

to check or verify whether it is satisfying all the four conditions or not.

So, if you see from here, then this is just the dot product and this dot product we already

know satisfies all the four properties of the inner product. So, this one, we can verify yourself

that this is an inner product defined on the set of all polynomials. So, now from here, I will

define the norm on the p.

So, this one will be equal to taking the inner product of p itself and then, taking the square

root. So, from here, you can say that this is equal

So, this is I can define the length of the polynomial or the norm of the polynomial.

So, from here if I take suppose I take a polynomial p and then, suppose I take this as maybe



So, let us take these two matrices or two of these cubic polynomials, then I want to check

whether these polynomials are orthogonal to each other. So, I will just take the inner product

of this.

So, inner product if I am taking, so this is 1 taking the constant and then, I will get <p,q>=

1-3-2+3= -1≠0 ,so, not orthogonal. But now, suppose I take the basis; standard basis.
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So, let us take the polynomial p = 1 and q = x2 , then I know that if I take the inner product of

these two, then this will be 1 and then, coefficient of this one 0 and coefficient of x2 = 0 here.

So, that is equal to 0. So, I can say that the 1 and x squares are orthogonal with respect to the

inner product.

So, whatever the inner product, we have defined this one, they are orthogonal to each other.

So, this is the corresponding inner product. It may happen that we may define a different type

of inner product also.

So, with this inner product, I can say that these two polynomials are orthogonal to each other.

Similarly, we can define now that I take the vector space V as a set of all the continuous

functions from [a , b] in the set in the close interval [a ,b].



So, this is a vector space, we know that it is an infinity dimension vector space, then I just

take that two elements for this one or two vectors from this one. So, let us take f(x) and g( x)

that belong to the vector space V. Now, I want to define the inner product of this one.

So, for this one, we take the inner product as

So, actually this integration is

coming from the dot product because the dot product is defined on the discrete vector and

when we take the function, then this dot product changes into the integral. So, this is the inner

product, we are defining on the space of all the continuous functions defined over the interval

[a, b].

So, now, we can verify from here whether it is an inner product or not. So, we can verify all

the four conditions. Now, the first one is that taking the inner product

because it is a positive function and positive function and we know that it is the area under

this function [f(x)]2 . So, the area is always positive. So, it is always greater than equal to 0

and if this area is 0, then only I can say that the function itself is 0. So, I am satisfied.



The second one is that, if I take <f,g> = <g,f > So, it is symmetric also. Third one is that if I

take <f + h ,g >, three functions I am taking define the inner product.

So, this is true for all f ,h, g ∈ V, what we have defined here. So, the third property is also

satisfied.

And the fourth property is then I can take any scalar, so we are defining this one.

So, this is true for all k belongs to the field. So, here the field is a real number. So, all these

properties are satisfied.
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So, based on this one, we can say that this is an inner product and I can say that from here

that V the vector space with a set of all continuous functions is an inner product space. Now,



based on this one, suppose I take the vector space for example I take a vector space of all

continuous functions defined from maybe [0, 1] and suppose, I take a function f (x)= x ,I take

g(x)= x2.

Then, I define the inner product of <f ,g>. So, this will be taking the

Now, suppose I want to find its magnitude or its norm. So, this one, I can define as norm and

I take the under root.

So, this is the norm of this vector. So, from here, I can write the unit vector or normalized

vector, we can write as f here divided by its magnitude. So, from here, I can write this is

equal to . So, it is a normalized vector I can represent this one by ; that

means, its magnitude is 1.

So, now, from here, you can take this one and you can verify that if I take its norm, then it

will be 1. So, we have to keep in mind that weight is always taking the square root of this. So,

this way we are able to find the normalized vector. Now, suppose I take, suppose we define

another vector space V taking from [-1 , 1].

Now, in this case, I am taking the set of all the continuous functions defined from [-1,1]. So,

in this case, let us take one function f(x)=x and suppose I take g(x)=x2 and now, I define the

inner product between these two. So, I define the inner product and just to check whether

these two vectors are orthogonal to each other or not.
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Then, I can say that the function f(x) =x and g(x)= x2. So, you can see from here that the

same set of vectors, we have taken x and x2 on this interval, in that case if I take the inner

product that was not equal to 0, it was 1 by 4. So, these vectors or this function was not

orthogonal with respect to this in a trans inner product that is from 0 to 1.

But if I change the interval, then the same vectors become orthogonal to each other. So,

everything depends upon how we define the inner product. So, from here, you can say that

these two vectors are orthogonal to each other under the inner product from integration taking

from minus 1 to 1. So, this is the way we can define. Now, after dealing all these things in the

real vector space, let us see what is going to happen when we deal with complex vector

spaces.

So, in this lecture, I am going to give you a quick review of how the complex vector spaces

are defined. As we already saw that in the complex vector spaces like suppose I take the

vector space V and we call it Cn. So, in this case, I am taking the field F. Now, I start with the

very first vector space I am taking.



So, let us say I suppose we take the vector space V over C that is just the complex line

defined on the field R because R is also a field. So, I am defining it as this one. So, if you see

from here, then the vectors are coming from the complex line or complex plane and these are

the scalars coming from R, the real number.

Now, let us see what is going to happen in this case. So, if I know that the vector space V is a

vector space because it satisfies all the conditions and we know that if I take 5(1, i) = (5,5i) ∈

C ok. So, an addition is also well defined.

So, everything we can check that this is a vector space. Here I am taking the field as a real

number. Now, I want to define; so, we want to define its basis. Now, basis means I want to

find a complex number such that by using that complex number, I should be able to create all

the complex numbers.

Now, you can see that for example, I take a complex number

It means if I choose any vector from the vector from the complex plane that can be written in

this form because the scalars are coming from the real line. So, I cannot take those as a

complex, it is coming only from the real line k that belongs to R.

So, now from here, we found that if I take any complex number that can be created in this

way. So, from here, I cannot say that there is so which implies that there does not exist a

unique complex number, a unique vector V that is a complex number which can span, so

which can span the whole complex plane.
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So, from here, we can say that the vector space V with the set of complex numbers defined on

the field of real number is infinitely dimension is infinite, infinite-dimensional vector space

and complex plane, we you know that (a + ib) can be written as so I take the a on this

direction, b on this direction. So, suppose this is my (a + ib) and we also represent by a b, this

one. So, it is my a and this is my b and this is a square b square under root.
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Now, suppose I take the vector space V with the same complex. Now, I am taking the field as

a complex. So, in this case, for any vector V that is (a + ib)that belongs to the vector space V,

here, we can write (a + ib) as taking (a + ib) and the vector I can take 1, here or I can write as

(a + ib) by 2 into 2.

So, this way I can also write. It means that if I, so this is the same way. So, I just removed this
one and I took this here. So, I choose any vector suppose you take  -i. So, I can write this as a
-i * 1, you just take

So, from here, I can say that this whole vector space V is spanned by 1 because all the
elements are spanned by 1 by taking all this one. So, here it is the scalar k that is coming from
the set of complex numbers and from here, we can say that the vector space V is
one-dimensional or I can say V =[2] by this way divided by 2 into 2, but it will have a basis
which contain only 1 element.

So, from here, I can say that V is one-dimensional vector space. So, everything here, we can

say that a lot of things change when we change the field. So, this is where we can define the

complex numbers. For example, I just take the vector space of real numbers; I just take the

vector space of real numbers and I am taking the field as a set of rational numbers, where Q is

a set of rational numbers.

So, in this case I also suppose I want to find maybe 5. So, 5 belongs to the vector space V. So,

I can write 5 = 5 * 1. So, this 5 is coming from k coming from the set of rational numbers.

So, it is a rational number and 1 so, no problem. But suppose I want to write a vector I take

maybe . So, ∈ R. So, I can write .

Because I cannot take here because is not the set of rational numbers. It does not

belong to the rational numbers ok. So, in this case, I can write like this one. So, it means

that I am taking a vector that belongs to the real line and that I am taking a k belonging to

rationals. I just want to tell that the is an irrational number. So, it means that all the

irrational numbers, we have to define in this way.
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So, this way also I can say that if I take the set of real numbers on the set of rationals, the

field, so it is an infinite dimensional vector space and what is the basis? So, I can say that in

this case, the basis is I can take all the sets of all irrational numbers and then, I just take union

1; maybe I can take 1 because all irrational numbers are generated in this way and if the

rational number is there, we can generate it this way. So, this contains an infinite number of

elements and so, it is an infinitely dimensional vector space.
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But if I take R(R), then we know that this is one-dimensional vector space. So, till now, we

have taken such types of things that we are taking the vector space R(R) or Rn(R) and in that

case, we know that this is well-defined. But if we change the field, then these things may

happen.

Now, we talk about the complex vector space just because we want to define the inner

product in that one. So, let us define this one. So, let us take the Cn. So, I am taking the Cn (C)

, which means that the field I am taking is a complex number. And this is. So, if I take any

vector. So, let us take u belongs to Cn,

So, this is my u basically. So, u is always of this form because all the components are also

complex. So, this will be of this form. So, this is my one of the vectors in u.

So, any vector u can be written as; so, this is if you see that it is a real component of the

vector u. So, I can write from here that this is u=real(u) +i img(u).

So, I can define any vector from Cn in this way. Now, we can define its basis. So, I know that

if I want to define the basis of this one. So, its basis will be again; so, I will just talk about the

standard basis. So, it is n-dimensional.

So, n-dimensional means the basis will be standard will be ; where e1 =(1, 0, 0,

0) so like this one. So, en =(0, 0, 0, 1) because I am taking the field as a complex number.
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So, if you take any complex number, I know that I can write

u = (a1+ib1, a2+ib2,..…., an+ibn) = (a1+ib1)e1 +(a2+ib2)e2 +…….+(an+ibn)en . So, these are all

our scalars coming from the set of complex numbers. So, this is we know that the Cn over the

C is n-dimensional vector space. So, it is a n-dimensional vector space.

Now, from here, we can now suppose I just want to see how we can define the linear

combination in the terms of a vector space. So, let us take one example. Let us suppose we

take C2(C). So, C is a set of complex numbers; some books also write like this one.

So, this is also sometimes written like C(C). So, that is also notation; but this is basically a set

of complex numbers. Let I take some vector I take; so, let us take

Now, I want to take so suppose I choose now for any vector z belongs to C2, suppose I take

Now, I want to find what will be the coordinates of with respect to this z1, z2; it

means, I want to find what are the coordinates of this vector with respect to these two vectors;



z1, z2. So, what I am going to do is to define a linear combination. So, in this case, I am now

defining the scalars. If you see from here the scalar is also a complex number.

So, I have defined the linear combination putting this vector equal to 0. So, you have to keep

in mind here that the scalars here, this is my scalar, this is my scalar that will belong to the C,

this also belongs to C. So, we have to take it as a complex number.
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Now, from here I can define this as. So, this one I can write component wise. So, from here, I

can write this



Now, from here, I will compare this one. From here, now we need to find out the four

coefficients; a1, a2, b1, b2. So, we need the four equations.

So, from here, I can say that a1=1, a2=0, b1=-1, b2=0. So, here we can write the linear

combination.

So, this is just the simple one we have discussed. So, this way, we have to find out the linear

combination of the given vector.

(Refer Slide Time: 46:08)



Now, so, if we are able to define the vectors in the complex plane, similarly I can define if I

take C3(C), then maybe I can define a vector u as So, the same way we have

to deal. Now, once we define the vectors, I want to define the matrices.

So, the matrices we want to define are of order r cross r over complex. It means that the

elements of the matrix can be complex numbers. For example, so set of all matrices of order r

cross r having complex elements; complex elements means complex numbers.

For example, maybe I will define a 2 by 2 matrix over the complex number. So, suppose I

take my matrix A = , another matrix I am defining . So, that is also a

complex number. So, because I know that each real number can be written as a complex

number.

So, this also belongs to this one. Now, suppose, I take these matrices. So, I know that this is

dimension four. So, in this case, I know that M 2*2 over the complex number is

four-dimension and its standard basis and having standard basis as

So, this is my standard basis and this is four-dimension. Now, in this case, for the complex

number I know that we can define the conjugate. So, conjugate of A will be

So, this is a conjugate. So, I have to take the conjugate of each of the

elements in the matrix Q, Qn matrix.

Now, for the complex matrices, we define the terms A conjugate transpose, we generally

write this as A star. So, in this case, what do we take? We take the conjugate first and then

take the transpose. So, I can write from here that this is equal to



I have taken the conjugate and then, I have taken the transpose. So, this is called the

conjugate transpose and that is represented by a star.
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Now, for maybe I can for complex matrices or matrices having the complex numbers, if I take

= A => =A So, this is called A is an or A is a Hermitian matrix. When I say =

A, then it is called Skew-Hermitian.

So, it is analogous to the symmetric matrix in real numbers and this is analogous to the skew

symmetric matrix in the real number. So, one thing extra we need to do, whenever we are

dealing with the set of complex numbers; then also, if I take any as scalar.

So, in this case, scalar is coming from the complex number, then if I take A any matrix

taking the conjugate, then it is equal to , some observations you can write. Also,

if I take the matrix A and taking two time conjugate . We can write down some



properties. Then, if I write , no problem and the fourth one is if I take

.

So, this way, we can define the terms in the set of matrices in the complex form. So, once we

are able to do this one, then I want to define the inner product in the complex vector space.

So, that we are going to discuss in the next lecture. So, we will stop here.

So, in today's lecture, we discussed the inner product in the space of continuous functions

defined over an interval [a, b] and then, we want to define the inner product in the case of

complex vector species. So, we have discussed some properties or how we can deal with the

complex vector spaces having the vectors or having the matrices.

So, now, in the next lecture, we will discuss how we can define the inner product in the

complex vector spaces. So, thanks for watching this one.

Thanks very much.


