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Hello viewers. So, welcome back to the course on Matrix Computation and its Application.

So, in the previous lecture, we have started with the one of the definitions that is isomorphism

and the inverse of a given linear transformation. So, we will continue with that one.

Now, we are going to define a very important theorem regarding isomorphism. So, it says that

every real or may be complex vector space of dimension n is isomorphic. So, it is isomorphic

to Vn or Vc
n if it is a complex number, but we are talking about the real, so that is the. And

this Vn we know is the nth dimensional vector space. And so from here I can say that if I

choose any vector space having the dimension n, then it is isomorphic to V n. So, this one we

want to prove.

Now for this one; so let I choose that let U be a vector space of dimension n. Now, suppose

this is the dimension n, then let we also take the set B ={u1, u2, …,un} an ordered set ordered



basis for U. So, we are taking the ordered basis of U and this is of dimension n. Then for any

u ∈ U that I take the vector space u, I just take any element u, we can write

u= α1u1 +α2 u2 +…..+ αnun , ……………(1)

This one I can write because this is the basic ordered basis. So, I can define my element u as

this linear combination. So, I can write that α’i’s are unique because this is the basis, so it is

uniquely determined. Now, from here we also know the set the vector {α1,α2,., αn} is the

coordinate vector of u relative to basis B. And we know that this we can represent as (α1,α2,.,

αn)= [U]B .

Now, from here you know that this vector belongs to Vn, because it is just the elements

coming from the field. So, it is a real number. So, it belongs to Vn.

(Refer Slide Time: 04:53)

So, based on this one, we define a linear transformation T : U → Vn, where dim(U) = n as.

So, let’s define this one T(u) = (α1,α2,., αn) …….(2) So, I define it like this one. And these are

the coordinate vectors. So, these are the coordinates α1,α2,., αn are the coordinates of the vector

U with respect to the basis B, so that we already know. Now, we want to show that it is a

linear transformation. So, we know that

for u ∈ U, u = α1u1 +α2 u2 +…..+ αnun



for v ∈ U, v = β1u1 +β2 u2 +…..+ βnun

Now, from here I know that

u+v = (α1+ β1 )u1 + (α2+ β2 )u2+…..+(αn+ βn )un …….(3)

So, this linear combination I can write. Now, from here I want to find what will happen T(u +

v). Now, T(u + v) I know that from here these are the coordinates of (u + v) related to the

basis u1, u2 ,… un. So, from here I can write that

T(u+v) = (α1+ β1, α2+ β2 , …., αn+ βn)

= (α1,α2,., αn) +( β1, β2,… βn)

T(u+v) = T(u) +T(v)

Then also we can define for any α ∈ field (F), thus it is a scalar I can show very easily the

T(αu). So, T(αu) will be what?

T(αu) = (αα1, αα2,…, ααn) = α(α1,α2,., αn) = αT(u)
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So, from these two properties, we can say that my T is a linear transformation. Now, we need

to show that T is 1-1. Now, we need to show that T is nonsingular that is 1-1 and onto. Now,



from here I want to check. So, let us do this one T is 1-1. So, this one we need to show. So,

for this one, what I am going to do is, so I am going to show here for this one that the null

space of T will contain only the 0 element.

Now, from here the T is 1-1, because I will take the element

T(u)=0

⇨ (α1,α2,., αn) =(0,0,…,0)

⇨ α1=0,α2=0,…, αn=0

u= α1u1 +α2 u2 +…..+ αnun = 0u1 +0u2 +…..+0un

⇨ u=0

⇨ T(0)=0

⇨ N(T)={0}

⇨ T is one one

Also using a rank nullity theorem; so rank nullity theorem

Rank(T) + nullity T =n => rank(T) = n

Also dim(Vn) = n

⇨ R(T) = Vn

And from here I can say that the range space of T will be complete Vn, so it means the

dimension. So, from here I can say that my T is onto. So, T is onto means the whole range

space is equal to the complete vector space v n by the rank nullity theorem we can show this

one because both have the same dimension n.
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So, if it is 1-1 onto then from here we can say that T is isomorphic. And from here I can say

that U is isomorphic to Vn if so that the dimension of u is n. So, this is a very powerful

theorem because it shows that if I choose any vector space of dimension n, then I can always

define a map which is isomorphic to Vn. So, this is the way we can use this theorem.

Now, after doing this theorem, now we want to discuss a very important topic. So, this is

what we want to discuss is a matrix associated with a linear transformation. So, in the earlier

case also we have discussed the matrices A, and we are sure that that works the same as a

linear transformation. Now, here we want to give some rigorous idea of how a linear

transformation is associated with a matrix. So, this is what we want to show.

Now let, so how can we check this one? So, let I have a basis

B1= {u1,u2,u3}, B2 ={v1,v2, v3,v4} be ordered on the basis of V3 and V4 respectively. Then let

there is a linear transformation T : V3 → V4 defined as

T(u1) = v1- 2 v2 + v3- v4

T(u2) = v1-  v2 +2v4

T(u3) = 2v1+3 v2 - v4



Now, we want to find matrix related to linear transition T, So, if you see it is a linear

combination of the basis v1, v2, v3, v4; now from here I can write:

T(u1) = [v1]- 2 [v2] + [v3]- [v4]

⇨ [T(u1)]B2= , [T(u2)]B2= ,[T(u3)]B2=

Now, these are all the coordinates we have defined corresponding to the different-different

vectors.
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Now, what do I do? I write a matrix with these coordinates. So, I am writing the first

coordinate as a first column.



A =

So, this matrix is called the matrix of linear transformation T relative to the basis B1, B2,

because here we are taking the basis B1, B2. And this is what we are taking on an ordered

basis. Why are we taking an ordered basis? Because we are using the corresponding

coordinate vector, that is why if we change the order the coordinate will change, so it will be

a different vector in that case. So, this is the corresponding matrix we are able to define.

So, now from here we can write that, so I can define the definition now. So, what do we say

in this definition let u and v be vector spaces of dimension n and m respectively. So, this is

the vector spaces of dimension n and m that are respectively. So I take B1= {u1,u2,….un}, B2

={v1,v2,…,vm} because it is a dimension m of ordered basis for u and v respectively.

Then let there be a linear transformation T :U→V, it is given to me. So, it is given to us this is

a linear transformation defined as :

T(u1) =α11 v1 + α21 v2 + α31 v3 +….+ αm1 vm

T(uj) =α1j v1 + α2j v2 +….+ αmj vm

:

T(un) =α1n v1 + α2n v2 +….+ αmn vm

So, this linear transformation is defined to me. So, it is defined by (Refer Time: 25:27).

Then, the matrix associated with the linear transformation LT is given as. So, if you see from

here, then this linear transformation we can define uniquely because these are the basis. And

if it is the basis then we know that the corresponding system of equations will be the system

will be non-singular, and then we can define the unique solution for that system. So, in this

case, all these α1, α2, all these elements will be unique and it will be uniquely determined.

And so this linear transformation will be unique.
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So then the corresponding matrix A, so I give the name A, so this can be given as. Now, what

are we going to do?

A =

So, this is the matrix A. So, the matrix associated with the linear term is given by this one,

and is called the matrix associated with linear transformation L T related to basis B1 and B2.

And we also sometime represent by T transformation corresponding to B1, B2 as

(T: B1,B2) = A

So, this basically matrix is made up of the coordinates of this one, coordinate of the vectors.

So, this way we can define the matrix associated with the linear transformation.

So, let us take one example. Let a linear transformation T : V2 → V3 is defined as

T(x1 ,x2) = (x1 +x2 , 2x1 - x2 , 7x2)

So, this is a transformation given to me, it is from V2 → V3. Then find the associated matrix

A. So, we need to find the matrix A, but we need to find the basis.



So, find the associated matrix A related to standard basis. So, related to standard basis means

I know that the standard basis B1 = {e1 , e2}, and B2 ={f1 , f2 , f3}. You know that this e1= (1

0); e2 =( 0 1);  f1 = (1 0 0); f2= (0 1 0); and f3 = (0 0 1) So, these are the standard basis.

Now, from here, so how can we find this solution? So, in this case, I just define now because

we deal with the standard basis. So, if you see from here, I can write here as

T(x1 ,x2) = x1 (1,2,0)+x2(1,-1,7)

T(x1 ,x2) =

Now, based on this one, if you can see from here then this matrix will correspond to linear

transmission T because in this case I am talking about the standard basis. So, standard basis

means no change will be there in the terms of coordinates because we know that, because I

can write my element (1 2 0) = 1. f1 +2. f2 +0. f3 So, there is no change in the coordinates.

So, I have that is why I am able to write the matrix directly from here, it is 1 to 0.

⇨ A =
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because our transformation is from V2 to V3. So, this is my corresponding matrix. So, this is

the matrix related to the standard basis.

If we have a transformation the same transformation, but I change my basis then what will

happen to the matrix. So, that matrix we can define, so this type of thing we will do in the

next lecture. So, I will stop here.

So, in today's lecture, we have defined how for a given linear transformation how I can show

a matrix corresponding to the linear transformation related to the given basis. And in the

coming lecture, we will continue with this one. So, thanks for watching.

Thanks very much.


