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Hello viewers, welcome back to the course on Matrix computation and application. So, in the

previous lecture we discussed the rank and nullity theorem. So, today we are going to discuss

some problems based on that. So, in the previous lecture we have discussed that if I have a

linear transformation T: U → V and the dim(U) = n, then by the rank nullity theorem the

rank(T) + nullity(T) = n.

So, this is the theorem that we have done. So, based on this one we will discuss some other

results.

Theorem:  let T : U → V be a linear transformation then

(1) if T is one-one and {u1 , u2 , …,un } are linearly independent vectors that belong to

U, then T(u1 ), T(u2 ), …,T(un ) are also LI.



So, this is the condition that if I am taking. So, this T is one- one and if I take a set of vectors

that are linearly independent in the given vector space then their image is also linearly

independent. So, this one is one of the result.

(2) If I take v1, v2 ,…vn are linearly independent vectors in R(T) and u1 , u2 , …,un are

vectors such that T(u1)=v1, T(u2)=v2, …, T(un)=vn then u1 , u2 , …,un are linearly independent.
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So, in this case it is just the opposite one. Here we have T is one-one and then if the set of

vectors in u are LI then their image is also LI, but here it is opposite that if I have the vectors

v1, v2 ,…vn that are linearly independent vectors in the range space T.

And suppose I choose n number of vectors in u such that satisfying this condition then this

set of vectors is also LI. So, this is the statement of the theorem. So, now, we want to prove

this one. So, let us prove the 1st part. Now, given that T is one-one and u1 , u2 , …,un are

linearly independent. So, now, I need to show that these are also independent.
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Now, we need to show that the set of vectors {T(u1 ), T(u2 ), …,T(un )} is LI. So, for this LI

will take the linear combination. So, let I take some linear combination

α1T(u1) +α2 T(u2) +…..+ αnT(un) =0 , αi’s are scalars

T(α1u1 +α2 u2 +…..+ αnun) =0
α1u1 +α2 u2 +…..+ αnun ∈ N(T)

But, is one one

Since,   { u1 , u2 , …,un }

=> { T(u1 ), T(u2 ), …,T(un )} is

So, from here I can say that the set {T(u1 ), T(u2 ), …,T(un )} is a linearly independent set and

the vectors belonging to these are linearly independent. So, this is the proof of this first part.

In the 2nd part we are going the opposite way that these are linearly independent in the range

space and we need to show that these are linearly independent.



(Refer Slide Time: 08:24)

Now, the 2nd part we are going to prove is that the set {v1, v2 ,…vn }∈ R(T) is a linearly

independent set. So, that is given to us and this belongs to the range space of T and I take a

set of u1 , u2 , …,un ∈ U such that T(ui) = vi , i =1, 2,…, n.

So, I want to show that this u1 , u2 , …,un are linearly independent. So, for this one I will take

the linear combination. So, let

α1u1 +α2 u2 +…..+ αnun =0, αi’s are scalars

Now, in this case I take the transformation the linear transformation T. So, that will be

T(α1u1 +α2 u2 +…..+ αnun ) = T(0)=0

α1T(u1) +α2 T(u2) +…..+ αnT(un) =0

Now, given that T(ui) = vi , for all i's.

⇨ α1v1 +α2 v2 +…..+ αnvn = 0

and since the set {v1, v2 ,…vn } is a linearly independent set.

⇨ α1 = α2 = …. = αn = 0



So, which implies that the set { u1 , u2 , …,un } is LI because if all the scalars are coming 0

then from this linear combination I am able to find that this u1 , u2 , …,un is a linearly

independent set and the this is what we want to show that this set is also linearly independent.

So, this way we can do the proof of this theorem.
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Now, based on this one. So, let us do one example of how we can use these previous

theorems for finding some solution. Now let dim(U) = n and T : U → V is a linear

transformation and T is onto then prove that T is one-one if and only if T if and only if

dim(V) = n.

So, this one is the question that we have a dim(U) = n and I take a transformation that is a

linear transformation and it is onto, then it says that T is one-one if and only if dim(V) = n.

So, this one we need to prove now from here. So, let us start with the 1st part, let T be

one-one.

Now, I have the transformation T : U → V  and dim(U) = n. Now if T is one -one.

⇨ N(T) = {0u}



So, we know about this one now using rank nullity theorem rank(T) + nullity of (T) = n. But

now in this case this nullity is 0 because it contains only one element. So, from here we can

say that the rank(T)= n and if rank(T)= n  then from here we can say that dim(V) = n.
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And after doing this one so, we should use this concept also that not directly we can say then

from here I can say that the rank(T) = n also T is onto which implies that

R(T) = V => rank(T) = n => dim(V) = n.

So, this is what we wanted to show that if T is one-one and the map T is onto, then definitely

the dim(V) =n.

Conversely, let dim(V) =n , dim(U) = n and T is onto. So, that is given to me now using 2 is

onto. we need to show that T is one-one. Now, using rank nullity theorem, I can say that the

rank(T) + nullity(T) = n  because the dim(U) = n and from here I can say that nullity(T) = 0.
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and if the nullity(T)= 0 so, which implies that N(T) = {0u} and which says that T is one-one.

So, this way we are able to show that T will be one-one or maybe not directly we can right

from here then maybe I can extend this condition.
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Now, we know that we check the condition T is one-one we can do like this one that, let

=> T(u1) = T(u2)



⇨ T(u1) - T(u2) =0v

⇨ T(u1-u2) =0v

⇨ u1-u2∈ N(T)

⇨ u1-u2=0 => u1=u2

⇨ T is one-one.

So, which implies that T is one-one. So, we are able to show this result so in fact, from here

we can see that it says that that if I take the transformation

T : U → V and dim(U) =dim(V) then if T is one-one then implies T is onto or if T is onto

that implies that T is one-one. So, the only condition is that it should be from the same

dimension of vector space U to the same vector space V are the same dimensional then these

things are true.
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Now, from here I can say that, let us take another example or maybe one more result. I want

to show that if I have a transformation T : U → V be a linear transformation then dim(R(T))

≤ min{dim U, dim V}.



So, it will be the minimum of this one. So, we already know that because we have seen this

condition in the case of a matrix of order I am crossing and in that case we have seen that the

rank of this matrix A is always less than equal to the minimum of {m, n}. So, the same thing

we are writing here.

So, now after this one, once we know that T is one-one onto then we can talk about the other

thing is how we can take the inverse of a linear transformation that how we can define. So,

before that one we will define a definition that a linear map T : U → V is said to be non

singular; it is said to be nonsingular if it is one-one and onto.

So, if it is one-one and onto then we say that this linear map from U to V is non singular and

here we are talking about that finite dimensional map. So, U and V are of finite

dimensionality and now if I have this one such maps are called isomorphism.

Now, we will define how we can take the inverse of this one. So, from here I can write the

definition that a linear transformation LT is non singular if and only if it has its inverse. So,

that way we can define the inverse of the linear transformation. If it is non singular like the

matrix A and we know that we can find the inverse of this matrix, the only thing is that I

should talk about that it is of the same dimension and then we can discuss how we can define

the inverse of this one.

So, for finding the inverse, now we will define that U and V are finite dimensional and the

dimension is the same, so that we can use. So, here because whenever we define the inverse

of a given matrix we find that it should be non singular and the other thing is that it should be

of the same dimension or it should be a square matrix.

So, in this case also we are saying that the linear transformation T is from U to V and dim(U)

= dim(V).So, let us take one example of how we can find the inverse because there is no

specific formula to find the inverse depending upon the problem.

So, let we have a transformation T : P2 → V3 be a linear transformation such that

T(a+bx+cx2) =(a,b,c)



where P2 is a set of all the polynomials of degree less than or equal to 2. So, this way I

defined this linear transformation. So, here I am talking about second order polynomials. So,

the coefficient of this goes to the vector space V3. So, now I want to check whether the

inverse exists or not.
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Now, so, first I need to check that this linear transformation is one-one onto or not. One thing

is here that the dimension of P2 is 3 and dimV3 is 3 . Now, we need to show that T is one-one

onto. So, this one we need to check. The first one is that it is well defined because from any

polynomial I can have my coefficient .

So, from here I can say that T is one-one. T is one-one because if I can check that? So, let

T(P1(x)) = T(P2(x))

⇨ T(a0+b0x+c0 x2) = T(a1+b1 x+c1 x2)

⇨ (a0 ,b0 ,c0 ) = (a1 ,b1 ,c1 ) ∈ V3

⇨ a0 = a1 , b0 = b1 , c0 = c1

⇨ P1(x) = P2(x)

⇨ Tis one -one



Now, I also claimed that T is onto. So, it is true that that for any u suppose I take some any u

= (a,b,c) ∈ V3 there exist a polynomial ∈ P2 such that  T(a+bx+cx2) =(a,b,c)

So, this is true for all elements from the V3, then from here I can say that the transformation T

is onto.

Now, you can see from here that it is moving from P3 → V3 both have the same dimension 3

and this is one-one and onto also. So, now, from here I can say that T is non-singular implies

that T-1 exists and the T-1 (a,b,c) = a+bx+cx2 and this T inverse will be from V3 to P2. So,

after doing this one we can say that this T inverse will exist because it is one-one onto and T

inverse is the transformation we have defined like this one.
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And from here also T is isomorphic means, when T is one-one onto and moving from one

vector space to the another vector space of the same dimension, then we can say that the T is

isomorphic and from here I can say that P2 is isomorphic to V3 , this is a sign that we can

define for isomorphism.

They are isomorphic to each other although this seems that they are different because one

contains the polynomial of degree less than equal to 2 and another contains the vector in the 3

dimension that we are talking about the real vectors.



But now we are able to show that this is one-one onto, it is a non singular and inverse edges.

So, from here we can say that this is isomorphic to each other. So, this way we can show that

T is isomorphic and T inverse exist. So, I will stop here. So, in the today's lecture we have

discussed some application of rank nullity theorem and then we have also defined the inverse

of the linear transformation T from a vector space u to vector space v. So, in the next lecture

we will continue this one.

Thanks for watching. Thanks very much.


