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Hello viewers. So, welcome back to the course on Matrix Computation and its application.

So, in the previous lecture we have discussed some applications of linear algebra. So, today

we are going further for that one. So, let us start with this. So, today I want to give you one

definition of the basis. So, as we already know, if suppose A linearly independent spanning

set for a vector space V is called a basis of the vector space V.

So, it is the linearly independent spanning set, it should be linear independent and it should be

a spanning set also. So, that definition we already know. So, now, based on this one I want to

write the characterization of a basis. So, what are the characteristics of a basis? Now suppose

let U be a subspace of a vector space say and let I take a set beta that contains the𝑅𝑚

elements …, and they belong to the subspace U, then the following statements are𝑏
1,

𝑏
2,

𝑏
𝑛

equivalents.



So, in this case we are taking the U as a subspace and we are taking the vector space the𝑅𝑚

m dimensional vector space and let I take the set which contain the vectors …, .β 𝑏
1,

𝑏
2,

𝑏
𝑛

So, this is the n number of vectors that are contained in the given subspace U, then the

following statements are equivalent. So, the 1st one is that is a basis of U, 2nd one is aβ β

minimal spanning set for U and the 3rd one is that is a maximal linearly independent subsetβ

of U.

So, all these three statements are equivalent. So, suppose I just take this one. So, now, this

can be discussed now we have a . So, beta is containing the elements …, . So, thatβ 𝑏
1,

𝑏
2,

𝑏
𝑛

we are taking n number of vectors and I know that the v is the dimension of v that is equal to

m in this case.

Now if I say that the b is a basis of v implies that that the set beta is linearly independentβ

because these are the basis and U is spanned by or I can say that this is span by the vectorsβ

…, . So, then it becomes the basis. Now, the next thing says that beta is a minimal𝑏
1,

𝑏
2,

𝑏
𝑛

spanning set for U.
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It means, if I say that beta is a minimal spanning set for U, it means that there cannot be a

smaller set which contains the vectors less than n can be a spanning set for U which implies



that there does not exist any set having vectors less than n, which are the basis for U less than

n means suppose n is 5.

So, I cannot have a set which is less than 5 and which is also the basis for the vector U. So,

this is the statement about the minimal spanning set. So, this can be just can be seen that

suppose let us go by contradiction and we can prove this one that. So, let us go by

contradiction.

So, let is not a minimal spanning set for U which implies they exist another set say alphaβ

such that. So, if it is a not a minimal spanning set it means, there is another set alpha such that

such that the number of vectors in are l I and also spans U and of course, if it is a minimalα α

spanning set.

Alpha is a minimal spanning set then also that this number of vectors will be less than or

maybe I should take it should be it can be less than n because it is if it is not the minimal it

means is the minimal and a if is the minimal then it definitely will contain the vector lessα α

than n numbers and which are also linearly independent and spans U.

Now, contains a number of linear independent vectors. So, from here what you are gettingα

that is also one of the basis for U and is also one of the basis for U and which having theβ α

less than number of less which has the vector number of vectors less than n. So, which

implies that these things are not possible.

Because if I say. So, this can be seen that if I say that the dimension of U is n, then its basis

definitely should contain the n number of elements, but here if I take alpha as a minimal

spanning set less than beta, then it contains the vector less than n. So, which is not possible.

So, from here we can say that this is the minimal spanning set. So, this way we can prove

these things. So, which implies that beta is a minimal spanning set for U.

Now, the same way we can discuss the 3rd one. So, the 3rd one says that beta is a maximal

linearly independent subset of U. So, since it is the maximal linearly independent subset it

can be, we cannot have a subset of U which contains the linearly independent vector having

more numbers than this set beta.



So, let us prove this one. So, let us do this one. So, we go by the contradiction let is not aβ

maximal linearly independent subset of U. So, it denotes the maximum linearly independent

set. It means that suppose I have a set S which contain the elements maybe I can take the

elements as { …, }, vn+1 or maybe vk. So, it contains the k number of vectors and s is𝑣
1,

𝑣
2,

𝑣
𝑛

linearly independent it means the vectors are linearly independent. So, it means that I am

considering that beta is not the maximal linearly independent subset of U.
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So, if it is not the maximal linearly independent of U, I take the other set S which contains the

linearly independent vector which is in number k that is more than the n. So, here I am taking

that the k is more than n. Now we already know. So, if it is the maximal which implies. So, if

it is not the maximal this is the maximal. Now from here I can say that from here I can say

that the set S is linearly independent and it also spans U.

So, which implies that S is a basis for U. Now, if it is a basis for U, but we already know the

dimension of U, but we know that the basis of U cannot have more elements, more vectors

cannot have more vectors than the dimension of U. Because if U is a n dimensional then its

basis cannot have more vectors than any numbers. So, which implies that, but k is greater

than n.



So, from here I can say that since k is greater than n which implies that the set the set S

cannot be linearly independent because it is a if it is the basis containing n elements we know

that the more elements, then n will be linearly dependent. So, which is a contradiction. So,

which implies that the given set is the maximal set. So, that shows that beta is the maximal

linearly independent subset of the vector subspace U.

Now, after that we also know one of the other definitions, we know that the dimension of a

vector space V is the number of vectors in its basis. So, that we already know. So, based on

this one, I want to discuss one theorem. Let U be a subspace let U be a subspace of a vector

space V.

So, we are talking about finite dimensional vector space. So, let U be the subspace of the

vector space V, then dimension of U will always be less than dimension of V because U is a

subspace of V and if dimension of U is equal to dimension of V. So, that implies that U will

be equal to V. So, this is another important theorem.
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Now, this one we can see very clearly since U is a subspace of V. So, I can say that U is a

proper subset of V that is U is proper subset of V. I am considering that it is not equal to V



which implies that there exist some elements V such that such some elements V, such that V

belongs to capital v belongs to the vector space and does not belongs to the given subspace U.

It means, dimension of U has to be less than dimension of V because I get a 1 vector which is

not belongings to the given subspace it means that the basis of U cannot span the entire V

because V is a one vector I found which is containing in the given subspace U and which is

not in the V.

So, that implies the dimension of U is equal less than equal to dimension of V. Also if

Dim(U)=Dim(V) which implies that the number of vectors in basis of u is equal to number of

vectors in basis of V and we know that if v is a n dimensional vector space then all the basis

will contain n number of vectors. So, which implies that this is possible only when U is equal

to V. So, from here I can say that the dimensions are the same then the set U and v will be the

same. So, this is another important terminology.

Now, there is another theorem we want to discuss that is called extension theorem. So, in the

extension theorem basically what we are going let the set I take a set which contain elements

{ …, }So, let the set it contains k elements be a linearly independent subset of an n𝑣
1,

𝑣
2,

𝑣
𝑘

dimensional vector space v, then we can find; we can find vectors that is { …, } in𝑣
𝑘+1,

𝑣
𝑘+2,

𝑣
𝑛

V such that the set.

Now, I take the set { …, , …, } is a basis for vector space V. It means, if I𝑣
1,

𝑣
2,

𝑣
𝑘

𝑣
𝑘+1,

𝑣
𝑘+2,

𝑣
𝑛

have a vector space n dimensional vector space and in that vector space if I get a set of

vectors k number of vectors which definitely k n, then we can extend these vectors because<

these are linearly independent.

So, I can extend these vectors to the n numbers such that it becomes the basis for the vector

space V. So, in that case it will be linearly independent as well as it will span the whole v. So,

this is the extension theorem. So, this theorem will be used in future for the extension of the

basis.



(Refer Slide Time: 22:45)

Now, I want to discuss a very important theorem that if U and W are two subspaces of a of a

vector space V. So, that is finite dimensional, then dim (U+W)=dim(U)+dim(W)-Dim(U∩ 𝑊

). So, in this way we can find out the directly the dim (U+W) because we already know that

U W is also a subspace of V that we already know and we also know that U + W is also a∩

subspace of V.

So, those are two things we already know. So, this condition will be held. So, let us do the

proof for this one. So, let I take that let first I assume that the let dim(U) = m, dim(W)=p,

dim (U W)=r, dim(V) = n.∩

Now, of course, m, p, r definitely will be less than equal to n because it is a subspace. So,

definitely the dimension will be less than equal to n. Now I will take that let I will take a set {

…, } be a basis for the subspace U W which implies that U W is a span by this𝑣
1,

𝑣
2,

𝑣
𝑟

∩ ∩

one and these are linearly independent.

Now, I just call this set. Maybe I will call S now we know that S belongs to U and S also

belongs to W because these vectors will definitely lie in the U also and W also because they

belong to the intersection now from here. So, the set S. So, this is the set which contains the r

number of vectors can be extended to the basis of U because this set also belongs to U, but I

can extend with the help of extension theorem I can make the basis of U. So, let I take the set



{ …, , …, }. So, I will take or I should instead of v1 will take them as a u.𝑣
1,

𝑣
2,

𝑣
𝑘

𝑣
𝑘+1,

𝑣
𝑘+2,

𝑣
𝑚

So, let us take u and um. So, this is a basis for the U.
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Now, since S also belongs to W so, which implies using extension theorem. So, using

extension theorem we can extend the set S to a basis of vector space subspace W. So, which

implies I can have a vector the set of vector { …, } and then I can write{ …, }.𝑣
1,

𝑣
2,

𝑣
𝑟

𝑤
1,

𝑤
2,

𝑤
𝑟

So, it goes up to p. So, it is p.

So, now is a basis for w. Now, we construct a set. So, I construct a set suppose I write A and

that set contain the element { …, , …, }. and { …, }. So, we𝑣
1,

𝑣
2,

𝑣
𝑘

𝑣
𝑘+1,

𝑣
𝑘+2,

𝑣
𝑚

𝑤
𝑟+1,

𝑤
𝑟+2,

𝑤
𝑚

construct the set containing all the linearly independent vectors.

Such that. So, let me construct this and if we are able to show that the first thing is that A is

linear independent and the second one is A spans U + W, then we can claim that A is a basis

of U + W and contains. So, it contains r + m - r + p - r. So, that becomes basically m + p - r

elements. So, these things will be there. So, now we need to show that A is linearly

independent and A spans the whole U+W Now, so, let us prove the first one.
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We need to show that A is linearly independent. So, this one we need to show. So, from here I

will write I will take the linear combination of the elements this which implies that suppose I

take + + =0…..(1). suppose I take the linear combination for this
𝑖=1

𝑟

∑ α
𝑖
𝑣

𝑖
𝑖=𝑟+1

𝑚

∑ β
𝑖
𝑢

𝑖
𝑖=𝑟+1

𝑝

∑ γ
𝑖
𝑤

𝑖

one. So, this is the linear combination. So, we need to show that i's, 's and 's all are 0.α β𝑖 γ𝑖

So, that we need to show. Now from here I can write this as +
𝑖=1

𝑟

∑ α
𝑖
𝑣

𝑖

=v
𝑖=𝑟+1

𝑚

∑ β
𝑖
𝑢

𝑖
=  −

𝑖=𝑟+1

𝑝

∑ γ
𝑖
𝑤

𝑖

And let this be equal to v. I just take. It means I am taking this as a vector v. Now from here I

can say that v is a is can be written as a is a linear combination of vectors in U because vi’s

and Ui’s are the basis for the subspace U and taking this linear combination I am getting the

value v.

So, which implies that v belongs to U the spanning of U basically it is U also v is

which implies that v can also be written as a linear combination of wi’s. So, it −
𝑖=𝑟+1

𝑝

∑ γ
𝑖
𝑤

𝑖

means that v also belongs to w. Now from here if v belongs to W, then which implies that v



also belongs to U W. So, if belongs to U W implies that v can be written as some linear∩ ∩

combination because these are the basis vi are the basis for U W.
𝑖=1

𝑟

∑ δ
𝑖
𝑣

𝑖
∩

So, now from here I can write that. So, v is already this one. So, from here I can write that

is equal to and from here I can write that + =0.−
𝑖=𝑟+1

𝑝

∑ γ
𝑖
𝑤

𝑖
𝑖=1

𝑟

∑ δ
𝑖
𝑣

𝑖
𝑖=𝑟+1

𝑝

∑ γ
𝑖
𝑤

𝑖
𝑖=1

𝑟

∑ δ
𝑖
𝑣

𝑖

So, now it is a vi and wi already we know that they are the basis for w. So, from here it is very

easy to check that it means that and wi all are 0 for all i because the set { …, } and {δ
𝑖

𝑣
1,

𝑣
2,

𝑣
𝑟,

…, } is a basis for w. So, from here all the is and will become 0. So, if and𝑤
𝑟+1,

𝑤
𝑟+2,

𝑤
𝑝,

δ δ
𝑖

will become 0, then from here. So, I just can give the name of this equation. So, let us write

one.
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Then from equation 1 we get. So, now, it became 0. So, it became 0. So, from here I willγ
𝑖

γ

get that + =0, which implies that all i's and i's are 0 for all i because this set
𝑖=1

𝑟

∑ α
𝑖
𝑣

𝑖
𝑖=𝑟+1

𝑚

∑ β
𝑖
𝑢

𝑖
α β

{ …, }, { …, } is linearly independent that we already know because it is a𝑣
1,

𝑣
2,

𝑣
𝑟,

𝑢
𝑟+1,

𝑢
𝑟+2,

𝑚

basis.



So, from here we can say that which implies that the set A is linearly independent. So, this is

we are able to show that A is linearly independent. Now we need to show that it spans U+W.

So, it is very easy to show now. So, the 2nd one we need to show. So, now, we need to show

that A spans U+W.

Now, let I take element z belongs to U+W , which implies I can write z as some element u+w

and which again because if it is in the u, I can write this as a linear combination

+ because this is the basis for this one plus.
𝑖=1

𝑟

∑ 𝑎
𝑖
𝑣

𝑖
𝑖=𝑟+1

𝑚

∑ 𝑏
𝑖
𝑢

𝑖

Similarly, I can write + because this element w belongs to w and this u
𝑖=1

𝑟

∑ 𝑐
𝑖
𝑣

𝑖
𝑖=𝑟+1

𝑝

∑ 𝑑
𝑖
𝑤

𝑖
 

belongs to u. So, u can be written as a linear combination of this one and w can be written as

a linear combination of this one.

So, after writing this one I can say that which implies because this can be combined. So, I can

write that z = + + and which is if you see that is the linear
𝑖=1

𝑟

∑ (𝑎
𝑖

+ 𝑐
𝑖
)𝑣

𝑖
𝑖=𝑟+1

𝑚

∑ 𝑏
𝑖
𝑢

𝑖
𝑖=𝑟+1

𝑝

∑ 𝑑
𝑖
𝑤

𝑖

combination of the vectors of A.

So, which implies that z belongs to the span of A. So, from here we can see that z belongs to

the span of A. It means that I started with a z from u. So, from here I can write that U + W is

contained in span A. Also because A definitely contains the elements the vectors and all

vectors are coming from U + W.

So, also I can say that a span is subset of U + W because I can take the element A from the

span of a and that can be shown with this that that belongs to U + W. So, from here I can

using this and this condition, I can say that U + W is equal to the span of A. So, it means

from here I can say that A is a basis for U + W.
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Now, if it is a basis of U + W then definitely I can check that the dimension of U + W is. So,

we have shown this one that it contains m + p - r elements is m + p - r. So, that is equal to

dim(U+W)=dim(U)+dim(W)-dim(U ). So, that is the proof of the given theorem.∩ 𝑊

So, now we will stop here. So, today we have discussed very important theorem that the

dim(U+W)=dim(U)+dim(W)-dim(U ). So, I hope you have enjoyed this one. Thanks for∩ 𝑊

watching.

Thanks very much.


